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APPROXIMATION METHODS
✓ For hydrogenic atoms (one-electron), SE can be solved after 

lengthy mathematical manipulation. The difficulties arise due to 

single potential term, −
𝑍

𝑟
in SE.

✓ Now let 𝑛 electrons are in an atom, then SE can be written as
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𝜓 = 𝐸𝜓 (in au)

where, 2nd terms in first bracket are potential due to electron-
nucleus attractions (𝑛 number) and 3rd terms in first bracket due 
to electron-electron repulsions (nC2 number).

✓ The enormous electron-nucleus and electron-electron potential 
terms make SE more complicated.

✓ The exact solutions of SE is rather impossible because of many 
potentials terms.

✓ To get approximate eigenfunctions and eigenvalues, approximation 
methods are applied to solve SE.
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Correction to Energy and wavefunction

✓ Multiplying both sides of (8-51) by 𝜓𝑛
0 and integration results

න𝜓𝑛
0 ෡𝐻0𝜓𝑛

(1)
𝑑𝜏 − 𝐸𝑛

0න𝜓𝑛
0𝜓𝑛

(1)
𝑑𝜏 = −න𝜓𝑛

0 ෡𝐻′𝜓𝑛
0𝑑𝜏 + 𝐸𝑛

(1)
න𝜓𝑛

0𝜓𝑛
0𝑑𝜏

✓ Hermitian property of ෡𝐻0 𝜓𝑛׬
0 ෡𝐻0𝜓𝑛

(1)
𝑑𝜏 = 𝜓𝑛׬

(1) ෡𝐻0𝜓𝑛
0𝑑𝜏 = 𝐸𝑛

0 𝜓𝑛׬
0𝜓𝑛

(1)
𝑑𝜏

reduces (8-53) to

𝐸𝑛
0න𝜓𝑛

0𝜓𝑛
(1)
𝑑𝜏 − 𝐸𝑛

0න𝜓𝑛
0𝜓𝑛

(1)
𝑑𝜏

0

= −න𝜓𝑚
0 ෡𝐻′𝜓𝑛

0𝑑𝜏 + 𝐸𝑛
(1)
න𝜓𝑛

0𝜓𝑛
0𝑑𝜏

1

⟹ 0 = −න𝜓𝑚
0 ෡𝐻′𝜓𝑛

0𝑑𝜏 + 𝐸𝑛
(1)

⇒ 𝐸𝑛
1
= න𝜓𝑛

0 ෡𝐻′𝜓𝑛
0𝑑𝜏 = 𝐻′𝑛𝑛

𝐸𝑛
1 = 𝐻′𝑛𝑛

(8-53)

(8-54)
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Correction to wavefunction
✓ Multiplying both sides of (8-51) by 𝜓𝑚

0 and integration results

න𝜓𝑚
0 ෡𝐻0𝜓𝑛

(1)
𝑑𝜏 − 𝐸𝑛

0න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 = −න𝜓𝑚

0 ෡𝐻′𝜓𝑛
0𝑑𝜏 + 𝐸𝑛

(1)
න𝜓𝑚

0 𝜓𝑛
0𝑑𝜏

✓ Hermitian property of ෡𝐻0 𝜓𝑚׬
0 ෡𝐻0𝜓𝑛

(1)
𝑑𝜏 = 𝜓𝑛׬

(1) ෡𝐻0𝜓𝑚
0 𝑑𝜏 = 𝐸𝑚

0 𝜓𝑚׬
0 𝜓𝑛

(1)
𝑑𝜏

reduces (8-55) to

𝐸𝑚
0 න𝜓𝑚

0 𝜓𝑛
(1)
𝑑𝜏 − 𝐸𝑛

0න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 = −න𝜓𝑚

0 ෡𝐻′𝜓𝑛
0𝑑𝜏 + 𝐸𝑛

(1)
න𝜓𝑚

0 𝜓𝑛
0𝑑𝜏

⟹ 𝐸𝑚
0 − 𝐸𝑛

0 න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 = −න𝜓𝑚

0 ෡𝐻′𝜓𝑛
0𝑑𝜏 + 𝐸𝑛

(1)
න𝜓𝑚

0 𝜓𝑛
0𝑑𝜏

0

⟹ 𝐸𝑚
0 − 𝐸𝑛

0 න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 = −න𝜓𝑚

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

⟹ න𝜓𝑚
0 𝜓𝑛

1 𝑑𝜏 =
𝜓𝑚׬

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0 − 𝐸𝑚

0

(8-55)

(8-56)
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Correction to Energy and wavefunction

✓ Now 𝜓𝑛
(1)

can be evaluated through linear combination of unperturbed wavefunctions 

of different states,

𝜓𝑛
(1)

= 𝑎1𝑛𝜓1
0 + 𝑎2𝑛𝜓2

0 +⋯+ 𝑎𝑛𝑛𝜓𝑛
0 +⋯+ 𝑎𝑚𝑛𝜓𝑚

0

Multiplying both sides of (8-57) by 𝜓𝑚
0 and integration give 

න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 = 𝑎1𝑛න𝜓𝑚

0 𝜓1
0𝑑𝜏

0

+ 𝑎2𝑛න𝜓𝑚
0 𝜓2

0𝑑𝜏

0

+⋯+ 𝑎𝑚𝑛න𝜓𝑚
0 𝜓𝑚

0 𝑑𝜏

1

𝑎𝑚𝑛 = න𝜓𝑚
0 𝜓𝑛

(1)
𝑑𝜏 =

𝜓𝑚׬
0 ෡𝐻′𝜓𝑛

0𝑑𝜏

𝐸𝑛
0 − 𝐸𝑚

0

Similarly 

𝑎1𝑛 =
׬ 𝜓1

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0−𝐸1

0 ,  𝑎2𝑛 =
׬ 𝜓2

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0−𝐸2

0 , 𝑎3𝑛 =
׬ 𝜓3

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0−𝐸3

0 , ⋯ 𝑎𝑛𝑛 =?

(8-57)
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Correction to Energy and wavefunction

✓ Now 𝜓𝑛
(1)

=?

𝜓𝑛
(1)

=ต𝑎1𝑛
?

𝜓1
0 +ต𝑎2𝑛

?

𝜓2
0 +⋯+ต𝑎𝑛𝑛

?

𝜓𝑛
0 +⋯+ถ𝑎𝑚𝑛

?

𝜓𝑚
0

𝑎1𝑛 =
׬ 𝜓1

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0−𝐸1

0

𝑎2𝑛 =
׬ 𝜓2

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0−𝐸2

0

⋯

𝑎𝑛𝑛 =?

𝑎𝑚𝑛 =
𝜓𝑚׬

0 ෡𝐻′𝜓𝑛
0𝑑𝜏

𝐸𝑛
0 − 𝐸𝑚

0

(8-53)

(8-54)
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x

V=eFL

V=0
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