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BACKGROUND 1
Rules of Operator Constructions

a. Operator for coordinate of position ----- > X is the
multiplier x -
b. Operator of coordinate of momentum ----- > Dy 1S ?%

c. Write the expression for any other physical quantity
in terms of coordinates of position (x, y, z) and of
momenta ( pyp,,p,) and then replace these
coordinates by their operators.

2
L 1
Example 1: Kinetic energy (along x), T, = ;’; = — Py PX
1 Ad hd h2 d (d % d?
Or, T = omide idx  2mdx (dx) T 2mdx?
h? d?

Kinetic energy operator (along x), T, = "



BACKGROUND 1
Example 2:
Total energy, E = K.E+ P.E

K.E n? (9% | 9% | 97
E-->T =T +T),+ T, =  2m (axz T 0y* * 522)

hZ 02 62 62
E = _Zm <ax2 + ayz +ﬁ) + V(X,y,Z)
Operator corresponding to total energy ---->

Hamiltonian operator denoted by H

f=—

9x2  9y2 | 922

hZ 62 62 02
2m<

+ ) +V(x,y,2)



BACKGROUND 1
Eigenvalue Problem:

If y is wavefunction of a state and H is a
corresponding Hamiltonian operator, then the
state can be expressed by following
mathematical equation,

H = E

This is eigenvalue problem or eigenvalue
equation.

Its solution provides the wavefunction as well
as eigenvalue (energy) of the state.



BACKGROUND 1
Free Particle in one-dimension:

Mass, m

H ?
Eigenvalue Problem?

How to solve for eigenfunction (wavefunction) and

eigenvalue?

_ h? g?
H=-

2m dx?

+ V(x)

For free particle ----> V(x) is zero

Eigenvalue problem:
K2 d2y
2m dx?

= Ey




BACKGROUND 1
Free Particle in one-dimension:

Solution: -
he d
- 2m dxllzj = £y
dy 2mE
dxz R
d? , , 2mE
k=0 {k == ‘

It's a 2" order differential equation with constant
coefficient. So its auxiliary solution is

e plmx

2
d l/) _ _mzeimx
—— =
dx



BACKGROUND 1
Free Particle in one-dimension:

—mZ2elmx 4+ k2elmx —

eimx(kz _ mz) =0

k2 . mZ =0 ( eimx + O)

m = +k
General solution is

— tkx —ikx

Y = Ae"™ + Be B
Y = Acoskx + iAsinkx + B coskx — iB sin kx
Y = C coskx + D sinkx (2)

Y = Ccoskx [whenD = 0] (3)




BACKGROUND 1
Free Particle in one-dimension:

Y =Dsinkx  [when C = 0] (4)
) = Ae™* [when B = 0] (5)
Y =B g~ Ukx l[when A = 0] (6)

The equations (1)-(6) are the general solutions.

« To get particular solution for a particular problem,
the arbitrary constants must be solved by initial
boundary conditions.

* For a free particle moving in a box of length a.

P(0) =0 Y(@) =0 Condition1:0 =Acosk-0+ Bsink -0
0=A%Xx14+B X0

|

‘=0 ‘=q Y = Bsinkx



BACKGROUND 1

Free Particle in one-dimension:

Condition 2:

0 =yY(a) = Bsinka

sinka =0

sin ka = sinnm

nr

a
n22

=~
N
|

n # 0 as Y vanish

n # negative integers for
generating redundant v as
positive integers.

In=1,2,3,-]

n=3
n=2
=1




BACKGROUND 1

Free Particle in one-dimension:

Condition 3:

. nm
Y = Bsin—x
a

. NOI"I’\'\G'IZGTIOH condition will glve the value of B

ni
Jl/)l/)dx_l :Bstm —xdx =1

a
0
a 2
B2-=1 =B= |-
2 \ @
« Normalize (specific) solution:
[
Y = Esinn—ﬂx
\ a a




BACKGROUND 1
Free Particle in three-dimension:

_ h% [ 0° ik 02 4
H = _Zm(axz + 3y +ﬁ> +V(x,y,2)
For free particle,
V=20
»X

-T)
|

h% (0% 0% 0%
- 2m (6x2 " dy? " ﬁ)

If i is a wavefunction and E is eigenvalue, then SE is
h% [ 0? 02 02
(7 3+ 32 0 = 0
This equation cannot be solved directly without
converting in ordinary form (to be done by variable

separation).

_Zm



BACKGROUND 1

Free Particle in three-dimension:
Variable Separation:

<az 02 az> _ 2mE

922 9yZ ' 922 n2

If the x, y and z don't interact each other, then
wavefunction, ¥ can be expressed as,

Y(x,y,z) =X(x)-Y(y)-Z(z) orsimply Y =XYZ

0% d“X ik d?yY 0° d<Z

OV _yy &% Oyt W 4l

0x? dx? dy? dy? 0z% dz?
d*X d?Y d*Z 2mE

Y, —+ XL —+ XY — = — XYZ
dx? dy? dz? h?




BACKGROUND 1

Free Particle in three-dimension:
Variable Separation:

Dividing both sides by XYZ

1 d2X+1 d2Y+1 dZZ_ 2mE
X dx?2 Ydy? Zdzz = h?

Each terms in LHS depends only on single variable and
RHS is constant for a particular state. This equation is

valid only when each term in LHS becomes constant, i.e.,

1 d2X  2mE, 1d%  2mE, 1d%Z  2mE,

Xdx2~  R2 ' Ydy:  R2 ' Zdz2 R
WithE =E, +E, + E,
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BACKGROUND 1

Free Particle in three-dimension:
Variable Separation:

On rearranging gives,

d’X  2mE, 0
dx2  h?

2
ﬂ _ 2mkE,, v (2)
dy? h?

2
d_Z — Zmk, 7 (3)
dz? h?

The equations (1), (2), (3) now become one-dimensional
problems and ordinary differential equation. These can be
solved easily as detailed out previous.


Presenter
Presentation Notes
 


BACKGROUND 2

Relation among different coordinate systems:
Cartesian and Polar Cartesian and Spherical

X X = rsinf cos ¢
y =rsinfsin ¢
Z=r1cos6

x4+ y%+z% =r?
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BACKGROUND 1
Conversion of Laplacian in spherical coordinates

Func’riofn Tree Chain Rule
/1\ of afor ofa6  of o

9x  orox  900x | 94 ox

/ﬁ
\Q:
/

s

/

Xy ZXxXYy Z x Yy Z fx = frtx + foOx + fp &«

frx = ale + frtex + (F)xOx + fobxx + (fp) Dx + fobux

frx = (frrtx + fro0x + fro @)t + frrix + (forte + foobx + fop®x ) Ox
+fo0xx + (fprTe + fp00x + fpp®x)Px + foPrx

fex = filix + f00xx t fobux + [t + fo005 + fpp bz + 2framOx +
2f000xPx + 2fprDuTy
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ROTATIONAL MOTION
Free Particle moving on circle (Plane):

The particle of mass m travels on a f ==%_f:_“j
circle of radius r in the xy-plane. e el
If particle rotates freely then re AN
R ( 92 92 ) - —
H=- + . . -
2m \ 0x? 0y2 Fig. The rotational characteristics

of a uniform disk are represented
Since the motion is circular, it is by the motion of a single mass

: . o e of peration.
convenient to eXPI"ZSS Hin polar' point at its radius of gyration
coordinates (r, ¢).

X = T COS ¢ 02 02 52 1 9 1 92

LTI, Gat e =ant ot o
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ROTATIONAL MOTION
Free Particle moving on circle (Plane):

Since r is constant, the derivatives with respect to r can
be discarded.

hZ 1 02 hz 02 I=mr2

i—i = — —
2mr? d¢? 21 0¢p? [ is the moment of intertia

The wavefunction will depend on ¢ only. Denoting
wavefunction by ®(¢), simply @, the S. E. is

h?0°® 0°®  2IE

2097 Y ToprT wm
The general solutions are

21E

d = Aet™i®P + Be~ltMu¢ where m{ = 7
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ROTATIONAL MOTION
Free Particle moving on circle (Plane):

Since the particle remains always on the ring, there is no

condition for vanishing ®. However, because wavefunction
must be single-valued, it must follow the cyclic boundary

conditioni.e., ®(¢p + 2m) = ().

Aeiml(¢+2n) 4 Be—iml(¢+2n) — Aeimlq[) 1 Be—imlcl)

This relation is satisfied only if m,; is an integer, for then,
using Euler's relation, e?™™ = 1. The boundary conditions
therefore imply that

m; = O; ily iZ; i3;

I't follows that the allowed energies are
m#h?

Emy ==

m; = O) il; iz; i3; "t
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ROTATIONAL MOTION

Free Particle moving on circle (Plane):

Normalization of wavefunctions: For the function with

B =0, we write

2T 2T . _
j dD*dep = A? J elMbe~tmubgg = 1
0 0

1
AplF=1 = A=——
16 >
The normalized wavefunction is,
1 .
b = ——el™?, m; =0,4+1,42,43, -

V2m




ROTATIONAL MOTION
Free Particle moving on circle (Plane):

0 0 0
1 . R
V2T 21
! L i n?
V2T 21
> —l—e”¢ fﬁi
V2T 21
- L e 2o 4n’
V2T 21

Except ground state (m; =0), the wavefunctions
doubly degenerate.

are



BACKGROUND 2
Legendre equation & Legendre polynomial

Let us consider a function
y = C(Xz _ 1)l (AOI)
Then, differentiating the equation (A01) with respect x gives

2 [ _ 2lx
xz—lc(x 1) N xz—ly'

ay _ 2 _ 4\-1 _
= 2clx(xc— 1)+ =

= (x? — 1)% —2lxy =0, > (1 —x¥)y; +2lxy =0 (Ao2)
According to Leibnitz's theorem,
D™ (uv) = "cou,V + "CiUy_1V1 + "CoUy_o Uy + -,

Differentiating eq(A02) (I + 1) times, we obtain,

I+ 1)l
2

Vi+2(1— xz) + (U + Dy (—2x) + yi(—=2) + 2ly; 1%

+2Il+ Dy, 1=0



BACKGROUND 2
Legendre equation & Legendre polynomial

After simplification,

(1 —=x*)y142 — 2xy141 FIUA+ Dy, =0
Let,

l
_ dly _ Cdl(xz—l) -
i = dx! dax! a

Substituting y; by z gives
(1—x%)zy —2xz, +1(l+1)z=0

d*z dz
TR
This equation (Ao3) is the Legendre differential equation and it’s
solution, z written as P;(x) is a polynomial in x of degree [, i.e.,

= (1 — x?) +Il(l+1)z=0

d'(x? —1)!
dx!

P(x)=c

(Ao3)



BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial

Again differentiating k times the Legendre differential equation, gives

k(k—1)
2

Zis2 (1 — x%) + kzg i1 (=2x) + zi(—=2) +

2Zk+1x + Zka -1+ l(l + 1)Zk =0

= (1= x2)zpyy — 2x(k + Dzger + L+ k+ 1)1 —k)z, =0 (Aog)
Let
d¥z  d¥
Q=2 =7 =7 P

=0

d" {Cdl(x2—1)l} dk{ 1 dl(x2—1)l}

~ dxk dx! Tdxk 200 dxt



BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial

Inserting Q in equation (A04) gives

(1—-x2)Q,—2x(k+1DQ; +(U+k+1D)({U-k)Q =0 (Aos)
2y 40 aq _
= (1-x )——2 (k+1)—+(l+k+1)(l k)Q =0
Now suppose that,
Q=U@-x)"7

The first derivative is

Q,=U;(1—- xz)_lzi| +U <—§> (1- xz)_|2ﬂ_1(—2x)

2 Ll z—m—l
= Q;=U;(1—x°) 2 +Ukx(1 —x°) 2
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BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial

The second derivative is

L4

Ll k _m_1 ———1
Q,=U,(1—x%)"2 +2 <— E) (1—x%)"2 " (=2x)Uy + Ukx(1 — x?)™ 2

k LI _lEl_
+ [ kx —5—1 (1—-x?)"2 " “(=-2x)+k(1—x%)"2""|U
_lkl _lkl_,
= Q, =U,(1 —x%)"2 4+ 2U;kx(1 —x?)" 2
| ERNY
+U lk(k+2)x?(1—x%)"2 “+ k(1 —x2%)"2
Now ,

Ld Ld

(1—x2)Q, = U,(1 —x2)'" 2 + 20U kx(1 — x2) 2

[ LA _lk|
+U |x*k(k+2)(1—x2)"2 "+ k(1 —x%)2



. ———wa
BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial

—2x(k+1)Q= —2x(k + 1)(1 — xz)_|2ﬂUl — 2k(k + 1Dx?(1 — xz)_llZc_l_lU

k+1+1D)U-KO0=(+1+D(I-k(A - xz)‘lzﬂu

Now equation (AO5) becomes,

Ld L4

(1-— xz)l_lzﬂUz + [2kx(1 —x2)"2 =2x(k+ 11 - xz)_Tl U, +

_lkl_ _lkl _lkl_
[ka(k +2)1=x2)"2 '+ k(1 =x?)"2 = 2k(k+ 1Dx2(1—-x2)"2 1

+ (k+ 1+ 1)(l—k)(1—x2)_|2ﬂ]U =0



T -
BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial
On simplification
(1 —x?)U, + [2kx — 2x(k + 1)]U;
x*k(k + 2) 2k(k + 1)x?
-2 T a—x2)
= (1 —x%)U, — 2xU,

+(k+l+1)(l—k)]U=0

x? (k2 + 2k — 2k — 2k) : :
- +hk+kl+P+1—K2—kl—k|U=0
(1—x2)

[ —x 22

2
:>(1—x )Uz_sz1+ (1_x2)

+l(l+1)—k2]U=0

—x?k? — k? + x*k?
U=0

:(1—x2)U2—2xU1+ -l(l‘l‘l)"‘ (1_x2)



-
BACKGROUND 2

Associated Legendre equation & Associated
Legendre polynomial

2
:>(l—xZ)UZ—ZxU1+[l(l+1)—(1fx2)]U=O

d2U dUu 2
L2y Y B _ (Aob)
= (1-x") —— —2x——+ [l(l+ 1) 1_x2]U 0
= d (1 2)dU + 111+ 1) : U=0 (Ao7)
- _ —_ — — (@)
dx X dx 1 — x?2 /

The equations (A06) & (AO7) both are called associated Legendre

equations and the solution U usually written as Pllkl(x) Is called associated
Legendre polynomial in x of degree [ and order k where | > |k|. Thus,

L] liel @'
RGO =U=01-x)7Q=0-x)7

Pi(x) (Ao8)



ROTATIONAL MOTION
Free Particle moving on Sphere:

oA z P(x,y,2)

The Hamiltonian operator for motion in three dimensions is

h? a2 0% 02
H=——V?+V; whereV?= 1
oy + where 322 + 377 + 3,2 (1)

The Laplacian, V4 (read ‘del squared’), is a convenient abbreviation
for the sum of the three second derivatives. For the particle confined
to a spherical surface, V = 0 wherever it is free to travel and
Hamiltonian operator becomes,



ROTATIONAL MOTION
Free Particle moving on Sphere:

ﬁ=—%72 (2)

To take advantage of the symmetry of the problem and the fact that r
IS a constant for a particle on a sphere, we use spherical polar
coordinates, the radius r, the colatitude 0, and the azimuth ¢ as

shown in Fig. 1, with
X = rsin 6 cos ¢, y = rsin @ sin ¢, z=rcosf (3)

And the Laplacian in the spherical polar coordinate is

g 00,20 1 101 a0
S or2 ror r2 ~ sin20 9¢2  sinh o S50



ROTATIONAL MOTION
Free Particle moving on Sphere:

Because r is constant, we can discard the part of the Laplacian that
Involves differentiation with respect to r, and so write the Schrodinger

equation as

hZ

A2y = EyY (5)

- 2mr?2
The moment of inertia, I = mr?, has appeared. This expression can be

rearranged into

, 21E
Np=—pp =y (6)



ROTATIONAL MOTION
Free Particle moving on Sphere:

Inserting Langarian, A? in the above equation leads

1 9% 1 0

SInZ0 0pZ | sin0 a6 [sme—] Y+pY=0 (7)

In equation (7), the wavefunction, y» depends on both 6 and ¢ variables.
To separate variable, we try to substitute ¥ = T(8)F(¢) in equation (7)

L ok 1 0102 trsgrr=o 8
sin28 002 Tsnoae| ™% 30 PTE = (8)
Which gives
T ok, F ol 6Ty pre=o 9
sin26 992 T smoog S50 | TATE S ©)



ROTATIONAL MOTION

Free Particle moving on Sphere:

Division through by PF, multiplication by sin?8, and minor rearrangement
give

+ Bsin?8 =0 (10)

1 0°F +sin9 0 oT
Fagz T 99|""%%

The first term on the left depends only on ¢ and the remaining two
terms depend only on 6. The argument used is that each term is equal
to a constant. Thus, if we set the first term equal to the numerical
constant —m?, the separated equations are

1 0°F

F 992 = —my (11)

sin@ d HOT
ET REY:

+ Bsin? @ = m{ (12)



ROTATIONAL MOTION
Free Particle moving on Sphere:

Rearrangement of equation (12) leads

1 0
sin 6 90 sm@—] ['B_sm2 9] =0 (13)

The equation (11) is the same as the Schrodinger equation of a particle moving
of a circular path and has the normalized solution of the form

1 .
Frn, = \/T_ne”"lqb, m; =0,+1,+£2-- (14)

where, m; is the magnetic quantum number.
Solution of equation (13)
Let

X = cos @

dr dTdx dT d d

70 dx d@ —sin @ — I’ Therefore, E —sin@ Tx




ROTATIONAL MOTION

Free Particle moving on Sphere:
Now the equation (13) becomes,

d d m?
_a[—(l —xz)—] + [,6’ —7 _lleT =0

d2
:(1—x2)7— X—+[,B—

— le T=0 (14)

The eq. (14) becomes Associated Legendre equation (see eq. A06) if
B=1Il(+1), m? = k2

The solutions of eq. (13) are, thus, Associated Legendre’s polynomials,

Pllml'(x) of degree [ and order |m,|, where [ is either zero or a positive

iInteger and [ > |m;|. The solutions are given by
lmy| glmul

T(x) = Ty, () = P™ () = (1 —x2) 2
l dxlmll

1 d'(x? —1)!
2L dx!

Pl (.X') (15)

where, Pi(x) =




ROTATIONAL MOTION
Free Particle moving on Sphere:

In terms of cos @

Imy| Imy| dm
P cos @) = sin'™l @ P,(cos @
—1 l dl
where, P,(cos @) = (=) sin?! @

211 d(cos B)!

The normalized solutions are given by

O = |5 G mi B

(cos0)

N

(16)

(17)



ROTATIONAL MOTION
Free Particle moving on Sphere:

The product of T(6) and F(¢) Iis denoted by Y, (6, ¢).
For a given values of [ and m;,the normalized wave

functions, Y;,,, (6, ¢) are called the spherical harmonics

and given by
DMl 21+1 (1= |my!
Ylml(e: ¢) = ( 2)ll| 4 ' (l | l|)| X
SN (L + |my])!
(18)
dltIml ,
sin/™!l g sin2! g| eimue

d(cos 9)*Iml



ROTATIONAL MOTION
Free Particle moving on Sphere:

Example: Evaluate Y; 4,
Soln: If I =2 thenm; = 0,+1, +2
X = cosbf

Forl=2and m; = +2 y = sin*
=y =(1-x%)?
— =y=1-2x*+x
_(—1)2+2 2-2+1 (2—2)!_ 1 |5 Y1 = —4x + 4x°

N_ . — y:—4+12X2
22 .2 4w (2420 326w 30 o4y

\
4
P%(cos 8) = sin? 6| d sin* 0|= 24 sin” @
d(cos 0)*

4

1 5 . 15 .
Yy 1p = Y E: . 24 sin? 9 et2i® = . %sin2 0 et2i¢




ROTATIONAL MOTION
Free Particle moving on Sphere:

The Y;,,,(6, ¢) for some [ and m, are given in Tablel.

dltimil

. |my| .21 im;¢
sin led(cos@)lﬂmﬂsm 9]8 l

—_1\!+Imy] B
Ylml(g: ¢) - ( 1) \/21 t1 (l |ml|)!

Aar (L + [my))!

L || Pi(cost) R"™ (cos 0) ¥im, (6, 9)
1 1

0 0 1 1) 1 1 1y
41 41

1 1

21!

1 0 —cos 6 (%)2 cosf 1 (%)2 o (G
+1

2 0
+1
+2



ROTATIONAL MOTION

Graphical Representation of Spherical Harmonics:

The spherical harmonics are delt, so far, in complex
forms except m; =0, which can not be represented
graphically. The latter requires in real forms.

The linear combination of degenerate functions, Y im,
and Y, _,,,, provides real functions.

1 1
V4 = 5 (Yo4m, +Yi—m,) and Y_= 7 (Y 4m, — Yi—m,)

1 3
For example, Y;, = "o (Yy41+Y1_1) = |-—sinfcos¢

V2 V47T

In real forms, [ is

. . 1 3 . .
retained but m; is Yl— — FE(YL'H — Yl,—l) — /E sin 6 S1nq§

underdetermined.
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e —a

ROTATIONAL MOTION
Graphical Representation of Spherical Harmonics:

Vipn+h -1y i =Y-1= 0 Y10
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ROTATIONAL MOTION

Graphical Representation of Spherical Harmonics:

Yo,+Y 5 oY,

Y21+Y 1 = Yoy Yp0- Y21 2 Yoo

Y,=Y, 5 oY,



BACKGROUND 3
Angular momentum

-

momentum, [

a '
[=7"Xp=|x vy
Px Dy
Writing [ = Li + 1,j + L,k
Ly = yps — ZPDvy

ly = zpx — Xp;

l, = xpy — YPx

The classical expression of angular

N &

Pz




BACKGROUND 3
Angular momentum

. h o h o 5 5 5 5
[, =x lay Y\ 732 and L =L+ Ly +L;

Converting to polar coordinates,

- d d
L, = —ih (— sinqb%— cosqbcotqb%>

- , 9] _ d
L, = —in (cosqb%— smcpcotcp%)
. ho

2009

o LA (. a), 1 2
B sno 90 \° " 50 51n266¢2




ROTATIONAL MOTION

In case of particle on ring

Applying H and L, to @, = \/%_neimlcp

2 2 2352 232
G h? 0 (1 eiml¢>=mlh < 1 eiml(p):mlh o

e 21 aQbZ \ 2TT 21 \ 2TT 21
L,m,, =22 ( . iml¢> h( L oim hd
= e =m —€ =m
Z*¥my l(?gb \/E l m l my
Note that,

> @, is the wavefunction of both A and L,.

> E and L, can be determined simultaneously from @,,,,.




ROTATIONAL MOTION

However, the eigenfunction of H in real form is not

eigenfunction of L,

~ h o 1 _ mlh 1
L, D, = 70(]5 \/ﬁsmmlgb = \/ﬁcos m;¢
Note that,

> The eigenvalue of L, is m;h
where m; =0,+1,+2,+3, -
If m; > 0; L, is positive,

If m; <0; L, is negative.




ROTATIONAL MOTION

In case of particle on sphere

i O 72 fi — |2 _
Applying H, L* and L, o ¢, o = \/:ncos 6 = Ncos6

H G I 'Ha(N 0) ¢ + 2(N 0)
V0= lsineag |5 a9 V" €O Sin2§ a2~ o
N a(N'29)+O—h2(N 9)—h2

~ " 2|singag " =7 Weost) =10
I? _h2'1a 'ea(zv 0) ¢ + 2(N 6)
Y10~ "M sineag |* " 98 ¢ 7 T Sinzgag2r <8

1 0 _
=~ | = s (=Nsin® 6 ) + 0| = A*(N cos 8) = Aty 0




ROTATIONAL MOTION

But
Lo = ho — (N cos8) =0
’ L Ogb
> 1, o is nhot wavefunction ofL,.
However, 1, , can be writtenas i, o = N cos 6 e*9%

Now,

. h o

L1, = la¢(Ncosee‘°¢) =0-Ncosfe'%? =0-1,,

> 1, o in complex form is a wavefunction ofL, with zero

eigenvalue.




ROTATIONAL MOTION

The eigenvalue equations for H, L? and L, can be written in
the general form as,

_ Bh2
Hl/)lml — Tlplml [(I+1) _lplml

L, = Bh2Yim, = L+ D)%Yy,

zzl/)lml — mlhlplml
Quantization of Energy and angular momentum:

2
— l(l+1)§

I?=11+1hr*> =L=,I1+Dh
LZ = mlh



ROTATIONAL MOTION

Eigenvalues of particle rotating on ring vs sphere

Particle of ring:

ﬁ__h_za_z & 1 _Leimld)
-0 T T on
, 2IE mj h?

my _? — E = T ml=0,i1,+2,

Particle of sphere:

. el 1 0 d 1 0%
H=— sin 8 —

21 [sin@ 06 00 sm2 0 0?2
- qltimil . o
= in!™m : im
Yim,(8,¢) =N [sm g T(cos 0) T sin 9] etm

W here, N =

(=DMl 21+1 (- |m!
28! AT (I + |my])!

2
,B=2ff—f=E=% where B =1(l+ 1) &m; =

Note that both
eigenfunction and
eigenvalue depend
on m;,.

Note that only
eigenfunction
depends on both
m; & [, whereas
eigenvalue depend
on only [, why?

+lto — lwith 0O
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Representation of Angular Momentum

- g m, = +1,0, -1
< * 21 + 1 states
= é é
- /

~ Y

Eigenvalue X
of /,

Square-root

of the eigenvalue
of /2
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Rigid Rotator

l Rigid and non-
¢ elastic connector

_______
P | ~
- ' )

|
S o _

A system consisting of two
particles attached by a rigid and
non-elastic connector is know as
rigid rotator.

v' It is imaginary and has no real
sense.

v Its mathematics is simple.

v' Its results help to build up the
base for understanding real
rotator (diatomic molecule).

Non-rigid Rotator

I Flexible and
¢ elastic connector

A system consisting of two
particles attached by a flexible
and elastic connector is know as
hon-rigid rotator.

v' It has real sense, for instance,
diatomic molecules.

v' Its mathematics is difficult.

v' Its results help to understand
rotational spectra of molecules
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2D Rigid Rotator

If the rotation axis of rigid
rotator aligns with any of x,y

or z axes, then it is 2D rotator.

v Angular momentum L is equal
toits L,

v’ Tt is very similar to particle
rotating on ring.

3D Rigid Rotator

If the rotation axis of rigid rotator
does not align to any of X,y or z
axes, then it is 3D rotator.

» Angular momentum L is not equal
toits L, and L? = L5 + L5 + L

> It is very similar o particle
rotating on sphere.
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Reduce two-bodies problems to one-body problems

One-body problems

—
’—— ——

N e -

// ! ! A
/ I,
I,/’—l /{7‘)\\
} | N
N I | J
\ L e A
\ \ | //
S / 7

Particle on Sphere

Two-body problems

’_———_~

N m =

// / ! BN
/ [
I,f"'_.;-/{(:‘
1 I N
\ T TT” /

\ \ / //

Hydrogen atom
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Reduce two-bodies problems to one-body problems

(1)

(2)
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Reduce two-bodies problems to one-body problems

Total kinetic energy of system

1,1, 1 (drn\* 1 (dn\°
T=—-—mvi{+-myv; =—-my It +§m2 —

drlz_drl dry (dR pdr\ (dR pudr\ (d 2+u2 dr\’
dt) dt dt \dt mydt)] \dt mydt) \dt m? \ dt
dr,\*  dry, dr, dR  w dr\ (dR = dr\ _ dR2+u2 dr\°
t) dt dt \dt mydt) \dt m,dt) \dt m3 \ dt
T_1( N )dRZ_I_/,Lz 1,1 dr2_1M dRz_I_uzldrz
B A VT 2 \my my/\dt) 2 \dt 2 p\dt
Py Di If center of mass is fixed then translational
I'= M T 20 energy becomes zero, hence total kinetic
f \ energy is internal kinetic energy
Translation  Internal T = ﬁ
energy kinetic energy - 2u



ROTATIONAL MOTION

Classical treatment of Rigid Rotator

Fig. A rigid rotator consisting
of two point masses m; and m,
connected by weightless
string of fixed length, r which
is independent of time. The
center of mass is fixed.

From results of reducing two-
bodies problem with fixed
center of mass to one-particle
problem, the total kinetic energy

[w\*
T) 12(1)2 LZ

IS given by
~_ P _ (

21

L2

T =—

21

21 - 2Ur? ~ 20

Classical energy
expression

Since, there are no restriction on
I and w, so, the classical energy
of rigid rotator is continuous.
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Quantum mechanical treatment of Rigid Rotator

From results of reducing two-bodies problem with fixed center of
mass to one-particle problem, the total kinetic energy is given by

_Pi
T = T
Hamiltonian operator,
2
Pu
=Ly
ot (1)
The rigid rotator free of external force has V(r) = 0.
2 2
o — _p_“ — _h_VZ
2u 2u "
VZ or simply VZ in spherical coordinate for 2D and 3D rigid rotator:
2D; V= o
' C r29¢2

ipoe L[1 9% 1 9 39
" r2]sin20 d¢2 sinBab T,
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Quantum mechanical treatment of Rigid Rotator
If ¢ is the wavefunction of rigid rotator then SE

h? 0°

e f— p— 2
2D: TE ¢2"b EYy (I=ur? (4)
h’[ 1 02 N 1 0
21 |sin? 0 d¢p? sinB 90

0
3D: (siné?%)] Y =Ey (I=ur? (5)

The eq. (4) & (5) are similar to SE of particle rotating on ring and sphere
from where m is replaced by u in eq. (4) & (5).

— ql+Iml |
2D: Yim,(6,¢) =N [sin'ml| 0 T sin?! 9] elmid
_ 1 ime NIyl - |
T 3D 4 Where NS ( 1z)ll! \/2l4-|7; : 8 + :Zi:;'

m?h? h2
E== E =10+1) L, = mh
L=1L,=mh | 2=10+1DR? =L=4l(+Dh
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Classical vs quantum mechanical energy of Rigid Rotator

Classical energy

LZ
T=—
21

Since, there are no restriction on I and w, so, the classical
energy of rigid rotator is continuous.
Quantum mechanical energy

232 hZ

MRt e 3p. E,=1(l+1)
21 Tt 21

Where m; = +1lto — [ including zero and [ =0,1,2,--

2D: E =

It is obvious that quantum mechanical energy of both 2D & 3D
rigid rotators depend on m; or | which renders the quantized

energy of rigid rotator.
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Problem 1.

Suppose two points of different masses rotate freely on
different spheres of radius r; and r,. A rigid rotator was made
by touching those spheres.

(@) Write the classical energy expressions for rotating masses
on spheres and rigid rotator.

(b) Write the quantum energy expressions for rotating masses
on spheres and rigid rotator

(c) Show that quantum energy of rigid rotator is the sum of
quantum energy of two mases rotating on different spheres.

(d) Compare the features of classical and quantum energies.



ROTATIONAL MOTION
Problem 2:

Suppose two particles A and B of masse m; and m, rotate

freely on locus of radius r; and r, respectively. Radius vector of

A makes constant angle with z-axis while B does noft.

(a) Define the path of rotation of particle A and B.

(b) Write Hamiltonian operator for A and B

(c) Show that exited state of A is doubly degenerate whereas
it is (21 + 1)-fold degenerate for particle B.

(d) The angular momentum of B is given by \/I(l + 1)h

(e) Represent angular momentum of B schematically when [ = 2

(f) List all the spherical harmonics for [ =2 in real and
imaginary forms.

(9) Draw spherical harmonics listed in (f).
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