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HYDROGEN ATOM

Central force problem:

v The interacting force between two
particles depend on only the separation
between them.

v Independent on the orientation i.e. 6 and
¢

v' Potential energy of electron due to
nuclear charge

Ze*
Artegr
v' Since V(r) depends only on the r,
hydrogen atom (hydrogen-like) can be
treated as central force problems

V(ir)=—

» Further, hydrogen atom consists of one electron and nucleus, so it

is a two-body problem.



HYDROGEN ATOM

» From the result of reducing two-body problem to one-body
problem, we can write the kinetic energy operator for H

T = —h—zv2 — h—zvz
S o2M R 2u T
Where, M = m +m,, y = 21";;, R = coordinate of center of
mass, and r is relative coordinates of electron with respect to
nhucleus.

» Hamiltonian operator for H atom

2 2

H=—-——V:i——V2+V

» Schrodinger equation for H atom

h* h*

—WV}ZQ —ZV% + V(T}) Yr = Eryr

y \
Translational electrical This part depends only on
motion motion coordinates of electron
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Separation of translational and electrical motion
v' Since translation motion does not interfere the electronic part,
total wavefunction, Y can be written as
Yr(R,r) = d(R) - P(r)
v' Double differentiating of 7 with respect to R and r gives
Vitr = Vip(R) - P(r)
Vibr = ¢(R) - Vip(r)

> Inser"ring above derivatives in SE for H gives

—l/J(T)—VRsb(R) ¢(R)—V Y(r) +V(r)@(R) - P(r) = Erp(R) - ()
» Dividing both sides by cp(R) Y(r) results

h? h?
2
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Separation of translational and electrical motion

v LHS depends on only the center of mass coordinates whereas
RHS depends on the relative coordinates, r, hence both sides

must equal o the same constant, say W.

v' Thus we obtain two separate equations:
2

- d(R)2M

Vap(R) =W

Er

_ [—h2V2+V(r)]1p(r)=W
Y| 2p

v' Rearranging eq. (2) we get

hZ
[_ﬂvg +V(r) ]1/)(7‘) = (Er —W)y(r) = EY(r)

v Eq. (1) leads

hZ
~ 5 VR (R) = W (R)

(1)

(2)

(3)

(4)
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Separation of translational and electrical motion

v  Eq. (4) represents the SE for translational motion of
hypothetical mass m + m,. This equation is similar to SE of free
particle confined in a box.

v In practical m > m,, hence eq. (4) mainly reveals the SE of
nucleus.

v' The eq. (3), which contains the potential energy of interaction
between electron and nucleus, is actually SE for internal motion
of nucleus and electron.

v' Inpractical, m » m, leads u~m,, hence eq. (3) becomes

hZ
[— Vi+V(r) ]111(7”) = Ey(r) (5)

2m,

v Ineq. (B) E represents the energy of electron in the atom.
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Solution of SE for H (hydrogenic atom)

v" In spherical coordinate, Laplacian operator can be written as,
|72=62+26+1A2 where, A? = [1 a<5m96>+ - az]
or? ror r? ‘ sin @ 06 06 ]  sin? 6 0¢?
v' SE in spherical coordinate

9%y 2 &y 1 9 9 1 1 0%y| Ze?
+-=—+—= sinf — |y + =— —
“2ulor? T roor r2 sin 0 90 r?sin? 6 d¢?| 4dmeyr

50 Y =EY

o’y 20y 1 o 0N 1 0% 2w Ze’) .
oz 7 or T2smeaa\"" %80 )V Y Zeimze 992 T we\F T amer )V T 5

v Note that from particle on sphere or 3D rigid rotator, we have learnt

. l( + 1)h
2 [ 1 0 0 1 07 (1 + 1)h?
B Z,Urz [Sin 9 69 (Sln 0 69) S]nz 0 a¢2] Ylml (9' ¢) - 2] Ylml (9) ¢)
h* (1l + 1)h?
_EAZYlml(H’ ¢) = T Yim, (6, ) = N2V, (0, 8) = —L(L + 1)Y;, (6, )



HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

> The eq. (5) depends on three variables (r,6,¢). To solve it, it is
necessary to separate in independent variable. If it is assumed that
r,0 and ¢ does not interfere each other, then y can be written as,

Y(r,0,9) =R()-0(0) - (¢p) Orsimply, Y =RODd  (6)
» From relation (6) we have,
0_1/) B OR 02_1/J B 0°R 0_1/) B 00 0%y B 0°d

= 0O0P— = 00— = RO — — =R
or 0 or’ or?2 © or?’ 00 00’ 02 0?2
> Using these relations in eq. (5) we obtain

0°R 20d0R R® a( a) RO 0%
O+

or? * r or * r2sinf 06 smH% r2sin? 6 d0¢?

+2,u E + Ze® ROD® =0
h? ATEyr B (7)
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Solution of SE for H (hydrogenic atom)

> Multiplying both sides of eq. (7) by ? results

rzsinZHGZR+2rsin296R+sin96 06 o
R or? R or @ ag\°™

a0
2ur? sin® 0 ( Ze? ) 10%d
E + =

h? ATET YL (8)

» LSH of eq. (8) depends on r and 6, while RHS on ¢ only. This equality
is only hold if both sides is equal to the same constant, say m;, which
gives two equations,

0°d
Tqbz — _mlzq) (9)
r?sin?0 9°R  2rsin?0 R sinf 0 < 0 > 2ur? sin® 0 ( Ze? )
+ E +

R ozt RrR ot e a9\°"%%5)° n2
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Solution of SE for H (hydrogenic atom)

> Dividing eq. (10) by sin“ 6 and rearranging r dependent terms on LHS
and 8 dependent on RHS,

" sin2@ ©Osinh o

Rarz T Rar T n2

r29*R 2roR 2ur? Ze? m? 1 a/( 0
E + sinf— |6 (u)

AreyT a0

» Again LSH of eq. (11) depends on r, while RHS on 6 only. This equality
is only hold if both sides is equal to the same constant, say I(l + 1),
which gives two equations,

Rarz TRor T w2

r29%R 2rodR 2ur?> Ze?
. ( >=l(l+1) (12)

4tegr

m; L 9 (nolVo=10+1 (13)
sinz0 @smooo\SM0gg)0 =D 3
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Solution of SE for H (hydrogenic atom)

» For the sake of convenience, we rewrite eq. (9), (12) and (13) together

0°® (1
_ 4)
W + mlzcb =0
1 9 G, m?
sin 8 d6 (Sm 0 69) O+ [l(l 1 sin? H] 0=0 05)
62R+26R+2,u 7 Ze? I(l+1)R? R —0 )
or? radr h? ATEyT 2Ur? B '

» Solutions of eq. (14) and (15) have been shown in particle on sphere or
3D rigid rotator. The combined solution is spherical harmonics

Yim, (6, ).

» The eq. (16) is called radial equation and is new. Now we try to solve
this equation.
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Solution of SE for H (hydrogenic atom)

¢ equation:

> The eq. (14) is similar to particle on ring or 2D rotator. Its normalized
solution is

D, = —eimld), m; =0,+1,+2, -

6 equation:

» The eq. (15) is similar to the 6 part of particle on sphere or 3D
rotator. Its solution is associated Legendre polynomial

Pim,(0) = NPllmll(cos 9)

Where N is normalization constant and is given by

[=0,1,2,---- and |my| <1
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Solution of SE for H (hydrogenic atom)
Spherical Harmonics
The product of ©(8) and ®(¢) is denoted by Y;,,, (6, ¢).

For a given values of [ and m;,the normalized wave

functions, Y;,,, (6, ¢) are called the spherical harmonics

and given by
(=DMl 121 +1 (1= |my])!
Ylml(e; ¢) — le' 4 ) l | X
dl+|ml| _
sinl™l g sin?l 9| et

d(cos )t+Iml
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Solution of SE for H (hydrogenic atom)

Spherical Harmonics

Example: Evaluate Y, 4,

Soln: If I = 2 thenm; = 0,+1,+2

Forl=2and m; = 12

LD 2241 (2-2)
22,91
24 - 2! \
d4
PZZ(COSH)=sin29'd(cosg)4sin48

1

Y.
2127 37

\

61

y, = —4x + 4x3

. _ 1 5 ylz—4+12x2
A1 (2+2)! 32,6 y3 = 24x
Yy = 24

. 24 sin? @ e*21¢ =

\

X = cosf

y = sin* 0
=y =(1-x?%)?
=y=1-2x%+x*

= 24 sin% 0

1> sin? @ et2i¢

321w
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Solution of SE for H (hydrogenic atom)

Spherical Harmonics
The Y;,,,(6, ¢) for some [ and m,; are given in Tablel.
dltImil

(=Dl 21+1 (1 - |my))! .
_ ) . |my| . 21 im;¢
Yim (0, 6) = 2L a1+ |my)! sin o d(cos §)t+Iml sin™ g1 e

L | mu] Picos0) R™ (cos 0) Yim, (6, 9)

1 1

0 0 1 1) 1 1 1y
41 41

1

[ =

1 0 —cos 6 (i)z cosf 1 <i>§ cos 0O
41 41
+1
2 0
+1
+2
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Laguerre Polynomial:

Let y=uxke™*
Differentiating gives

w_ (kxk=1 — x*)e™

dx
2y,
dxz = (k(k — Dxk2—kx*~1 — fxk=1 4 xk)e=
dy
Generally, ok = € L (x)
k
= Li(x) = exW dxk (x e x)
eg. Li(x)= ex%(xe‘x) =e*(1l—x)e*=1—x
2 d
L,(x) = e* (x%e™*) = e*—[(2x — x?)e™*]

dx? dx
=e¥(2—-2x—2x +x%)e ™ =2 —4x + x*
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Associated Laguerre Polynomial:

v' Pth derivative of Laguerre polynomial L} (x) = [Lk(x)]

dP
dxP

xﬁ(x"e‘x)]is known as Associated Laguerre polynomial,

which is the solution of following differential equation, called

associated Laguerre differential equation.

d?LP (x) b (x)
X d;z + (p +1—) k

+ (k — p)L (x)=0

» The associated Laguerre polynomlal is of degree k — p and order
p, where p < k. Replacing x by p, k by n+1 and p by 21+ 1,

wher'en+l22l+10r',n21+1

21+1 21+1

1 (p) 11 (p)
;‘p +2I+1+1- ) "dp +(m+1-20-1DL2f}
d?L2 1 (p) dLy 5 (p) 2041

+ [2(1+ 1) — p]

dp? dp

+(n—1—-1DLy (p) =0

(p) =0
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Solution of SE for H (hydrogenic atom)

The r equation:
0’R 20R 2,u< . Ze? l(l+1)h2>

R=0 (17)

or? * r or * h? £

» Note that third term in bracket adds an additional terms to the

potential energy. Previously, it was shown that L* = [(l + 1)A*. So it

is obvious that third term comes from the angular momentum and

counts the centrifugal force that acts against the coulombic
force. Thus, effective potential energy V. is given by

ATEyT 2Ur?

Ze? I(l+ 1)Ah?

Veorr = —
ert 4rreyT 2ur? ~
by
Fig. The effective potential experienced by an electron .
in a hydrogen atom. When | > O centrifugal contribution N
prevents the close approach of the electron to the \//

nucleus, as it increases more rapidly (as 1/r*) than the
Coulomb attraction (which varies as —1/r ). Radius, r
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Solution of SE for H (hydrogenic atom)

The r equation:

> To simplify eq. (17), put dimensionless variable, p = ar, where « is
constant and its dimension is reciprocal to r

dR dRdp dR d’°R d (drR \ d (dR \dp ,d°R
dr_dpdr_dpa' dr?  dr dpa ~dp dpa ar ¢ dp?
» Now eq. (17) becomes
,d°R 2adR Zu Ze? 1(l+ 1)Ah?]
a’ + — R=0
dp? r dp h2 ATTE T 2Ur?
d°R 2 dR [2uE 2uZe? ((1+ 1)
- THY e P Gl PR
dp? ardp |a*h? Amegh?a’r atr? |
d°R 2dR |2uE 2uZe? [(I+1
Sl Y o P G P (18)
dp? pdp |a?h?  4meghap p?




HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

The r equation:

> For convenient, a is chosen so that first term in bracket becomes
— % and coefficient of % is defined by n, i.e.,

2UE 1 SUE
azrz” a7 TR
2uZe? 27 Ay h?
n:4neoh2a:>a:n_ao' %o = ue?

> Now eq. (18) becomes
d’R 2dR [ 1+n I(L+ 1)

]R=O (19)

dp*  pdp 4 p p?
» For large p, % becomes infinitesimal and eq. (19) becomes
d’R 1
———=R=0 (20)
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Solution of SE for H (hydrogenic atom)
The r equation:
» Solution of eq. (20)

p
R = AeiZ

> The positive exponent makes R infinite and is not acceptable. The
acceptable function is

_P
R = Ae 2
(l+)

> For small p, > — and = then eq. (19) reduces to

2
d_+zdR_l(l+1)R=0 (21)
dp? pdp p*
> Let assume the solution of eq. (21) is
R = p*
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Solution of SE for H (hydrogenic atom)

The r equation:
» Inserting this function in eq. (21) gives
k(k—1)+2k—-1(l+1)=0
(k—Dk+D+k-0D)=0
k=1 or —(l+1)

» Function may be
R=p! or R=p WD)

» The latter solution approaches 1o infinity as p increases and is not
acceptable. The acceptable solution is

R = p!
» For intermediate values of p, the solution of eq. (19) is given by
R = plL(p)e_g (22)

Where L(p) is a polynomial of power series in p. L(p) is to be
determined.



HYDROGEN ATOM

Solution of SE for H (hydrogenic atom)
The r equation:

> Inserting eq. (22) in eq. (19) gives
2 dL
il ol —= =1L = (23)
pdp2+[2(l+1) p]dp+(n [-—1)L=0
» The solution of eq. (23) is the associated Laguerre polynomial (see
background 1), which is given as

d21+1 dn+l

l —_
dp2l+1 e? dpn+l (p"*le=r)

Ly (p) =

» The degree of polynomial is n—1—1 and order 20+ 1 with the
condition2l+1<n+lorn=>1+1.
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Nature of n and [

>
>
>

A\

YV V V V

From L2 (p) it is concluded that

The minimum degree is zero,ie., n—[—1=0 =2>n=10+1

Since lowest value of n is 1, above condition says that the lowest
value of [ is zero.

Further, the degrees of polynomial are integers, hence acceptable
values of n and [ are integers.

Therefore, acceptable values of narel1,2,3,:--andlare 0,1,2, -
Forn>1+1, L2 (p) exists

However, forn <1+ 1 orn =1, 12 (p) does not exist.

For example, letn =1 andl =1

3 d> | 2, d 2
L3 (p) =27 ep—(p e P)| = e”—{(Zp p-le P}
d3
= leP@— 4p + pP)e?] = 0
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Atomic Units (au)

v The units used for macroscopic scale are not convenient in
quantum mechanics. Further, quantum mechanical equations in
terms of fundamental constants are very cumbersome to handle.

v' The units that are designed to simplify the form of the
fundamental equations of quantum mechanics by eliminating from
them fundamental constants are atomic unit (au).

v' The advantage of atomic units is that if all calculations are
directly expressed in such units, the results do not vary with any
revision of the numerical values of the fundamental constants.

v' If we introduce a set of units such that A=1,m, =1,|e| =1 and
Ko = 4meg =1

meZ?e*
2n2h2(4megy)?

4mregh? 112
aO = =

= 1 Bohr, EFE=-—

1
5 5 = —— Hartree
mee 1-1 2n
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Some fundamental constants in atomic units (au)

Quantity Atomic Unit SI equivalent
Mass me = 1 (electron mass) 9.1091 x 10731 kg
Charge le| = 1 (electronic charge) 1.6021 x 1071° C
Aimgrlan h=1 1.0545 x 10734 J-
momentum
Permitivity Ko = 4mey = 1 1.1126 x 10719 ¢2.j-1. 1

2
Length :lof;z = ag = 1 (bohr) (Bohr radius) 5.29167 x 10~ m
mee” _ _e” _ 1 (hartree) (twice the ionization
Energy kG2 Koap 435944 x 10718
energy of atomic hydrogen)
K§h? . : .
Time et = 1 (period of an electron in the first Bohr 241889 x 10-17
orbit)
2
Speed ﬁ = 1 (speed of an electron in the first Bohr orbit) |2.18764 x 10 m -s~!
0
e © ) (potential energy of an electron in
Electric potential | x§a?  xoao 27.211V
the first Bohr orbit)
Magnetic dipole | cn _ 4 (twice a Bohr magneton) 1.85464 x 10723 -T~1
moment Me
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Ex. One hartree, the unit of energy in atomic units, is given by hartree = =

KZh?
Express one hartree in units of joules (J), kilojoules per mole (k] - mol™'), wave
humbers (cm™1) and electron volts (eV).
Solution: To find one hartree expressed in joules, we substitute the ST values of
m, e, ko and h into the above equation.
(9.1091 x 1073 kg)(1.6021 x 1071° C)*
(1.1126 x 10-10 C2 . J-1.m~=1)2(1.0545 x 10734 ] - 5)2
= 4.3595 x 10718
If we multiply this result by Avogadro's number, we obtain
one hartree = 2625 kJ - mol™1!

To express one hartree in wave numbers (cm™'), we use the equation

1 E (4.3595 x 10718 )

VT AT ch T (29979 x 108 m - 5-1)(6.6262 x 10-3% ] - 5)

=2.195x 10> cm™?
Lastly, fo express one hartree in terms of electron volts, we use the conversion
factor

4

one hartree =

= 2.195 x 10" m™~1

leV = 1.602 x 10719
1eV

1.602 x 10719 ]

one hartree = (4.3595 x 10~18 ])( > =27.21eV
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Eigenvalues

v' To simplify the r-equation, 2 constants, a and n were introduced

2
g |_BHE ) L _tuze (2)
h? Amegh?a

v' Eliminating a from eq. (1) and (2)
2 4u?z?%e* ( h? )

= X —_——
16m2e5h* 8UE
_ 4uZ?e*x4m*  2m*uZte*
 n2(4mey)?h? x 8  n2(4mey)2h?
v Nucleus mass of H atom m >» m, leads u - m,
2m?m,Z%e* myZ%e*
E=-— n=1,23,-

n2h2(4mey)? T T 2n2h2 (41ey)?’
v' Eigenvalue of H atom in ground state (au)
meZ%e* 1-12%-14 1

E=-— = — = Hart
2n?h?(4mey)? artree

2-12-12-12 2
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Radial wavefunctions

> The radial wavefunction is written as

_p
Ru(p) = Nyp'L2H (p)e™2

3

B ;G (n—=1-1) 2Z\2[ (n—=1-1)!
where, N’”“J(?) 2n{(n + DI __(n_ao> [2n{(n+l)!}3

> Intermsofr

277 2zr\" ... (22r\ -Zr
Ryl— | =Nu|—]) Lns | —]e "%
nay nay nay

2Z\2[ (n—=1-1)! |2
na0> 2n {(n+l)!}3]

277 277\ .. (22r\ _zr
R\ ——= | = Nu|—=) Lnvi | /)& ™ (in au)

w
=

where, N, = —(

1

F
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Some examples of radial wavefunctions

> Forn=1and [ =0

p
Rio(p) = N1op°Li(p)e™2

(1-0—1)!

w2z
o= <a0> 2x1{(1+0)P

Ll( )_i epi( e P)
1\p ~ dp dpp

e §=e_%(%) = e

7 \2
Rip(r) = -2 (a_(,)

w

3
= Rio(r) = 2(Z2)2e™%"

dp

zZr
Ao

_Zr Z \2 _Z°
(—1)e %o =2<—) e 4o

| w

Ao

(in au)

3

ol

= L [ep(1 - pler] = -1

. Ed

2 7 \2
2 % (1!)3> = (a_o)
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Some examples of radial wavefunctions
» Forn=2and [l =0, 1

_pP
R20(p) = Nyop°Ly(p)e 2

Ny = 2z\' (@-0-1! z\t(_ %_122
o) o - () () ()

w

241
13() ——[ep—(pze-f))] St =2p— ==
0
p _1(2Z7‘) zZr
e_ize 2\2ay = e 2a0

w
w

Ryo (1) 1 (Z>_<22r 4) _% 1 (Z>5<2 7r ) _%
r) = ——— —_ e 200 = —— | — —— Je 2a0
20 4+/2 \ag 242 \ag Ao

zZr

= R, (1) = %(Z)%(Z —Zr )e 2 (inau)
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Some examples of radial wavefunctions

> Forn=2and [ =0, 1

_p
Ry1(p) = NoyptL3(ple™2

(22 _@-1-nt Z\ [ o %_ A
= <2a0> 2x2{2+ DI __<a_0> <4><(3!)3> __12\/€<a0>
L3(p)——[e” s (p’e p)] — (6 —18p +9p? — p°) = -6
o2 _ 1) _ ooy

3 5
Ra1(r) = — . (Z)Z (2£> (—6)8_%—L<£)2re_%
S 12v/6 \ao 2a, 246 \ao
= Ry, (r = WE (Z)gre_zz_r (in au)
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Complete wave functions or atomic orbitals of hydrogenic atoms
v' It is product of r, 6 and ¢ dependent wavefunctions
Yrim, (1,0, 8) = Ry (1) - ™! - ©($) = Ry (1) - Yim, (6, ¢)

where n, | and m; are the three quantum number used to
characterize the wave function.

v' For example, forn=1,1 =0, m; = 0, the wave function is
3 3

B 7 \2 7r 1 1\ 1/z 2 7r
Voo =2 (a—o> P (‘ ao> (ﬁ> <E> - «—E(a—()) P (‘a—o)

v' Inatomic unit,ay =1

1 3
Y100 = \/_E (Z)Z exp(—Zr)

v For hydrogen atom, Z =1

1
Y100 = \/_E exp(—7)
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Complete wave functions or atomic orbitals of hydrogenic atoms

v The wave functions for hydrogenic atoms are also called atomic
orbitals.

v' Prior to the development of quantum mechanics, the atomic orbitals
are denoted as s,p,d, f,--- for 1 =0,1,2,3, - respectively. The
letters being preceded by numbers representing principle quantum
numbers. Thus we have 1s, 2s, 2p atomic orbitals corresponding to
(n=11=0), mn=2,1=0), (n=2,1=1) respectively

v' Since the energy of hydrogenic atoms depends only on n and
independent of [ and m;, orbitals having same n and different [ and
m; are degenerate. Thus we have the following hierarchy of energy
states of hydrogenic atoms:

[1s] < [2s,2p] < [3s,3p,3d], -
v Wherein the degenerate states are bracketed. To specify magnetic
quantum numbers, we may add the subscripts as follows:

[1s0] < [250,2P+1, 2P0, 2P—1] < -
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Significance of the quantum numbers n, [ and m,

v State of an electron can be represented by y from which the
following three important quantities can be extracted:

1
E=—
L=.l(l+Dh
L, =m;h

where n is principal quantum number
[ is angular momentum (azimuthal) quantum number
m; is magnetic quantum number

v' With increase in n, E increases. Thus, n is related to size of atom
which increases with increase in n.

v' | determines the angular momentum of electron. Since the angular
momentum vector always points an electron with respect to
nucleus . Thus, | describes the orientation of electron in atom.
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Significance of the quantum numbers n, I and m,

v m; arises from the fact that when H atom is placed in a magnetic
field, the degenerate states split up into 21 + 1 different states,
each state is characterized by its m; value (Zeeman effect)

v The electron rotating round the nucleus has also magnetic moment
(1) vector colinear with the vector L and is proportional to it.

u = —fpL where f is called Borh magneton

i interacts with the magnetic field (say H) and if the direction of the field be taken
as the z-axis of the coordinate system, then the energy of interaction is given by

. ) g
Ey=-u H=BLH=PHM:_

=P HM a.u.



K
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Slmiﬂmofﬂuauantummun,l and H

As M has 2{ + | distinct values, the interaction removes the degeneracy and
splits the energy level into 2 + 1 distinct energy states. The four degenerate states
corresponding to n = 2, for example, will split up according to the scheme shown
in the figure.

2, 1L+ 1 (E,)

— — 200, 210(Ey)
No magnetic hield 2,1, =1 (E_y)

Fig 7.2. Zeeman splitting

Each Zeeman energy level is characterised by the magnetic quantum number
value.
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Significance of the quantum numbers n, I and m,

1.Principal quantum number (n): The principal quantum number explains about
the size and energy of shells (or) orbitals.

As “n” increases, the orbitals become larger and the electrons in those orbitals are
farther from the nucleus.

It take values 1, 2, 3, 4 for that the shells are represented by letters K, L, M, N.
2.0rbital quantum number (l) : It defines the shape of the orbital occupied by the
electron and the orbital angular momentum of the electron is in motion. So it is
also called as Angular momentum quantum number.

| has integer values between 0 to n - 1 for these values the orbitals are designated
by letters s, p, d, f, etc.

| also governs the degree with which the electron is attached to nucleus. The
larger the value of I, smaller is the bond with which it is maintained with the
nucleus.

3.Magnetic orbital quantum number : The orientation of orbital with external
magnetic field determines magnetic orbital quantum number.

m; has integer values between -1 and | including zero. The number of values for
m are 2| + 1, which give the number of orbitals per sub-shell.

The maximum number of electrons in orbitals in the sub-shell is 2(2| + 1).
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Significance of the quantum numbers n, I and m,

The principal quantum number, nn, describes the energy of an electron and the most probable distance of the electron
from the nucleus. In other words, it refers to the size of the orbital and the energy level an electron is placed in.

The principal quantum number, nn, designates the principal electron shell. Because 7 describes the most probable
distance of the electrons from the nucleus, the larger the number nis, the farther the electron is from the

nucleus, the larger the size of the orbital, and the larger the atom is.
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Graphical representations of radial wavefunctions
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Graphical representations of radial wavefunctions

Expression for w or Ry (r) corresponding to [ = 0 indicates that the functions at

r=0{i.e., at the nucleus) will have non-zero value. Since the functions also contain
the factor exp (- Zr/nag), the values of s-functions at r=0 will be maximum.

They decrease exponentially tending to be zero for r = o= (Fig. 7.3). As the principal
quantum number (n) increases the function oscillates as directed by its polynomial
parti.e., “*nodal’’ points appear on the r-axis where y is zero. The number of nodes
for an s-function 1s n — 1 (none for y,,, 1 for y,,, 2 for ¥y, and so on). As the

nuclear charge Z increases (e.g. He®, Li* the function falls off more rapidly with r.

For { 20, the function 15 zero at r = 0 because of the factor _,.I The function
increases with r but the factor exp (- Zr/nag) has the effect of opposing it. In

between r= 0 and r = =, the function is also governed by the nature of the polyno-
mial. For, example,

Ry (0= 5y @2 re 72

suggests that there will be no node in the function whereas in
Ry(n=2"r6-2ne?"?
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Probability density

. . . . 2 . 3,
The gquantity ol interest 1o chemists, however, 15 Y~ rather than y nself, y~ i1s
“probability density™ of the clectron; if the ¢lectron is viewed as a cloud of negative

charge qf: represents the charge per unit volume (1.e., electron density ). Consider,
for example, the 15 and 25 functions of H atom.

1s 2s 3s
N; = =
> >

r/au r/au r/au

v' The plot show that electron density is maximum at r = 0 in case of [ =0
and decays exponentially.

v' It contradicts to Bohr atomic structure. Since 1 is the probability per
volume and not actual probability of finding electron as a point.
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Probabilities and the radial distribution function
The actual probability of finding the electron at any point is given by y* dt

where dt = r* drsin 8 d9 dg. Since it depends on both radial distance (r) and

direction (8, @) it is more convenient (0 delermine separately the probability

distributions at various values of r irrespective of direction (the radial probability

distribution) and along the various directions irrespective of distance (the angular

probability distribution).

v" A radial distribution function, P(r) is obtained by integrating
p4dt over all angles 6 and ¢ but not over r.

T (2T
P(r)dr = j J [Y (T, 0,d)|*r*drsin 0dOd ¢
o Jo

T 2T
= RZ,(r)r?dr j f |V, (6, qb)|2 sin 8d0d¢
0 Y0

= R2,(r)r2dr [Since Y}, (6, ¢) is normalized]
= P(r) = R%,(r)r? Radial probability density
v' It gives the probability of finding electron at distance r from
the nucleus.
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Probabilities and the radial distribution function

15

r% Ry (1

25

r? Ryg (1

2 Ry (1?
r? Ry (1
i>§
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PI"ObiIlITIZS and the radial distribution function

. We can formulate an equivalent (not identical) expression for radial probability density in terms of

the probability that the electron lies in a spherical shell of radius r and thickness
dr centered at the nucleus (as all angular positions are equivalent). Then using
R (r) (without normalisation) in place of y,

dP=R (r)* - dv =R[r}2*d(g—tr3 ]=4n: Z R (r)? dr

with the condition of normalisation N* j 4x r* R® dr =1, N = normalisation fac-
tor. This gives the radial probability density = 4% 72 R (r)° (7-82).

The two are equivalent if R (r) in (7-82) = f—&g— in (7-81). Equation (7-81)

or (7-82) is the radial distribution function used to compute and plot the radial
probability at different values of r (Fig. 7.11).



- . X
HYDROGEN ATOM

Points of maximum probability

The factor #* in (7-81) changes the nature of the probability distribution from
probability density distribution. Accordingly, the shapes of the graphical plots are
changed. While the latter has maximum value at the nucleus (r = 0), the former is

zero at that point. As we move away from the nucleus R (r)? decreases but
iz ."\"I_'r]z increases. The futm::p(-ﬁ ]., however, in R (r) tends to lower the

value of the latter. The result is that for certain value(s) of r, i.e., ry, P(r) has a
maximum value. The r,, can be determined by differentiating the function P (r)

with respect to r and setting the resulting expression to zero. Similarly, the
direction in which the electron is most likely to be found can be determined by

differentiating lpz partially with respect t0® and @. For example, in the 15 state,
the radial function is,

Rig(r)= 2272 ¢ in au.

P(N=r RN =42 F ¥
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Points of maximum probability
Therefore,

ELS.FL':H =82 re ' (1-2) (7-83)

Setting (7-83) equal to zero, we obtain
| -Zr=0

or I"=%I.I.I.

For hydrogen atom (Z= 1), r=1 a.u.,i.e., ap, which is the radius of the first
Bohr orbit.
Further, since the W, function is independent of ® and :;l,H and ﬂm

28 " do
zero, and, hence, the probability in all directions is the same. The electron cloud is

spherically symmetrical.

This is consistent with Bohr's calculation except that the electron is now
“most likely to be found™ at a distance of a; from the nucleus in any direction
rather than rotating in a circular orbit of radius ag. There is a finite, though small,
probability of finding it at other distances also.

Positions of maximum probability in various states (i.e., different values of
nand [) can be located also by plotting the function P (r) against r [see Fig. 7.11].
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Points of maximum probability

[Exercise: For the 25 state of H atom,

Yo, = EIWE (2=r)exp(-r/2)in a.u.
find the most probable and the nodal distances of the electron from the nucleus.

Elﬂ{r}=ﬁ(2-r} exp (—r/2)
P{r}-%{#rz-dr3+r‘] exp (1)

For %ﬂ-m B—16r+87 - =0

The cubic equation in r has 3 roots one of which is r=2; but for r=2,
Ry o(r) =0, sothis is a nodal point.

Dividing the cubic equation by 2 - r we get 4 - 6r + r* =0, which has the

solutions,
r=3+v5=523 and 0.77 a.u.
The values of P (r) are 0.191 and 0.052, respectively].
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Average distance of the electron from nucleus

ﬂncis_uuﬁanmnﬂ.withﬂwawdism,i of the electron from the
nucleus as some atomic properties are related to it. For hydrogen in the 15 state,
this is given by,
Ty = I vh:*h‘h
(from the basic postulate IIT of quantum mechanics, see Chapter 3)

e ® x
= | memenigen-nrd [ sinodo | do
0 0 ]

(using ¥ in a.u.)

=L [ Pexni=2n 2 2m

- X 3‘1-} (from the table of integrals)

. L.

b |

[Instead of W we could use Ryq (r); then,

r= I Eln{r] ;Hln{r}rzdf.
0
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Probabilities and the radial distribution function

v The probability of finding an electron in a volume element dr =
r’sinf dod¢dr at a point specified by the spherical polar
coordinates (r, 6, ) when the state of the electron is described
by the wavefunction y,,,,, is given by

|¢nlml|2d1—

v' Although the wavefunction gives the probability of finding an
electron at a specified location, it is sometimes more helpful to
know the probability of finding the particle at a given radius
regardless of the direction. This probability is obtained by
integration over the volume contained between two concentric
spheres of radii r and r + dr :

The radial distribution function gives the probability
that an electron will be found anywhere between two N 2
concentric spheres with radii that differ by dr.
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Presentation of Atomic orbitals

The hydrogen-like wave functions (or atomic orbitals) listed in Table 7.4 have the
disadvantage that except for M = (), they are complex due to the presence of the

terms like = ™. No real picture can, therefore, be drawn of them. Equivalent real
functions can, however, -be obtained by utilising the well-known theorem:

&M% = cos M@ + i sin Mg
The three 2p orbitals ({ = 1), for example, are

2p.y(for M=+ 1)=Arexp| -% sin 0 ¢ (7-60)
% g
(g ) _
2p_ (for M=-1)=Arexp g sinBe ¥ (7-61)
\ J
2p (for M = ﬂ}:ﬂre:p[-%]cmﬂ (7-62)
0

| (Z V7 1 [z Y
where A—m[ﬂ—ﬂ] and B=WE(E;T (See Table 7.4)
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Presentation of Atomic orbitals

The 2p, function is already a real one. Since z = r cos 8,

2pg =Bz up[-% ] (7-63)
0
2p.y and 2p_, functions may be combined linearly to get real functions as given
below:
. Zr g i
2, +2p  =Arsinfexp| -=— [(e®+e ™)
2ay
=24 2sinBcospe - (7-64)
M =Arsin Eli::r.p[- % {er"- e_i‘]
&
o  Zr
=2A 2sin Bsin ¢ exp -—] {7-65)
Lay
LY

The linear combination funcuons (7-64) and (7-65) can be normalised by
introducing the factor ;Ill? ' Le.,

1 2 . Zr
;fz—llp+|+2p_|]-—;,lz—ﬂ+r5m9:m t‘pup{-a ]

= Bx l.-.xp(-%] (7-66)
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Presentation of Atomic orbitals

| 2 ) ) Zr
e (2py =2p-)) = 75 Ar sin 0 sin @ exp[ ~ S ]

zr k!
=E;.-exp[-5-* (7-67)
“0 )

24 I [3‘35”

where R T P

£

and x = rsin B cos @ and y=rsin 0 sin Q.

The positive (7-66) and negative (7-67) combinations are functions of
x and y respectively while the 2p, function (7-63) is a function of : coordinate.
These real forms of the 2p functions are accordingly denoted as 2p,, 2p, and 2p,
atomic orbitals respectively.

[Exercise: Find out the five 3d atomic orbitals in the real form by taking

suitable linear combinations of the complex wave functions. Also justify the
notations attributed to the five real 3d wave functions.

3dy=Ar (3cos” B- 1) =A (322 - 1)? ... (3dD)
3d) +3d_y = Br* sin 0 cos ¢ cos 0 = Bxz ... (3d,.)
3d) - 3d_y = B sin @ cos O sin ¢ = Byz ... (3d,)
3d,y - 3d_y = Cr" sin” @ cos @ sin @ = Cxy ... (3dy)
3d,; +3d_y= Cr* sin® 0 (cos” @ - sin” @) = C (* = ) ... (32 _ )]
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Presentation of Atomic orbitals

(@

(i)

(ee)

The following points are to be noted:
Since 2py and 2p_; wave functions are eigenfunctions of the same

Hamiltonian operator with the same eigenvalue, their linear combination is
also an eigenfunction of the same operator with the same eigenvalue.

The significance of the magnetic quantum number M is lost after taking the
limear combinations.

The wave functions of the sysiem, Yip,, OF W (complex orbital) are

simultaneously the eigenfunctions of Ff [? and E_! meaning that if the
system is in the state represented by such functions you can obtain definite
values of E, L and L, simultaneously through an experiment. But if the

system 15 represented by functions like Yap, OF W, (real orbital) you can

obtain E and L sharply but not L.. In other words, the system responds 1o the
type of experiment and calls forth the appropriate wave function.
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Presentation of Atomic orbitals

Angular (Polar) Plots

The traditional way of representing is to find values of ¥ (8, @) with R (r) chosen
constant. These values are marked off as plot distance ‘d" along radial coordinate.
Suppose we are to plot cos 8 against 8 for a particular value of r and @. Values of
cos B for 8=0, 30, 60, 90,120, 150 and 180 degrees are

—_
LJ_?'_-, l.,ﬂ_ _l,_ﬂmd_l

2 2 12 2
respectively. We mark off these values along the radius r and the particular angle
¢ and connect the points. Two semi-circles are obtained around the line correspond-
ing to 8=0" and 180°, known as polar axis (see Fig. 7.5). If the function does not
contain ¢ (e.g. the 2p. function) the value of the function will remain unchanged

on rotation of the semicircles around the polar axis through 2x (the range of @).
This rotation will produce two spheres (Fig. 7.6) in one of which the function will
nave positive and in the other the negative sign.
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Presentation of Atomic orbitals

& = 60°

8= 120°

e = 150°

Fig. 7.5

# = 1807

The value of cos 8 in any direction (i.e., for any value of 8 and @) can then
be read of the polar plot by drawing a straight line in that direction from the origin
upto the point where it meets the sphere.
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Presentation of Atomic orbitals

A polar plot presents a physical shape of the orbital in question. Such plots
can be easily drawn for s, p and J orbitals; for others ( f, g... orbitals) itis difficult
(not impossible) to derive the shapes.

The polar plot for an s-orbital (which is independent of 8 and @) 1s spheri-

cal. 1s orbital is a single sphere, 25 orbital has two concentric spheres, and so on,
with nucleus at the centre. (Fig. 7.7).

The 2p_-tunction is independent of @; hence, it 15 symmetric with respect to
the polar (z) axis. For any value of r, the function has the largest positive value in

the + 2z and the largest negative value in the — z direction; xy-plane is the nodal
plane (see Fig. 7.6). ¥

Ak T Modal-surface

--""-"t.-r'i..,""'-n.""-m|I ﬁ{"}_.;""ﬁ

i 7 ) f P ¥
rlef Mo 3 et f 17, 3

lll*l .':!':_ \}j.'.’ ] fel t":;"l-” J‘} -
=T AR A LY

hh""‘-}: ‘-"'"_,:Jf "'h"'-‘:* ‘.-"'_,:#J

N Tl

(a) )
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Presentation of Atomic orbitals

The 2p, function contains sin B cos @. First, plot the sin 8 forg=0 (i.e.,

1 ¥3 V31

along the + x direction). This function goes through 0, 7' 1, B and

0 as @moves through 0, 30°, 60°, 90°, 120°, 150° and 180 respectively. The polar
plot is a circle (Fig. 7.8). We have another circle for ¢ = 180° (i.e., along — x-direc-

Fig. 7.8

tion) in which the function is negative. As ¢ goes from 0 to ®and then %t to 2x the

function changes continuously vanishing for ¢ = 90" and 270", As @ increases, the
value of sin @ cos @, for any value of B, decreases because of the factor cos @. The
complete polar plot of the p, function consists of two spheres along the x-axis (Fig,

7.9) in one of which thé function is positive and in the other negative; vz-plane is
the nodal plane.
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Presentation of Atomic orbitals

The polar plot of 2p, function (or sin @ sin @) can likewise be shown to
consist of two spheres along the y-axis with xz-plane as the nodal plane.
The three 2p functions (2p,, 2p, and 2p.) differ only in their orientation.
Polar plots for higher values of a differ only in the size of the spheres.

i
]
]
i
]
i —

B — I . ™=
=, [y
Frfe 2 A, ..ﬁ',‘.""-..""
N AR EY [ AR T
Fil r 3 TRy A ) X

- JI ) ]j
"'L.,_'- --'IJJ';_!--. =1 1)
T T 4 I.h_ s TR _‘I'
1,.:."..";_ - T ‘Lh: -~ “

e l'll-._.l""

[

L]
-
(a)

Fig. 7.9
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Presentation of Atomic orbitals

d-Functions:
The angular pars of the Wy, functions in their real form are:

5 1/2 5

dJ:[E] (3cos“B-1) (7-73)
f ]5 W52

de=| o= | sinBcosBcosg (1-174)
\ A
(15 /2

dy, = ix sin B cos 8 sin @ (7-75)
\ L
r 5 4V Py

d?_ 2= |]_u ainzﬁcmlq& (7-76)

\ 4
(15 312 .

'dl.r,r- T-fr_l sin“Bsin2 g (7-T7)
\ J

The polar plots of these functions can be drawn in ine manner described
earli=r.
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Presentation of Atomic orbitals

The function &, has its maximum value (positive) at 8 =0and 180°; it

vanishes when 3 cos® 0 = 1, or 8=54.74" and 125.26". In the xy-plane (8 = 90"} it
15 negative. So the polar plot consists of two lobes along the + z and - z directions.

On being multiplied by the radial factor #*. the function becomes 3z° -  and hence
the name d.%.

The function d,. is zero for 8=0, 90° and 180°, and for ¢=90" and
270°. The maximum positive value occurs at B =45, ¢=0" and 0= 135",

¢ = 180", while the maximum negative value occurs at 8 =45 @ = 180" and

8 = 135", 9 =0". The lines where the planes xy and yz cut the sphere are, therefore,
the nodal lines. The function d,, is similar 1o 4, except that ihe nodal lines lie in

the xv and xz-planes. Multiplication by the radial factor # and use of the definitions
of the polar coordinates justify the names d,. and J .
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Presentation of Atomic orbitals

The function d,? _* is similar in form, but the two nodal lines are at 6 = 0°

and 180°, and ¢ = 45" and 135". Similarly, the function d,, has the nodal lines
lving at =0, 180" and ¢ =90 270" ie., inthe xz- and yz-planes. Since cos
2p= cos’ P- sin’ @, and sin 29 =2 sin @ cos ¢, multiplication by 7 leads 1o
x* - )r2 and xy respectively justifying the names d,? _ 2 and d ., for these functions.

Obviously, all the five 4 functions are not e::iuiva]ent- in shape. The first
I[r.!f]l 15 symmetinc (positive) with respect to the z-axis. The next two change sign

as we go around the z-axis, 1.¢., as @ increases from 0 to 360°. The last two change
sign twice as we go around the z-axis.
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Angular probability functions

Angular Probability Distribution

Angular probability distribution function can likewise be obtained by integrating
wz dt over all values of r. The integration is, however, complicated and it is more
convenient 1o determine the angular distribution graphically by plotting [P (8) P
against 0 for fixed values of r and 9. The probability of finding the electron at any
angle @ is then obtained by the magnitude of the straight line drawn from the centre
upto the point where it meets the curve along that angle. The magnitude of the line
will be greatest in the direction which gives the maximum value of [P (8) ]2. Let
us see a few examples,

The s-wave functions do not contain 8 or @, so the angular distribution is
the same in all directions. The electron cloud is, accordingly, spherically symmetri-
cal.

The 2p, wave function is given by,
WV2p, =ﬂI'E rexp (-r/2)cos8 (in au.)

The angular distribution is, therefore, proportional to cos” 8. Now values of
cos” @ for various values of 8 are marked off along the radial (r) axis (Fig. 7.12).

The maximum and minimum values of cos> © are + | (when 8=0 or &) and 0
(when 8 = m/2) respectively and are never negative. For any value of @ lying in
the xz-plane, the dependence of the function on r will be the same (i.e.,
rzcxp (= r) with maximum at r=2 a.u., but the value of the function will be Jess
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Angular probability functions

Eiﬂ
Fd |
r=2au
- -
;-ﬂ w2 r= 2au
8==x
(e} (b)
Fig.7.12

than that at 8=0orn with zero at 8=n/2. Also, at any other value of

9, cos® 8 < cos 8 such that the polar plot of cos?® against 8 in the xz-plane will
consist of two semi-¢llipses (Fig. 7.12 (a)) instead of semicircles (as in the plot of
cos © vs 8) and rotation of the curve around the polar axis, which amounts to
plumng for other values of @, will produce two ellipsoids (Fig. 7.12 (b)) instead
of two spheres. The two ellipsoids represent the electron clouds of the 2p. orbital:

each cloud has the maximum density at the centres, each centre lying at the distance
r=2 a.u. from the nucleus. At the nucleus the density is zero, xy-plane being the

nodal plane.
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Angular probability functions

Similar angular probability plots may be drawn for 2p, and 2p, orbitals
(Figs. 7.13 (a) and (b)).

(a)

Fig.7.13
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The Quantum Mechanical Model

Quantum mechanics provides a new model for representing the structure of
hydrogen atom, and hence of other atoms (1o be discussed in a later chapter), with
sound theoretical basis. The electron rotates round the nucleus but not in a
well-defined orbit; the rotation is three-dimensional and the motion is described by
a wave equation—the Schrodinger equation. Rather than locating the electron at
any instant exactly, this model provides the position of the electron in terms of a
probability function, there being a finite, even though small, probability of its being
found at all points in the infinite space outside the nucleus. The probability is
maximum at a certain distance from the nucleus. Interestingly, in the ground state
of H atom this distance is the same as the radius (ay) of the first Bohr orbit which

K
41 me”
all directions at a distance of ay from the nucleus (i.e., it is spherically symmetri-
cal). In excited states with non-zero angular momentum of the electron (f # 0), the
maximum lies in certain preferred directions. In each state one can visualise a

three-dimensional surface encompassing the nucleus that encloses a large fraction
(=90 %) of the total probability; in other words, the electron may be supposed to
spend 90% of its ume inside this surface. The entire region within this surface is
the quantum mechanical analogue of classical orbit and is the physical repre-
sentation of orbital.

13 v i.e.,0.529 A. This maximum probability is uniformly distributed in
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There is an equivalent way of representing the probability distribution by
considering the electron as a could of negative charge. The density of the electron
cloud (probability density) in the ground state of the H atom is maximum at the
nucleus and 90% of the charge of the cloud is contained within the surface of the
orbital. Although the electron is most likely to be found at a distance a; from the

nucleus, its average distance is | .5a,

As in the old planetary model, the stability of the atom, qualitatively, is
attributed to (i) a force tending to bring the nucleus and the electron together and
(if) an opposing force tending to keep the electron away from the nucleus. The

2
former is electrostatic in nature [ F -E ]: for the latter quantum mechanics

~

provides a more consistent picture. We visualise the electron as a diffuse cloud of
matter and charge around the nucleus. The former tends to make the electron cloud
smaller and smaller. This makes the wave I:ngth of the electron wave shorter and
shorter and hence the energy greater. Rubinstein’ prefers to call it the “energy of
confinement” (E_,,¢) Below an optimum distance (ag) the confinement energy is

sufficiently great for the nucleus to pull the electron cloud further towards itself.
An equilibrium is ultimately established at the optimum distance for the atom to
be stable when the two forces balance.
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