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HYDROGEN ATOM

𝑟𝑟

𝑚𝑚

𝑚𝑚𝑒𝑒

Central force problem:
 The interacting force between two 

particles depend on only the separation 
between them.

 Independent on the orientation i.e. 𝜃𝜃 and 
𝜙𝜙

 Potential energy of electron due to 
nuclear charge

𝑉𝑉 𝑟𝑟 = −
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
 Since 𝑉𝑉(𝑟𝑟) depends only on the 𝑟𝑟, 

hydrogen atom (hydrogen-like) can be 
treated as central force problems

 Further, hydrogen atom consists of one electron and nucleus, so it 
is a two-body problem.
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HYDROGEN ATOM
 From the result of reducing two-body problem to one-body 

problem, we can write the kinetic energy operator for H

�𝑇𝑇 = −
ℏ2

2𝑀𝑀
∇𝑅𝑅2 −

ℏ2

2𝜇𝜇
∇𝑟𝑟2

Where, 𝑀𝑀 = 𝑚𝑚 + 𝑚𝑚𝑒𝑒, 𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑒𝑒
𝑚𝑚+𝑚𝑚𝑒𝑒

, R = coordinate of center of 
mass, and r is relative coordinates of electron with respect to 
nucleus.

 Hamiltonian operator for H atom

�𝐻𝐻 = −
ℏ2

2𝑀𝑀
∇𝑅𝑅2 −

ℏ2

2𝜇𝜇
∇𝑟𝑟2 + 𝑉𝑉(𝑟𝑟)

 Schrodinger equation for H atom

−
ℏ2

2𝑀𝑀
∇𝑅𝑅2 −

ℏ2

2𝜇𝜇
∇𝑟𝑟2 + 𝑉𝑉(𝑟𝑟) 𝜓𝜓𝑇𝑇 = 𝐸𝐸𝑇𝑇𝜓𝜓𝑇𝑇

Translational 
motion

electrical 
motion

This part depends only on 
coordinates of electron
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HYDROGEN ATOM
Separation of translational and electrical motion
 Since translation motion does not interfere the electronic part, 

total wavefunction, 𝜓𝜓𝑇𝑇 can be written as 
𝜓𝜓𝑇𝑇 𝑅𝑅, 𝑟𝑟 = 𝜙𝜙 𝑅𝑅 ⋅ 𝜓𝜓(𝑟𝑟)

 Double differentiating of 𝜓𝜓𝑇𝑇 with respect to 𝑅𝑅 and 𝑟𝑟 gives  
∇𝑅𝑅2𝜓𝜓𝑇𝑇 = ∇𝑅𝑅2𝜙𝜙(𝑅𝑅) ⋅ 𝜓𝜓(𝑟𝑟)
∇𝑟𝑟2𝜓𝜓𝑇𝑇 = 𝜙𝜙(𝑅𝑅) ⋅ ∇𝑟𝑟2𝜓𝜓(𝑟𝑟)

 Inserting above derivatives in SE for H gives

−𝜓𝜓(𝑟𝑟)
ℏ2

2𝑀𝑀
∇𝑅𝑅2𝜙𝜙(𝑅𝑅) − 𝜙𝜙(𝑅𝑅)

ℏ2

2𝜇𝜇
∇𝑟𝑟2𝜓𝜓(𝑟𝑟) + 𝑉𝑉(𝑟𝑟)𝜙𝜙 𝑅𝑅 ⋅ 𝜓𝜓(𝑟𝑟) = 𝐸𝐸𝑇𝑇𝜙𝜙 𝑅𝑅 ⋅ 𝜓𝜓(𝑟𝑟)

 Dividing both sides by 𝜙𝜙 𝑅𝑅 ⋅ 𝜓𝜓(𝑟𝑟) results 

−
1

𝜙𝜙 𝑅𝑅
ℏ2

2𝑀𝑀
∇𝑅𝑅2𝜙𝜙(𝑅𝑅) −

1
𝜓𝜓(𝑟𝑟)

ℏ2

2𝜇𝜇
∇𝑟𝑟2𝜓𝜓(𝑟𝑟) + 𝑉𝑉(𝑟𝑟) = 𝐸𝐸𝑇𝑇

⟹ −
1

𝜙𝜙 𝑅𝑅
ℏ2

2𝑀𝑀
∇𝑅𝑅2𝜙𝜙(𝑅𝑅) = 𝐸𝐸𝑇𝑇 −

1
𝜓𝜓(𝑟𝑟)

−
ℏ2

2𝜇𝜇
∇𝑟𝑟2 + 𝑉𝑉(𝑟𝑟) 𝜓𝜓(𝑟𝑟)
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HYDROGEN ATOM
Separation of translational and electrical motion

 LHS depends on only the center of mass coordinates whereas 
RHS depends on the relative coordinates, 𝑟𝑟, hence both sides 
must equal to the same constant, say 𝑊𝑊.

 Thus we obtain two separate equations:

−
1

𝜙𝜙 𝑅𝑅
ℏ2

2𝑀𝑀
∇𝑅𝑅2𝜙𝜙 𝑅𝑅 = 𝑊𝑊

𝐸𝐸𝑇𝑇 −
1

𝜓𝜓 𝑟𝑟
−
ℏ2

2𝜇𝜇
∇𝑟𝑟2 + 𝑉𝑉 𝑟𝑟 𝜓𝜓 𝑟𝑟 = 𝑊𝑊

 Rearranging eq. (2) we get

−
ℏ2

2𝜇𝜇
∇𝑟𝑟2 + 𝑉𝑉 𝑟𝑟 𝜓𝜓 𝑟𝑟 = 𝐸𝐸𝑇𝑇 −𝑊𝑊 𝜓𝜓 𝑟𝑟 = 𝐸𝐸𝜓𝜓 𝑟𝑟

 Eq. (1) leads

−
ℏ2

2𝑀𝑀
∇𝑅𝑅2𝜙𝜙 𝑅𝑅 = 𝑊𝑊𝜙𝜙 𝑅𝑅

(1)

(2)

(3)

(4)
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HYDROGEN ATOM
Separation of translational and electrical motion

 Eq. (4) represents the SE for translational motion of
hypothetical mass 𝑚𝑚 + 𝑚𝑚𝑒𝑒. This equation is similar to SE of free
particle confined in a box.

 In practical 𝑚𝑚 ≫ 𝑚𝑚𝑒𝑒 , hence eq. (4) mainly reveals the SE of
nucleus.

 The eq. (3), which contains the potential energy of interaction
between electron and nucleus, is actually SE for internal motion
of nucleus and electron.

 In practical, 𝑚𝑚 ≫ 𝑚𝑚𝑒𝑒 leads 𝜇𝜇~𝑚𝑚𝑒𝑒, hence eq. (3) becomes

−
ℏ2

2𝑚𝑚𝑒𝑒
∇𝑟𝑟2 + 𝑉𝑉 𝑟𝑟 𝜓𝜓 𝑟𝑟 = 𝐸𝐸𝜓𝜓 𝑟𝑟

 In eq. (5) 𝐸𝐸 represents the energy of electron in the atom.

(5)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
 In spherical coordinate, Laplacian operator can be written as,

where,

 SE in spherical coordinate

−
ℏ2

2𝜇𝜇
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜓𝜓
𝜕𝜕𝑟𝑟

+
1
𝑟𝑟2

1
sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

𝜓𝜓 +
1
𝑟𝑟2

1
sin2 𝜃𝜃

𝜕𝜕2𝜓𝜓
𝜕𝜕𝜙𝜙2 −

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
𝜓𝜓 = 𝐸𝐸𝜓𝜓

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜓𝜓
𝜕𝜕𝑟𝑟

+
1

r2sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

𝜓𝜓 +
1

𝑟𝑟2 sin2 𝜃𝜃
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜙𝜙2 +

2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
𝜓𝜓 = 0

 Note that from particle on sphere or 3D rigid rotator, we have learnt

�𝐻𝐻𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 =
𝑙𝑙 𝑙𝑙 + 1 ℏ

2𝐼𝐼
𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙

−
ℏ2

2𝜇𝜇𝑟𝑟2
1

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

+
1

sin2 𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜙𝜙2 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 =
𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝐼𝐼
𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙

−
ℏ2

2𝐼𝐼
Λ2𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 =

𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝐼𝐼
𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 ⟹ Λ2𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 = −𝑙𝑙(𝑙𝑙 + 1)𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙

𝛻𝛻2 =
𝜕𝜕2

𝜕𝜕𝑟𝑟2 +
2𝜕𝜕
𝑟𝑟𝜕𝜕𝑟𝑟

+
1
𝑟𝑟2 Λ

2 Λ2 =
1

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

+
1

sin2 𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜙𝜙2

(5)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

 The eq. (5) depends on three variables (𝑟𝑟, 𝜃𝜃,𝜙𝜙 ). To solve it, it is
necessary to separate in independent variable. If it is assumed that
𝑟𝑟,𝜃𝜃 and 𝜙𝜙 does not interfere each other, then 𝜓𝜓 can be written as,

𝜓𝜓 𝑟𝑟,𝜃𝜃,𝜙𝜙 = 𝑅𝑅 𝑟𝑟 ⋅ Θ 𝜃𝜃 ⋅ Φ 𝜙𝜙 Or simply, 𝜓𝜓 = 𝑅𝑅ΘΦ

 From relation (6) we have,

𝜕𝜕𝜓𝜓
𝜕𝜕𝑟𝑟

= ΘΦ
𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

,
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟2

= ΘΦ
𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

,
𝜕𝜕𝜓𝜓
𝜕𝜕𝜃𝜃

= 𝑅𝑅Φ
𝜕𝜕Θ
𝜕𝜕𝜃𝜃

,
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜙𝜙2

= 𝑅𝑅Θ
𝜕𝜕2Φ
𝜕𝜕𝜙𝜙2

 Using these relations in eq. (5) we obtain

ΘΦ
𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

+
2ΘΦ
𝑟𝑟

𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
𝑅𝑅Φ

𝑟𝑟2 sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

Θ +
𝑅𝑅Θ

𝑟𝑟2 sin2 𝜃𝜃
𝜕𝜕2Φ
𝜕𝜕𝜙𝜙2

+
2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
𝑅𝑅ΘΦ = 0

(6)

(7)



9

HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

 Multiplying both sides of eq. (7) by r2sin2 𝜃𝜃
𝑅𝑅ΘΦ

results

𝑟𝑟2 sin2 𝜃𝜃
𝑅𝑅

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2 +

2𝑟𝑟 sin2 𝜃𝜃
𝑅𝑅

𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
sin𝜃𝜃
Θ

𝜕𝜕
𝜕𝜕𝜃𝜃 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

Θ +

2𝜇𝜇𝑟𝑟2 sin2 𝜃𝜃
ℏ2 𝐸𝐸 +

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
= −

1
Φ
𝜕𝜕2Φ
𝜕𝜕𝜙𝜙2

 LSH of eq. (8) depends on 𝑟𝑟 and 𝜃𝜃, while RHS on 𝜙𝜙 only. This equality
is only hold if both sides is equal to the same constant, say 𝑚𝑚𝑙𝑙

2, which
gives two equations,

𝜕𝜕2Φ
𝜕𝜕𝜙𝜙2 = −𝑚𝑚𝑙𝑙

2Φ

𝑟𝑟2 sin2 𝜃𝜃
𝑅𝑅

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2 +

2𝑟𝑟 sin2 𝜃𝜃
𝑅𝑅

𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟 +

sin𝜃𝜃
Θ

𝜕𝜕
𝜕𝜕𝜃𝜃 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 Θ +

2𝜇𝜇𝑟𝑟2 sin2 𝜃𝜃
ℏ2 𝐸𝐸 +

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
= 𝑚𝑚𝑙𝑙

2

(8)

(9)

………….(10)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

 Dividing eq. (10) by sin2 𝜃𝜃 and rearranging 𝑟𝑟 dependent terms on LHS
and 𝜃𝜃 dependent on RHS,

𝑟𝑟2

𝑅𝑅
𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

+
2𝑟𝑟
𝑅𝑅
𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
2𝜇𝜇𝑟𝑟2

ℏ2
𝐸𝐸 +

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
=

𝑚𝑚𝑙𝑙
2

sin2 𝜃𝜃
−

1
Θ sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

Θ

 Again LSH of eq. (11) depends on 𝑟𝑟, while RHS on 𝜃𝜃 only. This equality
is only hold if both sides is equal to the same constant, say 𝑙𝑙(𝑙𝑙 + 1),
which gives two equations,

𝑟𝑟2

𝑅𝑅
𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

+
2𝑟𝑟
𝑅𝑅
𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
2𝜇𝜇𝑟𝑟2

ℏ2
𝐸𝐸 +

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
= 𝑙𝑙(𝑙𝑙 + 1)

𝑚𝑚𝑙𝑙
2

sin2 𝜃𝜃
−

1
Θ sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

Θ = 𝑙𝑙(𝑙𝑙 + 1)

(11)

(12)

(13)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)

 For the sake of convenience, we rewrite eq. (9), (12) and (13) together

𝜕𝜕2Φ
𝜕𝜕𝜙𝜙2

+ 𝑚𝑚𝑙𝑙
2Φ = 0

1
sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

Θ + 𝑙𝑙 𝑙𝑙 + 1 −
𝑚𝑚𝑙𝑙
2

sin2 𝜃𝜃
Θ = 0

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
−
𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝜇𝜇𝑟𝑟2
𝑅𝑅 = 0

 Solutions of eq. (14) and (15) have been shown in particle on sphere or
3D rigid rotator. The combined solution is spherical harmonics
𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙(𝜃𝜃,𝜙𝜙).

 The eq. (16) is called radial equation and is new. Now we try to solve
this equation.

(14)

(15)

(16)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
𝜙𝜙 equation:
 The eq. (14) is similar to particle on ring or 2D rotator. Its normalized

solution is

Φ𝑚𝑚𝑙𝑙 =
1
2𝜋𝜋

𝑒𝑒𝑖𝑖𝑚𝑚𝑙𝑙𝜙𝜙 , 𝑚𝑚𝑙𝑙 = 0, ±1, ±2 ,⋯

𝜃𝜃 equation:
 The eq. (15) is similar to the 𝜃𝜃 part of particle on sphere or 3D

rotator. Its solution is associated Legendre polynomial

𝑃𝑃𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃 = 𝑁𝑁𝑃𝑃𝑙𝑙
𝑚𝑚𝑙𝑙 (cos 𝜃𝜃)

Where N is normalization constant and is given by

𝑁𝑁 =
2𝑙𝑙 + 1

2
𝑙𝑙 − 𝑚𝑚𝑙𝑙 !
𝑙𝑙 + 𝑚𝑚𝑙𝑙 !

, 𝑙𝑙 = 0, 1, 2,⋅ ⋯ and 𝑚𝑚𝑙𝑙 ≤ 𝑙𝑙
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
Spherical Harmonics

The product of Θ(𝜃𝜃) and Φ 𝜙𝜙 is denoted by 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙(𝜃𝜃,𝜙𝜙). 

For a given values of  𝑙𝑙 and 𝑚𝑚𝑙𝑙,the normalized wave 

functions, 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙(𝜃𝜃,𝜙𝜙) are called the spherical harmonics 

and given by

𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 =
−1 𝑙𝑙+|𝑚𝑚𝑙𝑙|

2𝑙𝑙𝑙𝑙!
2𝑙𝑙 + 1
4𝜋𝜋 ⋅

𝑙𝑙 − 𝑚𝑚𝑙𝑙 !
𝑙𝑙 + 𝑚𝑚𝑙𝑙 !

×

sin 𝑚𝑚𝑙𝑙 𝜃𝜃
𝑑𝑑𝑙𝑙+|𝑚𝑚𝑙𝑙|

𝑑𝑑(cos 𝜃𝜃)𝑙𝑙+|𝑚𝑚𝑙𝑙|
sin2𝑙𝑙 𝜃𝜃 𝑒𝑒𝑖𝑖𝑚𝑚𝑙𝑙𝜙𝜙
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HYDROGEN ATOM

Example: Evaluate 𝑌𝑌2,±2

Soln: If 𝑙𝑙 = 2 then 𝑚𝑚𝑙𝑙 = 0, ±1, ±2

For 𝑙𝑙 = 2 and 𝑚𝑚𝑙𝑙 = ±2

𝑁𝑁 =
−1 2+2

22 ⋅ 2!
2 ⋅ 2 + 1
4𝜋𝜋

⋅
2 − 2 !
2 + 2 !

=
1

32
5
6𝜋𝜋

𝑃𝑃22(cos𝜃𝜃) = sin2 𝜃𝜃
𝑑𝑑4

𝑑𝑑 cos𝜃𝜃 4 sin4 𝜃𝜃 = 24 sin2 𝜃𝜃

𝑌𝑌2,±2 =
1

32
5

6𝜋𝜋
⋅ 24 sin2 𝜃𝜃 𝑒𝑒±2𝑖𝑖𝜙𝜙 =

15
32𝜋𝜋

sin2 𝜃𝜃 𝑒𝑒±2𝑖𝑖𝜙𝜙

𝑥𝑥 = cos𝜃𝜃
𝑦𝑦 = sin4 𝜃𝜃

⟹ 𝑦𝑦 = 1 − 𝑥𝑥2 2

⟹ 𝑦𝑦 = 1 − 2𝑥𝑥2 + 𝑥𝑥4
𝑦𝑦1 = −4𝑥𝑥 + 4𝑥𝑥3
𝑦𝑦2 = −4 + 12𝑥𝑥2
𝑦𝑦3 = 24𝑥𝑥
𝑦𝑦4 = 24

Solution of SE for H (hydrogenic atom)
Spherical Harmonics
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(29)

The 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙(𝜃𝜃,𝜙𝜙) for some 𝑙𝑙 and 𝑚𝑚𝑙𝑙 are given in Table1. 

𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 =
−1 𝑙𝑙+|𝑚𝑚𝑙𝑙|

2𝑙𝑙𝑙𝑙!
2𝑙𝑙 + 1
4𝜋𝜋

⋅
𝑙𝑙 − 𝑚𝑚𝑙𝑙 !
𝑙𝑙 + 𝑚𝑚𝑙𝑙 ! sin 𝑚𝑚𝑙𝑙 𝜃𝜃

𝑑𝑑𝑙𝑙+|𝑚𝑚𝑙𝑙|

𝑑𝑑(cos𝜃𝜃)𝑙𝑙+|𝑚𝑚𝑙𝑙|
sin2𝑙𝑙 𝜃𝜃 𝑒𝑒𝑖𝑖𝑚𝑚𝑙𝑙𝜙𝜙

𝒍𝒍 𝒎𝒎𝒍𝒍 𝑃𝑃𝑙𝑙(cos𝜃𝜃) 𝑁𝑁 𝑃𝑃𝑙𝑙
𝑚𝑚𝑙𝑙 (cos𝜃𝜃) 𝑒𝑒𝑖𝑖𝑚𝑚𝑙𝑙𝜙𝜙 𝒀𝒀𝒍𝒍𝒎𝒎𝒍𝒍(𝜽𝜽,𝝓𝝓)

0 0 1 1
4𝜋𝜋

1
2 1 1 1

4𝜋𝜋

1
2

1 0 − cos𝜃𝜃 3
4𝜋𝜋

1
2 cos𝜃𝜃 1 3

4𝜋𝜋

1
2

cos𝜃𝜃

±1
2 0

±1
±2

Solution of SE for H (hydrogenic atom)
Spherical Harmonics
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BACKGROUND 1
Laguerre Polynomial:
Let 𝑦𝑦 = 𝑥𝑥𝑘𝑘𝑒𝑒−𝑥𝑥

Differentiating gives
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑘𝑘𝑥𝑥𝑘𝑘−1 − 𝑥𝑥𝑘𝑘 𝑒𝑒−𝑥𝑥

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= 𝑘𝑘(𝑘𝑘 − 1)𝑥𝑥𝑘𝑘−2−𝑘𝑘𝑥𝑥𝑘𝑘−1 − 𝑘𝑘𝑥𝑥𝑘𝑘−1 + 𝑥𝑥𝑘𝑘 𝑒𝑒−𝑥𝑥

Generally,
𝑑𝑑𝑘𝑘𝑦𝑦
𝑑𝑑𝑥𝑥𝑘𝑘

= 𝑒𝑒−𝑥𝑥𝐿𝐿𝑘𝑘(𝑥𝑥)

⇒ 𝐿𝐿𝑘𝑘(𝑥𝑥) = 𝑒𝑒𝑥𝑥
𝑑𝑑𝑘𝑘𝑦𝑦
𝑑𝑑𝑥𝑥𝑘𝑘

= 𝑒𝑒𝑥𝑥
𝑑𝑑𝑘𝑘

𝑑𝑑𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘𝑒𝑒−𝑥𝑥

e.g., 𝐿𝐿1 𝑥𝑥 = 𝑒𝑒𝑥𝑥 𝑑𝑑
𝑑𝑑𝑥𝑥

𝑥𝑥𝑒𝑒−𝑥𝑥 = 𝑒𝑒𝑥𝑥 1 − 𝑥𝑥 𝑒𝑒−𝑥𝑥 = 1 − 𝑥𝑥

𝐿𝐿2 𝑥𝑥 = 𝑒𝑒𝑥𝑥
𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝑥𝑥2𝑒𝑒−𝑥𝑥 = 𝑒𝑒𝑥𝑥

𝑑𝑑
𝑑𝑑𝑥𝑥

2𝑥𝑥 − 𝑥𝑥2 𝑒𝑒−𝑥𝑥

= 𝑒𝑒𝑥𝑥 2 − 2𝑥𝑥 − 2𝑥𝑥 + 𝑥𝑥2 𝑒𝑒−𝑥𝑥 = 2 − 4𝑥𝑥 + 𝑥𝑥2
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BACKGROUND 1
Associated Laguerre Polynomial:

 Pth derivative of Laguerre polynomial 𝐿𝐿𝑘𝑘
𝑝𝑝 𝑥𝑥 = 𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥𝑝𝑝
𝐿𝐿𝑘𝑘(𝑥𝑥) =

𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥𝑝𝑝
𝑒𝑒𝑥𝑥 𝑑𝑑𝑘𝑘

𝑑𝑑𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘𝑒𝑒−𝑥𝑥 is known as Associated Laguerre polynomial,

which is the solution of following differential equation, called
associated Laguerre differential equation.

𝑥𝑥
𝑑𝑑2𝐿𝐿𝑘𝑘

𝑝𝑝 𝑥𝑥
𝑑𝑑𝑥𝑥2

+ 𝑝𝑝 + 1 − 𝑥𝑥
𝑑𝑑𝐿𝐿𝑘𝑘

𝑝𝑝 𝑥𝑥
𝑑𝑑𝑥𝑥

+ 𝑘𝑘 − 𝑝𝑝 𝐿𝐿𝑘𝑘
𝑝𝑝 𝑥𝑥 = 0

 The associated Laguerre polynomial is of degree 𝑘𝑘 − 𝑝𝑝 and order
𝑝𝑝, where 𝑝𝑝 ≤ 𝑘𝑘. Replacing 𝑥𝑥 by 𝜌𝜌, 𝑘𝑘 by 𝑛𝑛 + 𝑙𝑙 and 𝑝𝑝 by 2𝑙𝑙 + 1,
where 𝑛𝑛 + 𝑙𝑙 ≥ 2𝑙𝑙 + 1 Or, 𝑛𝑛 ≥ 𝑙𝑙 + 1

𝜌𝜌
𝑑𝑑2𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌

𝑑𝑑𝜌𝜌2
+ 2𝑙𝑙 + 1 + 1 − 𝜌𝜌

𝑑𝑑𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌
𝑑𝑑𝜌𝜌

+ 𝑛𝑛 + 𝑙𝑙 − 2𝑙𝑙 − 1 𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 = 0

⟹ 𝜌𝜌
𝑑𝑑2𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌

𝑑𝑑𝜌𝜌2
+ 2 𝑙𝑙 + 1 − 𝜌𝜌

𝑑𝑑𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌
𝑑𝑑𝜌𝜌

+ 𝑛𝑛 − 𝑙𝑙 − 1 𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 = 0
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

+
2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
−
𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝜇𝜇𝑟𝑟2
𝑅𝑅 = 0

 Note that third term in bracket adds an additional terms to the
potential energy. Previously, it was shown that 𝐿𝐿2 = 𝑙𝑙 𝑙𝑙 + 1 ℏ2. So it
is obvious that third term comes from the angular momentum and
counts the centrifugal force that acts against the coulombic
force. Thus, effective potential energy 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 is given by

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = −
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
+
𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝜇𝜇𝑟𝑟2

(17)

Radius, 𝑟𝑟
𝑉𝑉 𝑒𝑒
𝑒𝑒𝑒𝑒

𝑙𝑙 > 0

Fig. The effective potential experienced by an electron
in a hydrogen atom. When l > 0 centrifugal contribution
prevents the close approach of the electron to the
nucleus, as it increases more rapidly (as 1/𝑟𝑟2 ) than the
Coulomb attraction (which varies as −1/𝑟𝑟 ).
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Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:
 To simplify eq. (17), put dimensionless variable, 𝜌𝜌 = 𝛼𝛼𝑟𝑟, where 𝛼𝛼 is

constant and its dimension is reciprocal to 𝑟𝑟

𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟

=
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

𝑑𝑑𝜌𝜌
𝑑𝑑𝑟𝑟

=
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

𝛼𝛼,
𝑑𝑑2𝑅𝑅
𝑑𝑑𝑟𝑟2

=
𝑑𝑑
𝑑𝑑𝑟𝑟

𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

𝛼𝛼 =
𝑑𝑑
𝑑𝑑𝜌𝜌

𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

𝛼𝛼
𝑑𝑑𝜌𝜌
𝑑𝑑𝑟𝑟

= 𝛼𝛼2
𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

 Now eq. (17) becomes

𝛼𝛼2
𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
2𝛼𝛼
𝑟𝑟
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

+
2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
−
𝑙𝑙 𝑙𝑙 + 1 ℏ2

2𝜇𝜇𝑟𝑟2
𝑅𝑅 = 0

𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
2
𝛼𝛼𝑟𝑟

𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

+
2𝜇𝜇𝐸𝐸
𝛼𝛼2ℏ2

+
2𝜇𝜇𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0ℏ2𝛼𝛼2𝑟𝑟
−
𝑙𝑙 𝑙𝑙 + 1
𝛼𝛼2𝑟𝑟2

𝑅𝑅 = 0

𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
2
𝜌𝜌
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

+
2𝜇𝜇𝐸𝐸
𝛼𝛼2ℏ2

+
2𝜇𝜇𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0ℏ2𝛼𝛼𝜌𝜌
−
𝑙𝑙 𝑙𝑙 + 1
𝜌𝜌2

𝑅𝑅 = 0 (18)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:
 For convenient, 𝛼𝛼 is chosen so that first term in bracket becomes

− 1
4

and coefficient of 1
𝜌𝜌

is defined by n, i.e.,

2𝜇𝜇𝐸𝐸
𝛼𝛼2ℏ2

= −
1
4

⟹ 𝛼𝛼 = −
8𝜇𝜇𝐸𝐸
ℏ2

𝑛𝑛 =
2𝜇𝜇𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0ℏ2𝛼𝛼
⟹ 𝛼𝛼 =

2𝑍𝑍
𝑛𝑛𝑎𝑎0

, 𝑎𝑎0 =
4𝜋𝜋𝜀𝜀0ℏ2

𝜇𝜇𝑒𝑒2
 Now eq. (18) becomes

𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
2
𝜌𝜌
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

+ −
1
4

+
𝑛𝑛
𝜌𝜌
−
𝑙𝑙 𝑙𝑙 + 1
𝜌𝜌2

𝑅𝑅 = 0

 For large 𝜌𝜌, 1
𝜌𝜌

becomes infinitesimal and eq. (19) becomes
𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

−
1
4
𝑅𝑅 = 0

(19)

(20)



21

HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:
 Solution of eq. (20)

𝑅𝑅 = 𝐴𝐴𝑒𝑒±𝜌𝜌2

 The positive exponent makes 𝑅𝑅 infinite and is not acceptable. The
acceptable function is

𝑅𝑅 = 𝐴𝐴𝑒𝑒−
𝜌𝜌
2

 For small 𝜌𝜌, 𝑙𝑙(𝑙𝑙+1)
𝜌𝜌2

≫ 𝑛𝑛
𝑝𝑝

and 1
4

then eq. (19) reduces to

𝑑𝑑2𝑅𝑅
𝑑𝑑𝜌𝜌2

+
2
𝜌𝜌
𝑑𝑑𝑅𝑅
𝑑𝑑𝜌𝜌

−
𝑙𝑙 𝑙𝑙 + 1
𝜌𝜌2

𝑅𝑅 = 0

 Let assume the solution of eq. (21) is
𝑅𝑅 = 𝜌𝜌𝑘𝑘

(21)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:
 Inserting this function in eq. (21) gives

𝑘𝑘 𝑘𝑘 − 1 + 2𝑘𝑘 − 𝑙𝑙 𝑙𝑙 + 1 = 0
𝑘𝑘 − 𝑙𝑙 𝑘𝑘 + 𝑙𝑙 + 𝑘𝑘 − 𝑙𝑙 = 0

𝑘𝑘 = 𝑙𝑙 𝑜𝑜𝑟𝑟 − (𝑙𝑙 + 1)
 Function may be

𝑅𝑅 = 𝜌𝜌𝑙𝑙 𝑜𝑜𝑟𝑟 𝑅𝑅 = 𝜌𝜌−(𝑙𝑙+1)

 The latter solution approaches to infinity as 𝜌𝜌 increases and is not
acceptable. The acceptable solution is

𝑅𝑅 = 𝜌𝜌𝑙𝑙

 For intermediate values of 𝜌𝜌, the solution of eq. (19) is given by

𝑅𝑅 = 𝜌𝜌𝑙𝑙𝐿𝐿 𝜌𝜌 𝑒𝑒−
𝜌𝜌
2

Where 𝐿𝐿(𝜌𝜌) is a polynomial of power series in 𝜌𝜌. 𝐿𝐿 𝜌𝜌 is to be
determined.

(22)
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HYDROGEN ATOM
Solution of SE for H (hydrogenic atom)
The 𝑟𝑟 equation:
 Inserting eq. (22) in eq. (19) gives

𝜌𝜌
𝑑𝑑2𝐿𝐿
𝑑𝑑𝜌𝜌2

+ 2 𝑙𝑙 + 1 − 𝜌𝜌
𝑑𝑑𝐿𝐿
𝑑𝑑𝜌𝜌

+ 𝑛𝑛 − 𝑙𝑙 − 1 𝐿𝐿 = 0

 The solution of eq. (23) is the associated Laguerre polynomial (see

background 1), which is given as

𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 =
𝑑𝑑2𝑙𝑙+1

𝑑𝑑𝜌𝜌2𝑙𝑙+1
𝑒𝑒𝜌𝜌

𝑑𝑑𝑛𝑛+𝑙𝑙

𝑑𝑑𝜌𝜌𝑛𝑛+𝑙𝑙
𝜌𝜌𝑛𝑛+𝑙𝑙𝑒𝑒−𝜌𝜌

 The degree of polynomial is 𝑛𝑛 − 𝑙𝑙 − 1 and order 2𝑙𝑙 + 1 with the

condition 2𝑙𝑙 + 1 ≤ 𝑛𝑛 + 𝑙𝑙 or 𝑛𝑛 ≥ 𝑙𝑙 + 1.

(23)
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Nature of 𝑛𝑛 and 𝑙𝑙
 From 𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 it is concluded that
 The minimum degree is zero, i.e., 𝑛𝑛 − 𝑙𝑙 − 1 = 0 ⇒ 𝑛𝑛 = 𝑙𝑙 + 1
 Since lowest value of 𝑛𝑛 is 1, above condition says that the lowest

value of 𝑙𝑙 is zero.
 Further, the degrees of polynomial are integers, hence acceptable

values of 𝑛𝑛 and 𝑙𝑙 are integers.
 Therefore, acceptable values of 𝑛𝑛 are 1, 2, 3, ⋯ and 𝑙𝑙 are 0, 1,2, ⋯
 For 𝑛𝑛 ≥ 𝑙𝑙 + 1, 𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 exists
 However, for 𝑛𝑛 < 𝑙𝑙 + 1 or 𝑛𝑛 = 𝑙𝑙, 𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 does not exist.
 For example, let 𝑛𝑛 = 1 and 𝑙𝑙 = 1

𝐿𝐿23 𝜌𝜌 =
𝑑𝑑3

𝑑𝑑𝜌𝜌3
𝑒𝑒𝜌𝜌

𝑑𝑑2

𝑑𝑑𝜌𝜌2
𝜌𝜌2𝑒𝑒−𝜌𝜌 =

𝑑𝑑3

𝑑𝑑𝜌𝜌3
𝑒𝑒𝜌𝜌

𝑑𝑑
𝑑𝑑𝜌𝜌

2𝜌𝜌 − 𝜌𝜌2 𝑒𝑒−𝜌𝜌

=
𝑑𝑑3

𝑑𝑑𝜌𝜌3
𝑒𝑒𝜌𝜌 2 − 4𝜌𝜌 + 𝜌𝜌2 𝑒𝑒−𝜌𝜌 = 0
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Atomic Units (au)
 The units used for macroscopic scale are not convenient in

quantum mechanics. Further, quantum mechanical equations in
terms of fundamental constants are very cumbersome to handle.

 The units that are designed to simplify the form of the
fundamental equations of quantum mechanics by eliminating from
them fundamental constants are atomic unit (au).

 The advantage of atomic units is that if all calculations are
directly expressed in such units, the results do not vary with any
revision of the numerical values of the fundamental constants.

 If we introduce a set of units such that ℏ = 1,𝑚𝑚𝑒𝑒 = 1, |𝑒𝑒| = 1 and
𝜅𝜅0 = 4𝜋𝜋𝜖𝜖0 = 1

𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒𝑒𝑒2
= 1⋅12

1⋅12
= 1 Bohr, 𝐸𝐸 = − 𝑚𝑚𝑒𝑒𝑍𝑍2𝑒𝑒4

2𝑛𝑛2ℏ2 4𝜋𝜋𝜀𝜀0 2 = − 1
2𝑛𝑛2

Hartree
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Quantity Atomic Unit SI equivalent
Mass 𝑚𝑚e = 1 (electron mass) 9.1091 × 10−31 kg
Charge 𝑒𝑒 = 1 (electronic charge) 1.6021 × 10−19 C
Angular 
momentum ℏ = 1 1.0545 × 10−34 J⋅s

Permitivity 𝜅𝜅0 = 4𝜋𝜋𝜖𝜖0 = 1 1.1126 × 10−10 𝐶𝐶2 ⋅ 𝐽𝐽−1 ⋅ 𝑚𝑚−1

Length 𝜅𝜅0ℏ2

𝑚𝑚e𝑒𝑒2
= 𝑎𝑎0 = 1 (bohr)    (Bohr radius) 5.29167 × 10−11 m

Energy
𝑚𝑚e𝑒𝑒4

𝜅𝜅02ℏ2
= 𝑒𝑒2

𝜅𝜅0𝑎𝑎0
= 1 (hartree) (twice the ionization 

energy of atomic hydrogen)
4.35944 × 10−18 J

Time 
𝜅𝜅02ℏ2

𝑚𝑚e𝑒𝑒4
= 1 (period of an electron in the first Bohr 

orbit)
2.41889 × 10−17 s

Speed 𝑒𝑒2

𝜅𝜅0ℏ
= 1 (speed of an electron in the first Bohr orbit) 2.18764 × 106 𝑚𝑚 ⋅ 𝑠𝑠−1

Electric potential
𝑚𝑚e𝑒𝑒3

𝜅𝜅02ℏ2
= 𝑒𝑒

𝜅𝜅0𝑎𝑎0
= 1 (potential energy of an electron in 

the first Bohr orbit)
27.211 V

Magnetic dipole 
moment

𝑒𝑒ℏ
𝑚𝑚e

= 1 (twice a Bohr magneton) 1.85464 × 10−23 𝐽𝐽 ⋅ 𝑇𝑇−1

Some fundamental constants in atomic units (au)
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Ex. One hartree, the unit of energy in atomic units, is given by ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑒𝑒4

𝜅𝜅02ℏ2

Express one hartree in units of joules (J), kilojoules per mole (𝑘𝑘𝐽𝐽 ⋅ 𝑚𝑚𝑜𝑜𝑙𝑙−1), wave 
numbers (𝑐𝑐𝑚𝑚−1) and electron volts (𝑒𝑒𝑉𝑉). 
Solution: To find one ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 expressed in joules, we substitute the SI values of 
𝑚𝑚, 𝑒𝑒, 𝜅𝜅0 and ℏ into the above equation.

𝑜𝑜𝑛𝑛𝑒𝑒 ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 =
9.1091 × 10−31 𝑘𝑘𝑘𝑘 1.6021 × 10−19 𝐶𝐶 4

1.1126 × 10−10 𝐶𝐶2 ⋅ 𝐽𝐽−1 ⋅ 𝑚𝑚−1 2 1.0545 × 10−34 𝐽𝐽 ⋅ 𝑠𝑠 2

= 4.3595 × 10−18 𝐽𝐽
If we multiply this result by Avogadro’s number, we obtain

𝑜𝑜𝑛𝑛𝑒𝑒 ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 = 2625 𝑘𝑘𝐽𝐽 ⋅ 𝑚𝑚𝑜𝑜𝑙𝑙−1

To express one ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 in wave numbers (𝑐𝑐𝑚𝑚−1), we use the equation

�̅�𝜈 =
1
𝜆𝜆 =

𝐸𝐸
𝑐𝑐ℎ =

(4.3595 × 10−18 𝐽𝐽)
2.9979 × 108 𝑚𝑚 ⋅ 𝑠𝑠−1 (6.6262 × 10−34 𝐽𝐽 ⋅ 𝑠𝑠) = 2.195 × 107 𝑚𝑚−1

= 2.195 × 105 𝑐𝑐𝑚𝑚−1

Lastly, to express one ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 in terms of electron volts, we use the conversion 
factor 

1𝑒𝑒𝑉𝑉 = 1.602 × 10−19 𝐽𝐽

𝑜𝑜𝑛𝑛𝑒𝑒 ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 = 4.3595 × 10−18 𝐽𝐽
1 𝑒𝑒𝑉𝑉

1.602 × 10−19 𝐽𝐽 = 27.21 𝑒𝑒𝑉𝑉
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Eigenvalues
 To simplify the r-equation, 2 constants, 𝛼𝛼 and 𝑛𝑛 were introduced

𝛼𝛼 = −
8𝜇𝜇𝐸𝐸
ℏ2

𝑛𝑛 =
2𝜇𝜇𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0ℏ2𝛼𝛼
 Eliminating α from eq. (1) and (2)

𝑛𝑛2 =
4𝜇𝜇2𝑍𝑍2𝑒𝑒4

16𝜋𝜋2𝜀𝜀02ℏ4
× −

ℏ2

8𝜇𝜇𝐸𝐸

𝐸𝐸 = −
4𝜇𝜇𝑍𝑍2𝑒𝑒4 × 4𝜋𝜋2

𝑛𝑛2 4𝜋𝜋𝜀𝜀0 2ℎ2 × 8
= −

2𝜋𝜋2𝜇𝜇𝑍𝑍2𝑒𝑒4

𝑛𝑛2 4𝜋𝜋𝜀𝜀0 2ℎ2
 Nucleus mass of H atom 𝑚𝑚 ≫ 𝑚𝑚𝑒𝑒 leads 𝜇𝜇 → 𝑚𝑚𝑒𝑒

𝐸𝐸 = −
2𝜋𝜋2𝑚𝑚𝑒𝑒𝑍𝑍2𝑒𝑒4

𝑛𝑛2ℎ2 4𝜋𝜋𝜀𝜀0 2 = −
𝑚𝑚𝑒𝑒𝑍𝑍2𝑒𝑒4

2𝑛𝑛2ℏ2 4𝜋𝜋𝜀𝜀0 2 , 𝑛𝑛 = 1, 2, 3,⋯

 Eigenvalue of H atom in ground state (au)

𝐸𝐸 = −
𝑚𝑚𝑒𝑒𝑍𝑍2𝑒𝑒4

2𝑛𝑛2ℏ2 4𝜋𝜋𝜀𝜀0 2 = −
1 ⋅ 12 ⋅ 14

2 ⋅ 12 ⋅ 12 ⋅ 12
= −

1
2
𝐻𝐻𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒

(1) (2)
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Radial wavefunctions

 The radial wavefunction is written as

𝑅𝑅𝑛𝑛𝑙𝑙 𝜌𝜌 = 𝑁𝑁𝑛𝑛𝑙𝑙𝜌𝜌𝑙𝑙𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 𝜌𝜌 e−
𝜌𝜌
2

where, 𝑁𝑁𝑛𝑛𝑙𝑙 = −
𝜌𝜌
𝑟𝑟

3 𝑛𝑛 − 𝑙𝑙 − 1 !
2𝑛𝑛 𝑛𝑛 + 𝑙𝑙 ! 3 = −

2𝑍𝑍
𝑛𝑛𝑎𝑎0

3
2 𝑛𝑛 − 𝑙𝑙 − 1 !

2𝑛𝑛 𝑛𝑛 + 𝑙𝑙 ! 3

1
2

 In terms of 𝑟𝑟

𝑅𝑅𝑛𝑛𝑙𝑙
2𝑍𝑍𝑟𝑟
𝑛𝑛𝑎𝑎0

= 𝑁𝑁𝑛𝑛𝑙𝑙
2𝑍𝑍𝑟𝑟
𝑛𝑛𝑎𝑎0

𝑙𝑙

𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 2𝑍𝑍𝑟𝑟
𝑛𝑛𝑎𝑎0

e−
𝑍𝑍𝑟𝑟
𝑛𝑛𝑎𝑎0

where, 𝑁𝑁𝑛𝑛𝑙𝑙 = −
2𝑍𝑍
𝑛𝑛𝑎𝑎0

3
2 𝑛𝑛 − 𝑙𝑙 − 1 !

2𝑛𝑛 𝑛𝑛 + 𝑙𝑙 ! 3

1
2

𝑅𝑅𝑛𝑛𝑙𝑙
2𝑍𝑍𝑟𝑟
𝑛𝑛

= 𝑁𝑁𝑛𝑛𝑙𝑙
2𝑍𝑍𝑟𝑟
𝑛𝑛

𝑙𝑙

𝐿𝐿𝑛𝑛+𝑙𝑙2𝑙𝑙+1 2𝑍𝑍𝑟𝑟
𝑛𝑛

e−
𝑍𝑍𝑟𝑟
𝑛𝑛 (in au)
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Some examples of radial wavefunctions

 For 𝑛𝑛 = 1 and 𝑙𝑙 = 0

𝑅𝑅10 𝜌𝜌 = 𝑁𝑁10𝜌𝜌0𝐿𝐿11 𝜌𝜌 e−
𝜌𝜌
2

𝑁𝑁10 = −
2𝑍𝑍
𝑎𝑎0

3 1 − 0 − 1 !
2 × 1 1 + 0 ! 3 = −

2𝑍𝑍
𝑎𝑎0

3
2 0!

2 × 1! 3

1
2

= −2
𝑍𝑍
𝑎𝑎0

3
2

𝐿𝐿11 𝜌𝜌 =
𝑑𝑑
𝑑𝑑𝜌𝜌

𝑒𝑒𝜌𝜌
𝑑𝑑
𝑑𝑑𝜌𝜌

𝜌𝜌𝑒𝑒−𝜌𝜌 =
𝑑𝑑
𝑑𝑑𝜌𝜌

𝑒𝑒𝜌𝜌 1 − 𝜌𝜌 𝑒𝑒−𝜌𝜌 = −1

𝑒𝑒−
𝜌𝜌
2 = 𝑒𝑒−

1
2
2𝑍𝑍𝑟𝑟
𝑎𝑎0 = 𝑒𝑒−

𝑧𝑧𝑟𝑟
𝑎𝑎0

𝑅𝑅10(𝑟𝑟) = −2
𝑍𝑍
𝑎𝑎0

3
2
−1 𝑒𝑒−

𝑧𝑧𝑟𝑟
𝑎𝑎0 = 2

𝑍𝑍
𝑎𝑎0

3
2
𝑒𝑒−

𝑧𝑧𝑟𝑟
𝑎𝑎0

⇒ 𝑅𝑅10 𝑟𝑟 = 2 𝑍𝑍
3
2𝑒𝑒−𝑍𝑍𝑟𝑟 (in au)
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Some examples of radial wavefunctions
 For 𝑛𝑛 = 2 and 𝑙𝑙 = 0, 1

𝑅𝑅20 𝜌𝜌 = 𝑁𝑁20𝜌𝜌0𝐿𝐿21 𝜌𝜌 e−
𝜌𝜌
2

𝑁𝑁20 = −
2𝑍𝑍
2𝑎𝑎0

3 2 − 0 − 1 !
2 × 2 2 + 0 ! 3 = −

𝑍𝑍
𝑎𝑎0

3
2 1!

4 × 2! 3

1
2

= −
1

4 2
𝑍𝑍
𝑎𝑎0

3
2

𝐿𝐿21 𝜌𝜌 =
𝑑𝑑
𝑑𝑑𝜌𝜌

𝑒𝑒𝜌𝜌
𝑑𝑑2

𝑑𝑑𝜌𝜌2
𝜌𝜌2𝑒𝑒−𝜌𝜌 =

𝑑𝑑
𝑑𝑑𝜌𝜌

2 − 4𝜌𝜌 + 𝜌𝜌2 = 2𝜌𝜌 − 4 =
2𝑍𝑍𝑟𝑟
𝑎𝑎0

− 4

𝑒𝑒−
𝜌𝜌
2 = 𝑒𝑒−

1
2
2𝑍𝑍𝑟𝑟
2𝑎𝑎0 = 𝑒𝑒−

𝑧𝑧𝑟𝑟
2𝑎𝑎0

𝑅𝑅20(𝑟𝑟) = −
1

4 2
𝑍𝑍
𝑎𝑎0

3
2 2𝑍𝑍𝑟𝑟

𝑎𝑎0
− 4 𝑒𝑒−

𝑧𝑧𝑟𝑟
2𝑎𝑎0 =

1
2 2

𝑍𝑍
𝑎𝑎0

3
2

2 −
𝑍𝑍𝑟𝑟
𝑎𝑎0

𝑒𝑒−
𝑧𝑧𝑟𝑟
2𝑎𝑎0

⇒ 𝑅𝑅20 𝑟𝑟 =
1

2 2
𝑍𝑍

3
2 2 − 𝑍𝑍𝑟𝑟 𝑒𝑒−

𝑧𝑧𝑟𝑟
2 (in au)
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Some examples of radial wavefunctions

 For 𝑛𝑛 = 2 and 𝑙𝑙 = 0, 1

𝑅𝑅21 𝜌𝜌 = 𝑁𝑁21𝜌𝜌1𝐿𝐿33 𝜌𝜌 e−
𝜌𝜌
2

𝑁𝑁21 = −
2𝑍𝑍
2𝑎𝑎0

3 2 − 1 − 1 !
2 × 2 2 + 1 ! 3 = −

𝑍𝑍
𝑎𝑎0

3
2 0!

4 × 3! 3

1
2

= −
1

12 6
𝑍𝑍
𝑎𝑎0

3
2

𝐿𝐿33 𝜌𝜌 =
𝑑𝑑3

𝑑𝑑𝜌𝜌3
𝑒𝑒𝜌𝜌

𝑑𝑑3

𝑑𝑑𝜌𝜌3
𝜌𝜌3𝑒𝑒−𝜌𝜌 =

𝑑𝑑3

𝑑𝑑𝜌𝜌3
6 − 18𝜌𝜌 + 9𝜌𝜌2 − 𝜌𝜌3 = −6

𝑒𝑒−
𝜌𝜌
2 = 𝑒𝑒−

1
2
2𝑍𝑍𝑟𝑟
2𝑎𝑎0 = 𝑒𝑒−

𝑧𝑧𝑟𝑟
2𝑎𝑎0

𝑅𝑅21(𝑟𝑟) = −
1

12 6
𝑍𝑍
𝑎𝑎0

3
2 2𝑍𝑍𝑟𝑟

2𝑎𝑎0
−6 𝑒𝑒−

𝑧𝑧𝑟𝑟
2𝑎𝑎0 =

1
2 6

𝑍𝑍
𝑎𝑎0

5
2
𝑟𝑟𝑒𝑒−

𝑧𝑧𝑟𝑟
2𝑎𝑎0

⇒ 𝑅𝑅21(𝑟𝑟 =
1

2 6
𝑍𝑍

5
2𝑟𝑟𝑒𝑒−

𝑧𝑧𝑟𝑟
2 (in au)
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Complete wave functions or atomic orbitals of hydrogenic atoms

 It is product of 𝑟𝑟, 𝜃𝜃 and 𝜙𝜙 dependent wavefunctions

𝜓𝜓𝑛𝑛𝑙𝑙𝑚𝑚𝑙𝑙 𝑟𝑟,𝜃𝜃,𝜙𝜙 = 𝑅𝑅𝑛𝑛𝑙𝑙 𝑟𝑟 ⋅ 𝑃𝑃𝑙𝑙
𝑚𝑚𝑙𝑙 ⋅ Φ 𝜙𝜙 = 𝑅𝑅𝑛𝑛𝑙𝑙 𝑟𝑟 ⋅ 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙(𝜃𝜃,𝜙𝜙)

where 𝑛𝑛, 𝑙𝑙 and 𝑚𝑚𝑙𝑙 are the three quantum number used to 
characterize the wave function.

 For example, for 𝑛𝑛 = 1, 𝑙𝑙 = 0, 𝑚𝑚𝑙𝑙 = 0, the wave function is

𝜓𝜓100 = 2
𝑍𝑍
𝑎𝑎0

3
2

exp −
𝑍𝑍𝑟𝑟
𝑎𝑎0

1
2

1
2𝜋𝜋

=
1
𝜋𝜋

𝑍𝑍
𝑎𝑎0

3
2

exp −
𝑍𝑍𝑟𝑟
𝑎𝑎0

 In atomic unit, 𝑎𝑎0 = 1

𝜓𝜓100 =
1
𝜋𝜋
𝑍𝑍

3
2 exp −𝑍𝑍𝑟𝑟

 For hydrogen atom, 𝑍𝑍 = 1

𝜓𝜓100 =
1
𝜋𝜋

exp −𝑟𝑟
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Complete wave functions or atomic orbitals of hydrogenic atoms

 The wave functions for hydrogenic atoms are also called atomic 
orbitals.

 Prior to the development of quantum mechanics, the atomic orbitals 
are denoted as 𝑠𝑠,𝑝𝑝, 𝑑𝑑,𝑓𝑓,⋯ for 𝑙𝑙 = 0, 1, 2, 3,⋯ respectively. The 
letters being preceded by numbers representing principle quantum 
numbers. Thus we have 1𝑠𝑠, 2𝑠𝑠, 2𝑝𝑝 atomic orbitals corresponding to 
(𝑛𝑛 = 1, 𝑙𝑙 = 0), (𝑛𝑛 = 2, 𝑙𝑙 = 0), (𝑛𝑛 = 2, 𝑙𝑙 = 1) respectively 

 Since the energy of hydrogenic atoms depends only on 𝑛𝑛 and 
independent of 𝑙𝑙 and 𝑚𝑚𝑙𝑙, orbitals having same 𝑛𝑛 and different 𝑙𝑙 and 
𝑚𝑚𝑙𝑙 are degenerate. Thus we have the following hierarchy of energy 
states of hydrogenic atoms:

1𝑠𝑠 < 2𝑠𝑠, 2𝑝𝑝 < 3𝑠𝑠,3𝑝𝑝, 3𝑑𝑑 ,⋯

 Wherein the degenerate states are bracketed. To specify magnetic 
quantum numbers, we may add the subscripts as follows:

1𝑠𝑠0 < 2𝑠𝑠0, 2𝑝𝑝+1, 2𝑝𝑝0 , 2𝑝𝑝−1 < ⋯
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Significance of the quantum numbers 𝒏𝒏, 𝒍𝒍 and 𝒎𝒎𝒍𝒍

 State of an electron can be represented by 𝜓𝜓 from which the
following three important quantities can be extracted:

𝐸𝐸 = −
1

2𝑛𝑛2

𝐿𝐿 = 𝑙𝑙(𝑙𝑙 + 1)ℏ
𝐿𝐿𝑧𝑧 = 𝑚𝑚𝑙𝑙ℏ

where 𝑛𝑛 is principal quantum number

𝑙𝑙 is angular momentum (azimuthal) quantum number

𝑚𝑚𝑙𝑙 is magnetic quantum number

 With increase in 𝑛𝑛, 𝐸𝐸 increases. Thus, 𝑛𝑛 is related to size of atom
which increases with increase in 𝑛𝑛.

 𝑙𝑙 determines the angular momentum of electron. Since the angular
momentum vector always points an electron with respect to
nucleus . Thus, 𝑙𝑙 describes the orientation of electron in atom.
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Significance of the quantum numbers 𝒏𝒏, 𝒍𝒍 and 𝒎𝒎𝒍𝒍

 𝑚𝑚𝑙𝑙 arises from the fact that when H atom is placed in a magnetic
field, the degenerate states split up into 2𝑙𝑙 + 1 different states,
each state is characterized by its 𝑚𝑚𝑙𝑙 value (Zeeman effect)

 The electron rotating round the nucleus has also magnetic moment
(𝜇𝜇) vector colinear with the vector 𝐿𝐿 and is proportional to it.

𝜇𝜇 = −𝛽𝛽𝐿𝐿 where 𝛽𝛽 is called Borh magneton
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Significance of the quantum numbers 𝒏𝒏, 𝒍𝒍 and 𝒎𝒎𝒍𝒍

1.Principal quantum number (n): The principal quantum number explains about 
the size and energy of shells (or) orbitals.
As “n” increases, the orbitals become larger and the electrons in those orbitals are 
farther from the nucleus.
It take values 1, 2, 3, 4 for that the shells are represented by letters K, L, M, N.
2.Orbital quantum number (l) : It defines the shape of the orbital occupied by the 
electron and the orbital angular momentum of the electron is in motion. So it is 
also called as Angular momentum quantum number.
l has integer values between 0 to n - 1 for these values the orbitals are designated 
by letters s, p, d, f, etc.
l also governs the degree with which the electron is attached to nucleus. The 
larger the value of l, smaller is the bond with which it is maintained with the 
nucleus.
3.Magnetic orbital quantum number : The orientation of orbital with external 
magnetic field determines magnetic orbital quantum number.
m; has integer values between -1 and l including zero. The number of values for 
m are 2l + 1, which give the number of orbitals per sub-shell.
The maximum number of electrons in orbitals in the sub-shell is 2(2l + 1).
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Significance of the quantum numbers 𝒏𝒏, 𝒍𝒍 and 𝒎𝒎𝒍𝒍

The principal quantum number, nn, describes the energy of an electron and the most probable distance of the electron 
from the nucleus. In other words, it refers to the size of the orbital and the energy level an electron is placed in.
The principal quantum number, nn, designates the principal electron shell. Because n describes the most probable 
distance of the electrons from the nucleus, the larger the number n is, the farther the electron is from the 
nucleus, the larger the size of the orbital, and the larger the atom is.
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Graphical representations of radial wavefunctions
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Graphical representations of radial wavefunctions
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Probability density
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 The plot show that electron density is maximum at 𝑟𝑟 = 0 in case of 𝑙𝑙 = 0
and decays exponentially.

 It contradicts to Bohr atomic structure. Since 𝜓𝜓2 is the probability per 
volume and not actual probability of finding electron as a point.
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Probabilities and the radial distribution function

 A radial distribution function, 𝑃𝑃(𝑟𝑟) is obtained by integrating 
𝜓𝜓2𝑑𝑑𝑑𝑑 over all angles 𝜃𝜃 and 𝜙𝜙 but not over 𝑟𝑟.

𝑃𝑃 𝑟𝑟 𝑑𝑑𝑟𝑟 = �
0

𝜋𝜋
�
0

2𝜋𝜋
𝜓𝜓 𝑟𝑟, 𝜃𝜃,𝜙𝜙 2𝑟𝑟2𝑑𝑑𝑟𝑟𝑠𝑠𝑑𝑑𝑛𝑛 𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙

= 𝑅𝑅𝑛𝑛𝑙𝑙2 𝑟𝑟 𝑟𝑟2𝑑𝑑𝑟𝑟�
0

𝜋𝜋
�
0

2𝜋𝜋
𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙

2
𝑠𝑠𝑑𝑑𝑛𝑛 𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙

= 𝑅𝑅𝑛𝑛𝑙𝑙2 𝑟𝑟 𝑟𝑟2𝑑𝑑𝑟𝑟 [Since 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙 𝜃𝜃,𝜙𝜙 is normalized]
⇒ 𝑃𝑃 𝑟𝑟 = 𝑅𝑅𝑛𝑛𝑙𝑙2 𝑟𝑟 𝑟𝑟2 Radial probability density

 It gives the probability of finding electron at distance 𝑟𝑟 from 
the nucleus.
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Probabilities and the radial distribution function
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Probabilities and the radial distribution function
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Points of maximum probability
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Points of maximum probability
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Points of maximum probability
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Average distance of the electron from nucleus
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Probabilities and the radial distribution function
 The probability of finding an electron in a volume element 𝑑𝑑𝑑𝑑 =

r2sin𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙𝑑𝑑𝑟𝑟 at a point specified by the spherical polar
coordinates (𝑟𝑟, 𝜃𝜃,𝜙𝜙) when the state of the electron is described
by the wavefunction 𝜓𝜓𝑛𝑛𝑙𝑙𝑚𝑚𝑙𝑙 is given by

𝜓𝜓𝑛𝑛𝑙𝑙𝑚𝑚𝑙𝑙

2
𝑑𝑑𝑑𝑑

 Although the wavefunction gives the probability of finding an
electron at a specified location, it is sometimes more helpful to
know the probability of finding the particle at a given radius
regardless of the direction. This probability is obtained by
integration over the volume contained between two concentric
spheres of radii 𝑟𝑟 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟

The radial distribution function gives the probability 
that an electron will be found anywhere between two 
concentric spheres with radii that differ by dr.
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Presentation of Atomic orbitals 



52

HYDROGEN ATOM
Presentation of Atomic orbitals 



53

HYDROGEN ATOM
Presentation of Atomic orbitals 



54

HYDROGEN ATOM
Presentation of Atomic orbitals 



55

HYDROGEN ATOM
Presentation of Atomic orbitals 



56

HYDROGEN ATOM
Presentation of Atomic orbitals 



57

HYDROGEN ATOM
Presentation of Atomic orbitals 



58

HYDROGEN ATOM
Presentation of Atomic orbitals 



59

HYDROGEN ATOM
Presentation of Atomic orbitals 



60

HYDROGEN ATOM
Presentation of Atomic orbitals 



61

HYDROGEN ATOM
Presentation of Atomic orbitals 



62

HYDROGEN ATOM
Presentation of Atomic orbitals 



63

HYDROGEN ATOM
Angular probability functions
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Angular probability functions
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Angular probability functions
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