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CLASSICAL MECHANICS (CM)
Physics in the Late 19th Century (prior to quantum 
mechanics (QM)) thought that

• Atoms are basic constituents of matter 
• Newton’s Laws apply universally 
• The world is deterministic (Everything determined precisely)

According to CM
Given initial positions 𝑟𝑟0 and velocities 𝑉𝑉0 , and given
all forces �⃗�𝐹(𝑡𝑡) ⟹ all the future can be predicted!!

�⃗�𝑣 𝑡𝑡 = �
𝑣𝑣0

𝑣𝑣
𝑑𝑑�⃗�𝑣′ =�

𝑡𝑡0

𝑡𝑡 �⃗�𝐹
𝑚𝑚 𝑑𝑑𝑡𝑡𝑑 �⃗�𝐹 = 𝑚𝑚�⃗�𝑎 = 𝑚𝑚

𝑑𝑑�⃗�𝑣
𝑑𝑑𝑡𝑡

𝑟𝑟 𝑡𝑡 = �
𝑟𝑟0

𝑟𝑟
𝑑𝑑𝑟𝑟′ =�

𝑡𝑡0

𝑡𝑡
�⃗�𝑣𝑑𝑑𝑡𝑡𝑑

𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡 = �⃗�𝑣
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CLASSICAL MECHANICS – SUCCESSES!!
Physics was complete except for a few decimal places ! 

• Newtonian mechanics explained macroscopic 

behavior of matter -- planetary motion, fluid flow, 

elasticity, etc. 

• Thermodynamics had its first two laws and most of 

their consequences 

• Basic statistical mechanics had been applied to 

chemical systems 

• Light was explained as an electromagnetic wave 
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CLASSICAL MECHANICS – HOW MUCH??
There were several experiments that could not be explained 
by classical physics and the accepted dogma ! 

• Blackbody radiation 
• Photoelectric effect 
• Discrete atomic spectra 
• The electron as a subatomic particle 

Some important conclusions would result from these problems 
• Atoms are not the most microscopic objects 
• Newton’s laws do not apply to the microscopic world of 

the electron 

OUTCOME ⇒ New Rules!!!
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QUANTUM MECHANICS (QM) !

The failure of CM dawn the QM 

• A new philosophy of nature

• Describes rules that apply to electrons in atoms and 

molecules 

• Non-deterministic, probabilistic !  

• Explains unsolved problems of late 19th century 

physics 

• Explains bonding, structure, and reactivity in 

chemistry 
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BLACK BODY RADIATION

Heating an object and glowing

• An object is heated to 100◦C or to higher,
 Glows visibly red, no matter what material it is made of.
 Becomes orange, yellow, white, or even blue at enough

high temperature.
• An object with a lower reflectivity glows more intensely.
• For theoretical modeling of this radiation requires object

with zero reflectivity (absorbs all radiation).
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BLACK BODY RADIATION

An ideal black body & its laboratory form
 A black body, a model system that reflects no

radiation at any wavelength, has the maximum
emissivity at every wavelength.

 The best laboratory approximation to a black body is
not an object, but a small hole in the side of a hollow
box.

 Any light falling on the
hole from outside will be
absorbed completely as
it is reflected around in
the box.
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BLACK BODY RADIATION

Black body spectrum
 Measurements on the light emitted through the hole

when the box is heated show that the amount of light
emitted and its spectral distribution depend only on the
temperature of the walls of the box.

Experimental Setup Spectral Distribution
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BLACK BODY RADIATION
Characteristics of black body
spectrum
 The total radiant emittance (area

under the curve) increases as the
temperature increases.

 η(λ) depends on λ. Only a small
amount of the radiation is emitted
at shorter wavelengths (λ)

 At a particular λ , η(λ) depends on
temperature.

 At each temperature there is a
wavelength, λmax for which η(λ)
has its maximum value.

 λmax shifts to lower wavelengths
as the temperature increases.

η(λ)dλ is the energy per unit time per
unit area emitted in the wavelengths
lying between λ and λ + dλ.
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CLASSICAL THEORY OF BLACK BODY RADIATION

Stefan–Boltzmann law
Total radiant emittance = 𝜎𝜎 𝑇𝑇4

σ = the Stefan–Boltzmann 
constant 

The experimental value of
σ = 5.67051 × 10−8 Jm−2 s−1 K−4

= 5.67051 × 10−8 Wm−2 K−4

Limitation:

 Empirical
 No theoretical basis
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CLASSICAL THEORY OF BLACK BODY RADIATION

Wien’s law

 Proposed the following empirical law, 𝐼𝐼 𝜆𝜆,𝑇𝑇 = 𝑎𝑎
𝜆𝜆5
𝑒𝑒−

𝑏𝑏
𝜆𝜆𝜆𝜆

Where 𝑎𝑎 and 𝑏𝑏 are adjustable parameters

 This law fitted the experimental 
curve fairly well except at long 
wavelengths. 

 However, it is not satisfactory in 
the sense that it is not derived 
from a model which would relate 
the emitted radiation to physical 
processes taking place within the 
enclosure.
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CLASSICAL THEORY OF BLACK BODY RADIATION
Rayleigh and Jeans Law
 Based on classical electrodynamics and thermodynamics
 Assumptions:

 The wall of cavity consists of a large number of charged
atomic oscillator. Atomic oscillators can emit and absorb
electromagnetic radiation. The superposition of incident and
reflected waves of each frequency results in the formation
of standing waves with nodes at the walls.

 At thermal equilibrium, the average energy of standing waves
of a given frequency equals the average energy of the wall
oscillators of the same frequency. The number of oscillators
per unit volume in the frequency range ν and ν+dν called
Jean’s number, is calculated as

𝑛𝑛 𝜈𝜈 𝑑𝑑𝜈𝜈 =
8𝜋𝜋𝜈𝜈2

𝑐𝑐3 𝑑𝑑𝜈𝜈
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CLASSICAL THEORY OF BLACK BODY RADIATION
Rayleigh and Jeans Law
 According to the classical theory of equipartition of energy, the

average energy of an oscillator at temperature T is kT, where k
is the Boltzmann’s constant.

 The energy density of the radiation of frequency, ν in the cavity
at temperature, T is

𝑈𝑈 𝜈𝜈,𝑇𝑇 𝑑𝑑𝜈𝜈 =
8𝜋𝜋𝜈𝜈2

𝑐𝑐3 𝑘𝑘𝑇𝑇d𝜈𝜈

This is the Rayleigh-Jean’s law

 In terms of wavelength

𝑈𝑈 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 =
8𝜋𝜋
𝜆𝜆4 𝑘𝑘𝑇𝑇𝑑𝑑𝜆𝜆

𝜈𝜈 = 𝑐𝑐/𝜆𝜆
𝑑𝑑𝜈𝜈 =

𝑐𝑐
𝜆𝜆2
𝑑𝑑𝜆𝜆

∴
8𝜋𝜋𝜈𝜈2

𝑐𝑐3
𝑘𝑘𝑇𝑇𝑑𝑑𝜈𝜈

=
8𝜋𝜋 𝑐𝑐

𝜆𝜆
2

𝑐𝑐3
𝑘𝑘𝑇𝑇

𝑐𝑐
𝜆𝜆2

𝑑𝑑𝜆𝜆

=
8𝜋𝜋
𝜆𝜆4
𝑘𝑘𝑇𝑇𝑑𝑑𝜆𝜆



14

CLASSICAL THEORY OF BLACK BODY RADIATION
Rayleigh and Jeans Law

 Rayleigh-Jeans law agrees 
with the experimental results 
in the long wavelength region.

 It disagrees as the 
wavelength tends to zero.

The failure of Rayleigh-
Jeans law is referred to as 
the “ultraviolet catastrophe”.

Moreover, the total energy emitted at all temperatures
except absolute zero is given by

𝑈𝑈 𝑇𝑇 = �
0

∞

𝑈𝑈 𝜈𝜈,𝑇𝑇 𝑑𝑑𝜈𝜈 =
8𝜋𝜋𝑘𝑘𝑇𝑇
𝑐𝑐3

�
0

∞

𝜈𝜈2𝑑𝑑𝜈𝜈 = ∞

Which is obviously impossible.
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QUANTUM THEORY OF BLACK BODY RADIATION
Advocacy of Max Planck (1900)
Assumptions:
 What assumptions made by Rayleigh-Jeans were also

made by Max Plank except the energy distribution over
the standing modes (or oscillators).

 He assumed that the emission and absorption of radiation
by an oscillator take place in the form of discrete packet
of energy called photons, and is given by

𝐸𝐸𝑛𝑛 = 𝑛𝑛𝑛𝜈𝜈, n = 0, 1, 2, . . . . .                      
n is called quantum number and           
h is plank constant

The energy of an oscillator can take on
any of these fixed values, but cannot
take on any value in-between them.

Quantized energy values
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QUANTUM THEORY OF BLACK BODY RADIATION
Derivation of Max Planck Equation
 According to max Plank, an oscillator can absorb whole

number of photons, the allowed values of energy of
oscillators are

𝐸𝐸0 = 0,𝐸𝐸1 = 𝑛𝜈𝜈,𝐸𝐸2 = 2𝑛𝜈𝜈,𝐸𝐸3 = 3𝑛𝜈𝜈, and so on

 Let N0, N1, N2, . . . . . , Nn be the number of oscillators
with energy E0, E1, E2, . . . . , En. The total number of
oscillators, N and total energy E of the system is given by

𝑁𝑁 = 𝑁𝑁0 + 𝑁𝑁1 + 𝑁𝑁2+. . . . +𝑁𝑁𝑛𝑛 = �
𝑛𝑛=0

∞

𝑁𝑁𝑛𝑛

𝐸𝐸 = 0 𝑛𝜈𝜈𝑁𝑁0 + 1 𝑛𝜈𝜈𝑁𝑁1 + 2 𝑛𝜈𝜈𝑁𝑁2+. . . . +𝑛𝑛 𝑛𝜈𝜈𝑁𝑁𝑛𝑛 = 𝑛𝜈𝜈�
𝑛𝑛=0

∞

𝑛𝑛𝑁𝑁𝑛𝑛
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QUANTUM THEORY OF BLACK BODY RADIATION
Derivation of Max Planck Equation

 According to Boltzmann Statistics, the number of
oscillators with energy En = nhν is given by

𝑁𝑁𝑛𝑛 = 𝐴𝐴𝑒𝑒−
𝐸𝐸𝑛𝑛
𝑘𝑘𝑘𝑘 = 𝐴𝐴𝑒𝑒−

𝑛𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘 , A is constant

 Taking 𝑥𝑥 = 𝑒𝑒−
ℎ𝜈𝜈
𝑘𝑘𝜆𝜆,

𝑁𝑁 = 𝐴𝐴�
𝑛𝑛=0

∞

𝑒𝑒−𝑛𝑛𝑛𝑛𝑛/𝑘𝑘𝑘𝑘 = 𝐴𝐴�
𝑛𝑛=0

∞

𝑥𝑥𝑛𝑛

 Expanding summation,

𝑁𝑁 = 𝐴𝐴 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3+. . . . =
𝐴𝐴

1 − 𝑥𝑥
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QUANTUM THEORY OF BLACK BODY RADIATION
Derivation of Max Planck Equation
 Similarly,

𝐸𝐸 = 𝑛𝜈𝜈𝐴𝐴�
𝑛𝑛=0

∞

𝑛𝑛𝑒𝑒−𝑛𝑛𝑛𝑛𝑛/𝑘𝑘𝑘𝑘 = 𝑛𝜈𝜈𝐴𝐴�
𝑛𝑛=0

∞

𝑛𝑛𝑥𝑥𝑛𝑛

𝐸𝐸 = 𝑛𝜈𝜈𝐴𝐴 0 + 𝑥𝑥 + 2𝑥𝑥2 + 3𝑥𝑥3+ . . . . . .

𝐸𝐸 = 𝑛𝜈𝜈𝑥𝑥𝐴𝐴 1 + 2𝑥𝑥 + 3𝑥𝑥2+ . . . . . . =
𝑛𝜈𝜈𝑥𝑥𝐴𝐴

1 − 𝑥𝑥 2

 The average energy of oscillator, �𝐸𝐸 is

�𝐸𝐸 =
𝐸𝐸
𝑁𝑁 =

𝑛𝜈𝜈𝑥𝑥𝐴𝐴
1 − 𝑥𝑥 2

1 − 𝑥𝑥
𝐴𝐴

=
𝑛𝜈𝜈𝑥𝑥

1 − 𝑥𝑥 = 𝑛𝜈𝜈
𝑒𝑒−

𝑛𝑛𝑛
𝑘𝑘𝑘𝑘

1 − 𝑒𝑒−
𝑛𝑛𝑛
𝑘𝑘𝑘𝑘

= 𝑛𝜈𝜈
𝑒𝑒−

𝑛𝑛𝑛
𝑘𝑘𝑘𝑘

𝑒𝑒−
𝑛𝑛𝑛
𝑘𝑘𝑘𝑘 𝑒𝑒

𝑛𝑛𝑛
𝑘𝑘𝑘𝑘 − 1

=
𝑛𝜈𝜈

𝑒𝑒
𝑛𝑛𝑛
𝑘𝑘𝑘𝑘 − 1
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QUANTUM THEORY OF BLACK BODY RADIATION
Derivation of Max Planck Equation

 Multiplying average energy by the Jean’s number gives
the energy density within the frequency range between 𝜈𝜈
and 𝜈𝜈 + 𝑑𝑑𝜈𝜈 at temperature T

𝑈𝑈 𝜈𝜈,𝑇𝑇 𝑑𝑑𝜈𝜈 =
8𝜋𝜋𝜈𝜈2

𝑐𝑐3
𝑛𝜈𝜈

𝑒𝑒𝑛𝑛𝑛/𝑘𝑘𝑘𝑘 − 1
𝑑𝑑𝜈𝜈

This is Planck’s radiation law.

 In terms of wavelength,

𝑈𝑈 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 =
8𝜋𝜋𝑛𝑐𝑐
𝜆𝜆5

1
𝑒𝑒𝑛𝑐𝑐/𝜆𝜆𝑘𝑘𝑘𝑘 − 1

𝑑𝑑𝜆𝜆
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QUANTUM THEORY OF BLACK BODY RADIATION
Validity of Max Planck Equation

 Planck’s law agrees very close with the
experimental spectral distribution
curves for all values of 𝜆𝜆 and T.

 It reduces to Wien’s law as 𝜆𝜆 → 0. and
Rayleigh-Jean’s law as 𝜆𝜆 → ∞.

 It is found to be consistent with
Wien’s displacement law, 𝜆𝜆𝑚𝑚𝑇𝑇 =
constant and Stefan-Boltzmann law,
𝑈𝑈 ∝ 𝑇𝑇4.

Thus, it incorporates all that is valid from the classical theory
and yet, makes a fundamental departure, which ultimately
shook the foundation of classical mechanics.

 Planck was awarded the 1918 Nobel prize for the discovery of
energy quanta.
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QUANTUM THEORY OF BLACK BODY RADIATION
Validity of Max Planck Equation
PROBLEM Show that Wien’s law and Rayleigh-Jeans’ law
are special case of Plank’s law corresponding to short and
long wavelength, respectively.
Solution: When 𝜆𝜆 is small, then 𝑒𝑒𝑛𝑐𝑐/𝜆𝜆𝑘𝑘𝑘𝑘 ≫ 1. Therefore,

𝑈𝑈 𝜆𝜆,𝑇𝑇 ~ 8𝜋𝜋𝑛𝑐𝑐
𝜆𝜆5

𝑒𝑒−
ℎ𝑐𝑐
𝜆𝜆𝑘𝑘𝜆𝜆 = 𝑎𝑎

𝜆𝜆5
𝑒𝑒−

𝑏𝑏
𝜆𝜆𝜆𝜆, 𝑎𝑎 = 8𝜋𝜋𝑛𝑐𝑐 , 𝑏𝑏 = 𝑛𝑐𝑐

𝑘𝑘

which is Wien’s law.

When 𝜆𝜆 is large, then 𝑒𝑒
ℎ𝑐𝑐
𝜆𝜆𝑘𝑘𝜆𝜆 = 1 + 𝑛𝑐𝑐

𝜆𝜆𝑘𝑘𝑘𝑘
+ 1

2
𝑛𝑐𝑐
𝜆𝜆𝑘𝑘𝑘𝑘

2
+ ⋯

Neglecting higher power terms, 𝑒𝑒
ℎ𝑐𝑐
𝜆𝜆𝑘𝑘𝜆𝜆 = 1 + 𝑛𝑐𝑐

𝜆𝜆𝑘𝑘𝑘𝑘

Therefor, 𝑈𝑈 𝜆𝜆,𝑇𝑇 ~ 8𝜋𝜋𝑛𝑐𝑐
𝜆𝜆5

𝜆𝜆𝑘𝑘𝑘𝑘
𝑛𝑐𝑐

= 8𝜋𝜋𝑘𝑘𝑘𝑘
𝜆𝜆4

Which is Rayleigh-Jeans’ law
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PHOTO-ELECTRIC EFFECT

 When electromagnetic radiation of high frequency is
incident on a metal surface, electrons are emitted
from the surface.

 This phenomena is called photoelectric effect.
 The emitted electrons are generally called

photoelectrons.

Schematic arrangement of the
apparatus used for the study of
photoelectric effect

A

e

Radiation
Emitting 

Plate
Collecting 

Plate

V
Evacuated Tube

 This effect was
discovered by
Heinrich Hertz in
1887.

 The apparatus used
to study the
photoelectric effect
is shown in right
figure.
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PHOTO-ELECTRIC EFFECT

The number of photoelectrons emitted per second, or the
photoelectric current, is proportional to the intensity of
radiation but is independent of the frequency.

No electrons are emitted if the incident radiation has a
frequency less than a threshold value 𝜈𝜈0. The value of 𝜈𝜈0
varies from metal to metal.

 The kinetic energy of the emitted electrons varies from
zero to a maximum value. The maximum value of energy
depends on the frequency and not on the intensity of
radiation. It varies linearly with the frequency.

 The photoelectric emission is an instantaneous process,
i.e., there is negligible time lag between the incidence of
radiation and the emission of electrons, regardless of
how low the intensity of radiation is.

Results from the study of photoelectric effect
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PHOTO-ELECTRIC EFFECT

According to classical theory (CT)

 Hence, K.E. of photoelectron should depend on I, but
experimental results are contrary to prediction.

 According to CT, incident radiations collide with electron, so
electrons should eject by radiation of any frequency, but
classical theory is blind about the threshold frequency.

 Further, ejection of electron should take long time, but
results are against to prediction.

Classical failure of photoelectric effect
• Intensity, I

𝐼𝐼 ∝ 𝐸𝐸2

• Force exerted on 
electron by incident 
radiation

𝐹𝐹 = 𝑒𝑒𝐸𝐸
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PHOTO-ELECTRIC EFFECT

With analogy to Planck’s quantum hypothesis, Einstein
assumed that EMR itself consists of quanta of energy 𝑛𝜈𝜈
called photon, where h is Planck's constant.

Some part of photon of energy, 𝑛𝜈𝜈 is spent in making
electron free, rest appears as kinetic energy of electron.

The minimum energy required to liberate loosely bound
electrons is called work function, 𝜙𝜙 of material.

 The maximum kinetic of photoelectrons is given by
𝑇𝑇𝑀𝑀𝑎𝑎𝑀𝑀 = 𝑛𝜈𝜈 − 𝜙𝜙

 If frequency, 𝜈𝜈0 of radiation is sufficient to eject electron
with zero kinetic energy, then 𝜙𝜙 is given by

𝜙𝜙 = 𝑛𝜈𝜈0
the frequency, 𝜈𝜈0 is the threshold of cut-off frequency.

Einstein’s explanation of photoelectric effect (1905)
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PHOTO-ELECTRIC EFFECT

 Einstein’s photoelectric equation can be written as
𝑇𝑇𝑀𝑀𝑎𝑎𝑀𝑀 = 𝑛𝜈𝜈 − 𝑛𝜈𝜈0

Einstein’s explanation of photoelectric effect (1905)

Freuency, 𝜈𝜈

𝑇𝑇 𝑀𝑀
𝑎𝑎𝑀𝑀

Metal A

Metal B

𝜙𝜙𝐴𝐴
𝜙𝜙𝐵𝐵

𝜈𝜈0(A) 𝜈𝜈0(B)

Fig. Variation of kinetic energy of 
photoelectrons with frequency 
of incident radiation
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PHOTO-ELECTRIC EFFECT

Increase in the intensity of radiation increases the
number of photon but not the energy of photon.
 Hence increase in intensity increase the

probability of collision, thereby the number of
photoelectrons.

Since the energy of photon is concentrated in a
small region and photon is moving at very high
speed (c),
 the energy of photon is instantaneously

transferred to electron and consequently there
is no appreciable time lag between the incidence
of light and the emission of electron.

Einstein’s explanation of photoelectric effect (1905)
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PHOTO-ELECTRIC EFFECT
Experimental verification of Einstein’s Equation

 If the potential, 𝑉𝑉0 of collector plate
is made negative, the electrons are
repelled back. For a certain value 𝑉𝑉0,
the most energetic electrons are just
turned back and photoelectric current
becomes zero. This 𝑉𝑉0 is called the
stopping or cut-off potential.

 It is clear that at 𝑉𝑉0, 𝑇𝑇𝑀𝑀𝑎𝑎𝑀𝑀 = 𝑒𝑒𝑉𝑉0
 Einstein’s equation becomes,

𝑒𝑒𝑉𝑉0 = 𝑛𝜈𝜈 − 𝑛𝜈𝜈0
𝑉𝑉0 = 𝑛

𝑒𝑒
𝜈𝜈 − 𝑛

𝑒𝑒
𝜈𝜈0

 The plot of 𝑉𝑉0 vs. 𝜈𝜈 would be a straight
line with slope, 𝑛

𝑒𝑒
and intercept, − 𝑛

𝑒𝑒
𝜈𝜈0.

0 V𝑉𝑉01𝑉𝑉02𝑉𝑉03

𝜈𝜈3 𝜈𝜈2 𝜈𝜈1

Cu
rr

en
t

Fig. Variation of photocurrent 
with acceleration potential
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PHOTO-ELECTRIC EFFECT
Experimental verification of Einstein’s Equation

 In order to verify this equation, R. A. Millikan
measured 𝑉𝑉0 for different metal targets by
illuminating light of different frequencies.

 From the slope of 𝑉𝑉0 vs. 𝜈𝜈 plot, he obtained 𝑛,
which was the same as that obtained by Planck
from the black body radiation experiment.

 This great achievement established the
correctness of the quantum concept and
Einstein’s theory.

 Einstein awarded the 1921 Nobel prize.
 Millikan awarded the 1923 Nobel prize.
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FINE SPECTRA OF HYDROGEN ATOM
 When an electric current is passed through a glass tube

that contains hydrogen gas at low pressure the tube
gives off blue light.

 When this light is passed through a prism, four narrow
bands of bright light are observed against a black
background.

Wavelength Color

656.2 red

486.1 blue-green

434.0 blue-violet

410.1 violet

Table: Characteristic 
wavelengths and colors
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FINE SPECTRA OF HYDROGEN ATOM
During the period 1885-1908, many spectroscopists (Ritz.
Rhydberg, Balmer. etc.) had shown that spectra of
hydrogen atoms consisted of lines whose frequency could
be expressed as a difference of two terms,

�̅�𝜈 =
𝜈𝜈
𝑐𝑐 =

1
𝜆𝜆 = 𝑅𝑅𝐻𝐻

1
𝑛𝑛12

−
1
𝑛𝑛22

1

Where, 𝑛𝑛1 = 1, 2,⋯ , 𝑛𝑛2 = 2, 3,⋯ , and RH = Rhydberg
constant
Lyman series 𝐧𝐧𝟏𝟏 = 𝟏𝟏 𝐧𝐧𝟐𝟐 = 𝟐𝟐,𝟑𝟑,𝟒𝟒, . . UV region
Balmer series 𝐧𝐧𝟏𝟏 = 𝟐𝟐 𝐧𝐧𝟐𝟐 = 𝟑𝟑,𝟒𝟒,𝟓𝟓, . . Vis region
Paschen series 𝐧𝐧𝟏𝟏 = 𝟑𝟑 𝐧𝐧𝟐𝟐 = 𝟒𝟒,𝟓𝟓,𝟔𝟔, . . Vis region
Brackett series 𝐧𝐧𝟏𝟏 = 𝟒𝟒 𝐧𝐧𝟐𝟐 = 𝟓𝟓,𝟔𝟔,𝟕𝟕, . . Vis region
Pfund series 𝐧𝐧𝟏𝟏 = 𝟓𝟓 𝐧𝐧𝟐𝟐 = 𝟔𝟔,𝟕𝟕,𝟖𝟖, . . Vis region
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FINE SPECTRA OF HYDROGEN ATOM

Failure of Classical Mechanics:

 The formulae (1) was obtained empirically.
Although this formulae well-explained the line
spectra of hydrogen atoms, it was lacked of
theoretical support.

 The classical (Rutherford) picture of atomic
structure predicted continuous band spectra and
not spectral lines, as according to the
electromagnetic theory, an electron rotating
around the nucleus could emit radiation whose
frequency changed continuously.
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FINE SPECTRA OF HYDROGEN ATOM
QM explanation of line spectra of Hydrogen atoms:
 Neils Bohr (1913) first interpreted line spectra of

hydrogen atom using Quantum Theory. He assumed that
 Electrons revolve round the nucleus. In “stationary

state”,
Coulombic attraction to nucleus = Centrifugal force

𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟2
=
𝑚𝑚𝑒𝑒𝑣𝑣2

𝑟𝑟 1

 Angular momentum,

𝑚𝑚𝑣𝑣𝑟𝑟 =
𝑛𝑛𝑛
2𝜋𝜋 2

Combining (1) & (2)

𝑟𝑟 =
4𝜋𝜋𝜀𝜀0 𝑛2𝑛𝑛2

4𝜋𝜋2𝑚𝑚𝑒𝑒𝑒𝑒2
3
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FINE SPECTRA OF HYDROGEN ATOM
QM explanation of line spectra of Hydrogen atoms:
 Energy of stationary state of H atom,

Energy = Kinetic Energy + Potential energy

𝐸𝐸𝑛𝑛 =
1
2𝑚𝑚𝑒𝑒𝑣𝑣2 −

𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
Eliminating 𝑣𝑣 and 𝑟𝑟 from (2) & (3)

𝐸𝐸𝑛𝑛 = −
𝑚𝑚𝑒𝑒𝑒𝑒4

8𝜀𝜀02𝑛2𝑛𝑛2
4

 Energy change between two stationary states
Δ𝐸𝐸 = 𝐸𝐸𝑛𝑛2 − 𝐸𝐸𝑛𝑛1 = 𝑛𝜈𝜈 = 𝑛�̅�𝜈𝑐𝑐

⇒ 𝑛�̅�𝜈𝑐𝑐 =
𝑚𝑚𝑒𝑒𝑒𝑒4

8𝜀𝜀02𝑛2
1
𝑛𝑛12

−
1
𝑛𝑛22
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FINE SPECTRA OF HYDROGEN ATOM
QM explanation of line spectra of Hydrogen atoms:

⇒ �̅�𝜈 =
𝑚𝑚𝑒𝑒𝑒𝑒4

8𝜀𝜀02𝑛3𝑐𝑐
1
𝑛𝑛12

−
1
𝑛𝑛22

= 𝑅𝑅
1
𝑛𝑛12

−
1
𝑛𝑛22

5

Where, 𝑅𝑅 = 𝑚𝑚𝑒𝑒𝑒𝑒4

8𝜀𝜀02𝑛3𝑐𝑐

⇒ 𝑅𝑅 =
9.1 × 10−31𝑘𝑘𝑘𝑘 × 4.8 × 10−19𝐶𝐶 4

8 × 8.85 × 10−12𝐶𝐶2𝑁𝑁−1𝑚𝑚−2 2 × 6.62 × 10−34𝐽𝐽 3 × 3 × 108𝑚𝑚𝑠𝑠−1

𝑅𝑅 = 1.09737 × 107𝑚𝑚−1

Rhydberg constant
𝑅𝑅𝐻𝐻 = 1.09678 × 107𝑚𝑚−1

 Excellent agreement between R & RH
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FINE SPECTRA OF HYDROGEN ATOM
QM explanation of line spectra of Hydrogen atoms:
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WAVE NATURE OF PARTICLES
De Broglie Concept:
 In 1924, Louis de Broglie was guided by the intuitive

feeling that nature loves symmetry. Nature has two
entities—matter and radiation.

 Therefore, if radiation has particle-like properties, then
material particles (electron, proton, neutron etc.) should
possess wave-like properties.

 A photon of frequency 𝜈𝜈 has energy
𝐸𝐸 = 𝑛𝜈𝜈

 and momentum

𝑝𝑝 =
𝐸𝐸
𝑐𝑐 =

𝑛𝜈𝜈
𝑐𝑐 =

𝑛
𝜆𝜆 𝑂𝑂𝑟𝑟, 𝜆𝜆 =

𝑛
𝑝𝑝
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WAVE NATURE OF PARTICLES
De Broglie Concept:
 De Broglie proposed that this relation can be applied to

material particles as well as photons. Thus, de Broglie
postulated that a wave having wavelength, 𝜆𝜆 is
associated with every material particle,

𝜆𝜆 =
𝑛
𝑝𝑝 (de Broglie wavelength)

 For a particle of mass m, moving with a speed v, this
becomes

𝜆𝜆 =
𝑛
𝑚𝑚𝑣𝑣

 For relativistic particle, m is given by

𝑚𝑚 =
𝑚𝑚0

1 − 𝑣𝑣2
𝑐𝑐2

[ m0 is the rest mass]
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WAVE NATURE OF PARTICLES
De Broglie Concept:
 de Broglie’s hypothesis, when proposed, had no supporting

experimental evidence. Such evidence came three years later in
1927.

 de Broglie equation can be written in different forms

o In terms kinetic energy

𝐾𝐾 =
𝑝𝑝2

2𝑚𝑚
⟹ 𝑝𝑝 = 2𝑚𝑚𝐾𝐾 ⟹ 𝜆𝜆 =

𝑛
2𝑚𝑚𝐾𝐾

o In terms of acceleration potential
𝐾𝐾 = 𝑞𝑞𝑉𝑉 [𝑞𝑞 is charge of particle of mass 𝑚𝑚]

𝜆𝜆 =
𝑛

2𝑚𝑚𝑞𝑞𝑉𝑉
=

6.625 × 10−34

2 × 9.1 × 10−31 × 1.6 × 10−19
1
𝑉𝑉

𝜆𝜆 =
1.23 × 10−10

𝑉𝑉
𝑚𝑚 =

1.23
𝑉𝑉

Å



40

WAVE NATURE OF PARTICLES
De Broglie Concept & Bohr’s quantized hypothesis of
angular momentum :

Fig. A standing 
electron wave in the 
Bohr’s orbit

 For the orbit to be stable, it is
reasonable to assume that the
wave must "match," or be in
phase, as the electron makes
one complete revolution (as
shown Figure). .

 Otherwise, there will be
cancellation of some amplitude
upon each revolution, and the
wave will disappear.
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WAVE NATURE OF PARTICLES
De Broglie Concept & Bohr’s quantized hypothesis of
angular momentum :

 For the wave pattern around an orbit to be stable, we 
are led to the condition that an integral number of 
complete wavelengths must fit around the 
circumference of the orbit. Because the circumference 
of a circle is 2𝜋𝜋𝑟𝑟, we have the quantum condition 

2𝜋𝜋𝑟𝑟 = 𝑛𝑛𝜆𝜆

 If we substitute de Broglie's relation into above 
equation, we obtain the Bohr quantization condition 

2𝜋𝜋𝑟𝑟 =
𝑛𝑛𝑛
𝑚𝑚𝑣𝑣 ⟹ 𝑚𝑚𝑣𝑣𝑟𝑟 =

𝑛𝑛𝑛
2𝜋𝜋
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WAVE NATURE OF PARTICLES
Experimental evidence of De Broglie Concept:

Fig 1. Schematic diagram 
of the Davisson-Germer
Experiment

 A narrow beam of electrons
accelerated through a
potential difference, V was
directed normally towards the
surface of nickel crystal.

 The electrons were scattered
in all directions by the atoms
in crystal. The intensity of the
scattered electrons was
measured as a function of the
latitude angle 𝜙𝜙 measured
from the axis of the incident
beam for different
accelerating potential.
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WAVE NATURE OF PARTICLES
Experimental evidence of De Broglie Concept:

Fig 2. Polar plot of the 
intensity as a function 
of the scattering angle 
for 54 eV electrons.

 Fig. 2 shows the polar graph of
the variation of the intensity
with 𝜙𝜙 for V = 54 volts.

 At each angle, the intensity is
given by the distance of the
point from the origin. It is seen
that as 𝜙𝜙 increase from zero,
the intensity first decreases ,
passes through a minimum at 350

and then rises to a peak values
at 500.



44

WAVE NATURE OF PARTICLES
Experimental evidence of De Broglie Concept:

Fig 3. Diffraction of electron 
waves by the crystal

 The occurrence of this
peak can be explained as
being due to constructive
interference of the
electron wave reflected
from some particular set
of Bragg planes in the
crystal lattice as in the
case of X rays cases.

 This shown in the figure
3.
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WAVE NATURE OF PARTICLES
Experimental evidence of De Broglie Concept:
The Bragg condition for constructive interference is

𝑛𝑛𝜆𝜆 = 2𝑑𝑑 sin𝜃𝜃
Where d is the spacing between the adjacent Bragg planes
and n is an integer.
The angle 𝜃𝜃 is shown in the figure, We have

𝜃𝜃 + 𝜙𝜙 + 𝜃𝜃 = 1800

𝜃𝜃 =
1800 − 𝜙𝜙

2 = 900 −
𝜙𝜙
2

From geometry,

𝑑𝑑 = 𝐷𝐷 sin
𝜙𝜙
2

Where D is the interatomic distance.
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WAVE NATURE OF PARTICLES
Experimental evidence of De Broglie Concept:

Therefore, 𝑛𝑛𝜆𝜆 = 2𝐷𝐷 sin𝜙𝜙
2

sin 900 − 𝜙𝜙
2

𝑛𝑛𝜆𝜆 = 2𝐷𝐷 sin
𝜙𝜙
2 cos

𝜙𝜙
2 = 𝐷𝐷 sin𝜙𝜙

For Nickel D = 2.15 Å . Assuming that the peak at 𝜙𝜙 = 500

for the first order diffraction, we take n = 1. Therefore,
𝜆𝜆 = 2.15 × sin 500 = 1.65 Å

Now according to de Broglie’s hypothesis, we have for
electron accelerated through a potential difference, V

𝜆𝜆 =
1.23
𝑉𝑉

Å =
1.23

54
Å = 1.66 Å

The agreement between the two values is remarkably
close.
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WAVE NATURE OF PARTICLES
Human perception of de Broglie wave:
Example 1: An electron of mass, 𝑚𝑚𝑒𝑒 = 9.1 × 10−31𝑘𝑘𝑘𝑘 having
velocity 𝑣𝑣 = 106 𝑚𝑚𝑠𝑠−1 would have a wavelength,

𝜆𝜆 =
𝑛

𝑚𝑚𝑒𝑒𝑣𝑣

=
6.62 × 10−34𝑗𝑗𝑠𝑠

9.1 × 10−31𝑘𝑘𝑘𝑘 × 106 𝑚𝑚𝑠𝑠−1

= 70 × 10−10 𝑚𝑚

= 70 𝑛𝑛𝑚𝑚
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WAVE NATURE OF PARTICLES
Human perception of de Broglie wave:
Example 2: A large object of mass, 𝑚𝑚 = 1 𝑘𝑘𝑘𝑘 having
velocity 𝑣𝑣 = 33.10 𝑚𝑚𝑠𝑠−1 would have a wavelength,

𝜆𝜆 =
𝑛
𝑚𝑚𝑣𝑣

=
6.62 × 10−34𝑗𝑗𝑠𝑠

1 𝑘𝑘𝑘𝑘 × 33.10 𝑚𝑚𝑠𝑠−1

= 2.0 × 10−35 𝑚𝑚
The wavelength is too small, indeed human unbales 
to percept the wave effect of large object.
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WAVES VS PARTICLES

Sl. Waves Particles 
1. A wave is described by

frequency ν,
wavelength
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CLASSICAL WAVES
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HARMONIC STATIONARY WAVES

The displacement of particles (along Y- axis) from

the equilibrium position (along x-axis

𝑦𝑦 𝑥𝑥 = 0, 𝑡𝑡 = 0 = 𝐴𝐴 sin𝜔𝜔𝑡𝑡

𝑦𝑦 𝑥𝑥 = 0, 𝑡𝑡 = 0 = 𝐴𝐴 cos𝜔𝜔𝑡𝑡

Note: two waves are 
the same except phase 
difference by 𝜋𝜋/2
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TRAVELLING WAVES

∆x
x

t=t+∆tt=tt=0

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 sin
2𝜋𝜋
𝜆𝜆 𝑥𝑥 + 𝜙𝜙

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 sin
2𝜋𝜋
𝜆𝜆 (𝑥𝑥 − 𝑣𝑣𝑡𝑡) + 𝜙𝜙

𝑥𝑥 = 𝑥𝑥0 + 𝑣𝑣𝑡𝑡, Δx = 𝑥𝑥 − 𝑥𝑥0 = 𝑣𝑣𝑡𝑡
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PRINCIPLE OF SUPERPOSITION

𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑦𝑦1 + 𝑦𝑦2

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 2𝐴𝐴𝑐𝑐𝐴𝐴𝑠𝑠
𝜙𝜙
2 sin

2𝜋𝜋
𝜆𝜆 𝑥𝑥 − 𝑣𝑣𝑡𝑡 +

𝜙𝜙
2
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STANDING WAVES
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CLASSICAL WAVE EQUATION
 The displacement of a wave is

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 sin
2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

 Partial differential with respect to t, x gives

𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡

= −
2𝐴𝐴𝜋𝜋𝑐𝑐
𝜆𝜆

cos
2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= −
4𝜋𝜋2𝑐𝑐2

𝜆𝜆2
A sin

2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

=
2𝐴𝐴𝜋𝜋
𝜆𝜆

cos
2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2

= −
4𝜋𝜋2

𝜆𝜆2
A sin

2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= −
4𝜋𝜋2𝑐𝑐2

𝜆𝜆2
−

𝜆𝜆2

4𝜋𝜋2
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2

⟹
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 cos
2𝜋𝜋
𝜆𝜆

𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑀𝑀−𝑐𝑐𝑡𝑡 +𝜙𝜙
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WAVE PACKETS AND MATTER WAVES

o Do the classical waves represent matter waves?

o NO, why??

The velocity of waves called phase velocity,𝑣𝑣𝑝𝑝𝑛 can be 

obtained from phase.

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 sin
2𝜋𝜋
𝜆𝜆 𝑥𝑥 − 𝑐𝑐𝑡𝑡 + 𝜙𝜙

Total phase, Φ = 𝑘𝑘𝑥𝑥 − 𝜔𝜔𝑡𝑡 + 𝜙𝜙 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

, 𝑘𝑘 → Wave vector

𝑑𝑑Φ
𝑑𝑑𝑡𝑡 = 𝑘𝑘

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 − 𝜔𝜔 = 0 since Φ is constant with time

𝑣𝑣𝑝𝑝𝑛 = 𝑑𝑑𝑀𝑀
𝑑𝑑𝑡𝑡

= 𝜔𝜔
𝑘𝑘

Total Phase
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WAVE PACKETS AND MATTER WAVES

1. The phase velocity of de Broglie waves

𝑣𝑣𝑝𝑝𝑛 = 𝜔𝜔
𝑘𝑘

= ℏ𝜔𝜔
ℏ𝑘𝑘

= 𝐸𝐸
𝑝𝑝

= 𝑚𝑚𝑐𝑐2

𝑚𝑚𝑣𝑣
= 𝑐𝑐2

𝑣𝑣

Since, particle velocity 𝑣𝑣 ≪ light velocity 𝑐𝑐.

𝑣𝑣𝑝𝑝𝑛 ≫ 𝑐𝑐2

This is totally absurd.

2. The classical waves, 𝜓𝜓 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑖𝑖(𝑘𝑘𝑀𝑀−𝜔𝜔𝑡𝑡+𝜙𝜙)

Probability density, 𝜓𝜓 𝑥𝑥, 𝑡𝑡 2 = 𝐴𝐴2 is independent  

of position. This is also physically inconsistent.

𝑝𝑝 =
𝑛
𝜆𝜆

=
𝑛
2𝜋𝜋

⋅
2𝜋𝜋
𝜆𝜆

= ℏ𝑘𝑘

𝐸𝐸 = 𝑛𝜈𝜈 =
𝑛
2𝜋𝜋

⋅ 2𝜋𝜋𝜈𝜈 = ℏ𝜔𝜔
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PROPERTIES OF MATTER WAVES
1. Stationary particle

2. Dynamic particle
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WAVE PACKETS AND MATTER WAVES

What is wave packet?

Superposition of infinite number of waves with slightly 

different 𝑘𝑘 and 𝜔𝜔 that 𝑑𝑑𝑘𝑘 and 𝑑𝑑𝜔𝜔 are small shows
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WAVE PACKETS AND MATTER WAVES

Formation of wave packet
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WAVE PACKETS AND MATTER WAVES

Formation of wave packet

𝜓𝜓1 = 𝐴𝐴 sin(𝑘𝑘1𝑥𝑥 − 𝜔𝜔1𝑡𝑡)

𝜓𝜓2 = 𝐴𝐴 sin(𝑘𝑘2𝑥𝑥 − 𝜔𝜔2𝑡𝑡)

𝑣𝑣 =
𝜔𝜔
𝑘𝑘

sin𝛼𝛼 + sin𝛽𝛽 = 2 sin
𝛼𝛼 + 𝛽𝛽

2
cos

𝛼𝛼 − 𝛽𝛽
2

𝜓𝜓 = 𝜓𝜓1 + 𝜓𝜓2

𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘1𝑥𝑥 − 𝜔𝜔1𝑡𝑡) + 𝐴𝐴 sin(𝑘𝑘2𝑥𝑥 − 𝜔𝜔2𝑡𝑡)

𝜓𝜓 = 2𝐴𝐴 cos
𝑘𝑘1 − 𝑘𝑘2

2
𝑥𝑥 −

𝜔𝜔1 − 𝜔𝜔2

2
𝑡𝑡 sin

𝑘𝑘1 + 𝑘𝑘2
2

𝑥𝑥 −
𝜔𝜔1 + 𝜔𝜔2

2
𝑡𝑡

𝜓𝜓 = 2𝐴𝐴 cos
Δ𝑘𝑘
2

𝑥𝑥 −
Δ𝜔𝜔
2

𝑡𝑡 sin �𝑘𝑘𝑥𝑥 − �𝜔𝜔𝑡𝑡

Δ𝑘𝑘 = 𝑘𝑘1 − 𝑘𝑘1, Δ𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔2, �𝑘𝑘 =
𝑘𝑘1 + 𝑘𝑘2

2
, �𝜔𝜔 =

𝜔𝜔1 + 𝜔𝜔2

2
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Formation of wave packet

  
  

 

  
  

 

  
  

 
 
 

𝜓𝜓1 = 𝐴𝐴 sin(𝑘𝑘1𝑥𝑥 − 𝜔𝜔1𝑡𝑡)

𝜓𝜓2 = 𝐴𝐴 sin(𝑘𝑘2𝑥𝑥 − 𝜔𝜔2𝑡𝑡)

𝜓𝜓 = 2𝐴𝐴 cos
Δ𝑘𝑘
2 𝑥𝑥 −

Δ𝜔𝜔
2 𝑡𝑡 sin �𝑘𝑘𝑥𝑥 − �𝜔𝜔𝑡𝑡

𝜓𝜓 = 2𝐴𝐴 cos
Δ𝑘𝑘
2 𝑥𝑥 −

Δ𝜔𝜔
2 𝑡𝑡

Group velocity, 𝑣𝑣𝑔𝑔 =
Δ𝑤𝑤
Δ𝑘𝑘
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Formation of wave packet
Summation of an infinite number of waves having
infinitesimally different frequencies, ω and wave vector,
k may form a single group.

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = �
𝑛𝑛

𝐴𝐴𝑛𝑛𝑒𝑒𝑖𝑖(𝑘𝑘𝑀𝑀−𝜔𝜔𝑡𝑡)

If the component waves have continuous distribution of
frequencies and wave vectors, the above sum becomes
an integral.

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = �𝐴𝐴 𝑘𝑘 𝑒𝑒𝑖𝑖(𝑘𝑘𝑀𝑀−𝜔𝜔𝑡𝑡) 𝑑𝑑𝑘𝑘

𝐴𝐴 𝑘𝑘 = �𝑦𝑦(𝑥𝑥, 𝑡𝑡) 𝑒𝑒−𝑖𝑖(𝑘𝑘𝑀𝑀−𝜔𝜔𝑡𝑡) 𝑑𝑑𝑥𝑥

Furrier Integral

Furrier Transform

Furrier Series



64

WAVE PACKETS AND MATTER WAVES

Δ𝑥𝑥 ⋅ Δ𝑘𝑘 = 𝐶𝐶𝐴𝐴𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡

-5 0 5
0.0

0.1

0.2

0.3

0.4

A(
k)

kx

-5 0 5
0.0

0.1

0.2

0.3

0.4

A(
k)

kx

-5 0 5
0.0

0.5

1.0

1.5
|ψ

(x
, 0

)|2

x

-5 0 5
0.0

0.5

1.0

1.5

|ψ
(x

, 0
)|2

x

∆x

∆x

∆k

∆k
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Group velocity,𝑣𝑣𝑔𝑔 =
Δ𝑤𝑤
Δ𝑘𝑘

If the frequencies and wave vectors of component
waves forming a single group differ infinitesimally, then

𝑣𝑣𝑔𝑔 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑘𝑘

Now,

𝜔𝜔 =
𝐸𝐸
ℏ =

𝑝𝑝2

2𝑚𝑚ℏ =
ℏ2𝑘𝑘2

2𝑚𝑚ℏ =
ℏ𝑘𝑘2

2𝑚𝑚

𝑣𝑣𝑔𝑔 =
𝑑𝑑𝑤𝑤
𝑑𝑑𝑘𝑘 =

2ℏ𝑘𝑘
2𝑚𝑚 =

𝑝𝑝
𝑚𝑚 = 𝑣𝑣𝑝𝑝 → Particle velocity

Thus, the representation of a particle by wave packet 
gets logical support.



66

WAVE PACKETS AND UNCERTAINTY PRINCIPLE
 For a Gaussian shaped wave packet, the product     
Δ𝑥𝑥 ⋅ Δ𝑘𝑘 is minimum and is equal to unity .

Δ𝑥𝑥 ⋅ Δ𝑘𝑘 = 1

 For other types of wave packets, such as square, 
triangle or rectangular, 

Δ𝑥𝑥 ⋅ Δ𝑘𝑘 > 1

 In generally,
Δ𝑥𝑥 ⋅ Δ𝑘𝑘 ≥ 1

Δ𝑥𝑥 ⋅ Δ
𝑝𝑝
ℏ ≥ 1

Δ𝑥𝑥 ⋅ Δ𝑝𝑝 ≥ ℏ

Δ𝑥𝑥 ⋅ Δ𝑝𝑝 ≥
𝑛
2𝜋𝜋

Heisenberg Uncertainty 
relation
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𝑥𝑥 = 𝑥𝑥0 + 𝑣𝑣𝑡𝑡

Δ𝑥𝑥 = 𝑣𝑣Δ𝑡𝑡

Now,

Δx ⋅ Δ𝑝𝑝 = ℏ

𝑣𝑣Δ𝑡𝑡 ⋅
Δ𝐸𝐸
𝑣𝑣 = ℏ

Δ𝐸𝐸 ⋅ Δ𝑡𝑡 = ℏ

Heisenberg Uncertainty relation

Energy -Time Uncertainty Relation

𝐸𝐸 =
𝑝𝑝2

2𝑚𝑚

Δ𝐸𝐸 =
2𝑝𝑝Δ𝑝𝑝
2𝑚𝑚

Δ𝐸𝐸 =
𝑚𝑚𝑣𝑣Δ𝑝𝑝
𝑚𝑚

Δ𝐸𝐸 = 𝑣𝑣Δ𝑝𝑝

Δ𝑝𝑝 =
Δ𝐸𝐸
𝑣𝑣
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DERIVATION OF MATTER WAVES
The classical wave equation:

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2 =

1
𝑐𝑐2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑡𝑡2

It’s a 2nd order partial differential equation of degree 1. 𝜓𝜓 is
a function of x and t. If x and t don’t interfere each other
then 𝜓𝜓 can be written as the product of two functions
whose are function of single variable, i.e.,

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = 𝑋𝑋 𝑥𝑥 ⋅ 𝑇𝑇(𝑡𝑡)
The solution of equation (1) was shown as

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑀𝑀−𝑐𝑐𝑡𝑡 +𝜙𝜙

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑖𝑖𝜙𝜙 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑀𝑀 ⋅ 𝑒𝑒−𝑖𝑖

2𝜋𝜋𝑐𝑐
𝜆𝜆 𝑡𝑡

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = 𝑋𝑋 𝑥𝑥 ⋅ 𝑒𝑒−𝑖𝑖
2𝜋𝜋𝑐𝑐
𝜆𝜆 𝑡𝑡

(1)

(2)
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Now differentiating equation (2) wrt x and t,

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2 =

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 ⋅ 𝑒𝑒

−𝑖𝑖 2𝜋𝜋𝑐𝑐𝜆𝜆 𝑡𝑡

and
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑡𝑡2 = −

4𝜋𝜋2𝑐𝑐2

𝜆𝜆2 𝑋𝑋 𝑥𝑥 ⋅ 𝐴𝐴𝑒𝑒−𝑖𝑖
2𝜋𝜋𝑐𝑐
𝜆𝜆 𝑡𝑡

Putting these partial derivatives in equation (1),

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 ⋅ 𝑒𝑒

−𝑖𝑖 2𝜋𝜋𝑐𝑐𝜆𝜆 𝑡𝑡 =
1
𝑐𝑐2 −

4𝜋𝜋2𝑐𝑐2

𝜆𝜆2 𝑋𝑋(𝑥𝑥) ⋅ 𝑒𝑒−𝑖𝑖
2𝜋𝜋𝑐𝑐
𝜆𝜆 𝑡𝑡

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = −

4𝜋𝜋2

𝜆𝜆2 𝑋𝑋(𝑥𝑥)

The equation(3) is time-independent classical wave equation.

(3)
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According to de Broglie equation,

𝜆𝜆 =
𝑛
𝑝𝑝 ⟹ 𝜆𝜆2 =

𝑛2

𝑝𝑝2

Substituting 𝜆𝜆 in equation (3)

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = −

4𝜋𝜋2𝑝𝑝2

𝑛2 𝑋𝑋(𝑥𝑥)

Total Energy , E  = Kinetic Energy, KE   + Potential Energy, V
Or,     KE = E – V

Or, 𝑝𝑝2

2𝑚𝑚
= 𝐸𝐸 − 𝑉𝑉 ⟹ 𝑝𝑝2 = 2𝑚𝑚(𝐸𝐸 − 𝑉𝑉)

Substituting 𝑝𝑝 in equation (4)

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = −

8𝜋𝜋2𝑚𝑚(𝐸𝐸 − 𝑉𝑉)
𝑛2 𝑋𝑋(𝑥𝑥)

(4)

(5)
One dimensional 
Schrodinger equation
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Considering the motion of micro-particle in three

dimension, this equation (5) has been modified as

𝑑𝑑2Ψ
𝑑𝑑𝑥𝑥2 +

𝑑𝑑2Ψ
𝑑𝑑𝑦𝑦2 +

𝑑𝑑2Ψ
𝑑𝑑𝑧𝑧2 = −

8𝜋𝜋2𝑚𝑚 𝐸𝐸 − 𝑉𝑉
𝑛2 Ψ

∇2Ψ = −
8𝜋𝜋2𝑚𝑚 𝐸𝐸 − 𝑉𝑉

𝑛2 Ψ

Where Laplacian Operator, ∇2= 𝑑𝑑2

𝑑𝑑𝑀𝑀2
+ 𝑑𝑑2

𝑑𝑑𝑦𝑦2
+ 𝑑𝑑2

𝑑𝑑𝑧𝑧2

Equation (6) and (7) are three-dimensional time-independent

Schrodinger equation.

(6)

(7)



2Ψ is always positive
Probability density

In a one-dimensional case,
the probability that the
particle will be found in
the interval dx around
some point x1 is -

)(Ψ

http://en.wikipedia.org/wiki/File:Max_Born.jpg


Ψ

Always real and positive

probability  density



Ψ

Since  |Ψ| is proportional to the probability density of finding 
the  particle described by Ψ,

=Ψ∫
∞

∞−

2

=Ψ∫
∞

∞−

2

∞≠Ψ∫
∞

∞−

2
Maximum probability can be which
means certainty of the particles presence

Means the particle does not exist

Ψ must be finite



Ψ

The probability of finding the particle in a given region 
(say, between x1 and x2 along x-direction) is given by :

∫ Ψ=yProbabilit



ψ

This is obvious because there can not be more than one
probability for an event at the same place and time.

Unacceptable for not 
being single-valuedψ

x

Presenter
Presentation Notes
First, we require that ψ be a single-valued function because we want |ψ|2 to give anunambiguous probability for finding a particle in a given region



The born interpretation immediately imposes some restrictions 
on acceptable values of ψ:

ψ
An infinite value of ψ at any point would mean an infinite
probability of finding the particle at that point, which is
absurd, as the maximum probability (i.e., certainty) equals 1.

Unacceptable:
Infinite over a finite regionψ

x

Presenter
Presentation Notes
we reject functions that are infinite in any region of space because such an infinity will always be infinitely greater than any finite region, and |ψ|2 will be useless as a measure of comparative probabilities.



2

2ψ must be well defined

We can take the 2nd derivative of ψ only if it is continuous
and also its first derivative (sloe of ψ) is continuous (there
must not be any infection point on the plot of the function)

Unacceptable:
Not continuous

Unacceptable:
Slope (1st derivative) 
discontinuous

ψ

x x

ψ

Presenter
Presentation Notes
In order for Hψ to be defined everywhere, it is necessary that the second derivative of ψ be defined everywhere. This requires that the first derivative of ψ be piecewise continuous and that ψ itself be continuous.



ψ

This also means that ψ must go to zero as 
x → ±∞; y → ±∞; z → ±∞ (otherwise ψ would 
become infinite)

∫∫ == CC *2 τψψτψ

A wave function that satisfies the conditions 1 – 4 is said to
be a well-behaved function. Only a well-behaved wave
function can yield physically meaningful results when used
in calculation.

Presenter
Presentation Notes
Every acceptable wave function can be normalized by multiplying by an appropriate constant.



Since the particle is to be found somewhere in space, the total probability  
of its finding over all space must be unity.

∫∫ == 11 *2 τψψτψ

If ψ happens to be complex, * would be always real. 

..=τ
(in 3-dimensions)

If we find that the wave-function for a particular system
(obtained by solving the corresponding Schrödinger equation)
does not satisfy the above characteristics, we have to make it so
behave. This is known as normalization of the wave-function.

∫∫∫ ===
+∞

∞−

∗
+∞

∞−

111 22 ψψψψ ≤≤for  

A consequence of the probabilistic  interpretation of the wave-function is 
that it must be normalized:

Presenter
Presentation Notes
As  is not a physically observable quantity, it can turn out to be a complex quantity.
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