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For hydrogenic atoms (one-electron), SE can be solved after
lengthy mathematical manipulation. The difficulties arise due to

single potential term, —= in SE.

Now let n electrons are in an atom, then SE can be written as

n n n-1 n
_lzvg_EEJrE Z 2lyoEp Gnaw
2i:1 izlri rij

i=1 j=i+1

where, 2" terms in first bracket are potential due to electron-
hucleus attractions (n number) and 3 terms in first bracket due
to electron-electron repulsions ("C, number)

The enormous electron-nucleus and electron-electron potential
terms make SE more complicated.

The exact solutions of SE is rather impossible because of many
potentials terms.

To get approximate eigenfunctions and eigenvalues, approximation
methods are applied to solve SE.



- KN

e
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There are several methods of finding approximate solutions; the most popular
are: (A) method of vanation, (B) method of perturbation.
(A) METHOD OF VARIATION

In this method a suitable trial function is chosen and is assumed to be the solution
of the Schrodinger equation. Using this function, the expectation value of encrgy
of the system in question is calculated by postulate 11 of quantum mechanics (given
in Chapter 3). The principle of variation says that with any trial function y the
expectation value of energy E will be greater than the true value Ey, which is the
lowest energy eigenvalue of the Hamiltonion of the system i.e.,

E2E, (8-1)

The proof for this is based on the following two ideas:

(1) Even if the wave function ¥ is not an cigenfunction of the Schrodinger

equation. it can be expressed as a lincar combination of a set of normalised
and orthogonal eigenfunctions ¢, 9,, 93, ..., of the same system with eigen-

values E |, E,, E;, ..., respectively; that is,
V=a;0,+ay 0, +a10,+ ... (8-2)
and He=E ¢, i=1,2,3,... (8-3)
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Values of the coefficients a, a,, ay, ... are so chosen that the function is
normalised. This means that

[wWidi=[la,0,+a,6,+.. P dr=1 (8-4)

or Pafjofduagjédtﬂzgjédt-&...]

+[aya; [ 0,0yt 44,4, [ o10ydn+

...... +a;ay I ”’34‘!+]= 1, (8-5)
or af+a§+a§+...=l (8-6)

since the §; s are all normalised and orthogonal.
The energy associated with the linear combination function of the type (8-2)
is the weighted average (E) of the energy cigenvalues of (8-3). E is
calculated by formula (8-7).
= I v Hydt
E= A
v

(8-7)



- ——K

e ——a

APPROXIMATION METHODS

For example, suppose
V=a,0 +a 0 (8-8)
where a; and a, are the coefficients introduced to normalise the y func-
tion. Then,
I("l‘l*"zh)”(al h+ad)dt
T("l 6 +ay 6y dr

I"Zh”%‘“‘"I"%‘z”‘zd”j“laz%”ﬁ**!az"l%’“l‘*
razﬁdﬂfaz‘zdfqzalaz‘ﬂzd‘

* (v being real)

(8-9)
Since ¢; and ¢, are normalised and orthogonal eigenfunctions of H.

Hoy=E ¢ and Hoy=E, 0,
[otde=[ e3dr=1and | 6, 0,dt=0

Also, ]v,flcpzdi=j¢,5¢2t=£‘lcp|q>zt=o
Equation (8-9) becomes,
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2 2
- ME +a5E
E.l | vYay £y

. af +a§

=a} Ey+a3 Ey in view of (8- 6) (8-10)

If E; be the lowest energy then it is easy to show that E will be always greater
than E,,

E-Eoz(af E, +a§ Ez)-(afi-a%)Eo

=a} (E, - Ep) + a3 (E, - Ey) (8-11)
Since E; is the lowest energy of the system, E, > E, and E, > E;,, while

af and a% are always positive; hence E- E, is always positive, or E> Ey
E could utmost be equal to Ey; in that case, each term in the numerator must

vanish. This would mean that for each term eid)eta,z. and hence a;, would be zero
or E;=Eg(i=1 or 2). This in turn would mean that the only eigenfunction
appearing in (8-8) would be that whose eigenvalue is E,. In other words, y would
be an exact eigenfunction with eigenvalue £,

The physical significance of (8-10) may be shown as follows. If the energy
of the system is measured at any instant, it will be either of the two eigenvalues

E, and E, with the probabilities af and a%. respectively, and the weighted
average E will be given by equation (8-10).
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Thus, in order to apply the variation method, the following steps have to be
taken:

(/)  Make a reasonable guess of a series of trial functions (on the basis of some
physical and/or chemical consideration); the function must be well-behaved.

(¢1) Calculate E in each case.

(iif) The value of E will always be greater than that of E, Pick up the lowest
value that would be closest to the true value £, The trial function cor-
responding 1o that value of E will be the best function.

Consider, for example, the wave function for particle in a box system. The
true ground state wave function (y,) and energy (Ey) are known o us; however,

let us assume that we do not know these and proceed to devise a trial function.
For a one-dimensional box of length L, a reasonable guess would be
y=Nx(L-x) (8-12)

as it is finite, continuous and single-valued for all values of x and is zero for
x=0 and x = L; N is the normalisation factor. Then we calculate the energy,
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L ~
2 Nx(L-x) -—hz—ile(L-x)]dx
E= = (8-13)
[ Va L
4 N 2 (L-x)* dx
0
L
W f
x(L-x)dx
4:2m 0
=1
[ 2 -20x+ P de
0
¥ P
am 6 s W
= = =0.|2“5 e 8‘14,
L anmi? (mz.’ (
30
The true ground state energy E is known to us to be,
2 2
5--1-2--0.&5(-'1-5) (8-15)
Sml. ml

The calculated energy E (8-14) given by the trial function (8-14) is greater
than the true energy E (8-15) by 1.3%.
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In real problems, however, the exact energy may not be known. All that the
vanation calculation would say is that the exact value is lower than the calculated
value, The usual practice is (i) to choose a trial function containing one or more

varable parameters a, B, etc., then (ii) to calculate the energy E, which will turn
out 10 be a function of a, B, etc.. and (iii) finally to minimise the E with respect
to these parameters, 1.¢., to set the differential coefficients
0E _0E_ _
ol Sl
Linear and Non-Linear Variation Functions

If the trial function contains the variable paramters o, B ... as such, it is linear.
eg.

0. (8-16)

y=ad, +Bo+ ... (8-17)

If, on the other hand, the vanable parameters appear as o’

sin o, elc., the function is non-linear.

or exp (—==) or
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Linear Variation Function

In chemical problems linear variation functions are more common. A trial function
of the type,

y=a, 9 +ta® (8-26)
in which ¢, and ¢, are the eigenfunctions, also called basis functions, and a; and

a; are the variable parameters, also called the mixing coefficients, is a linear
variation function. With such a function, it is required to find out the values of a,

and @, that would minimise E so that (8-26) would turn out to be the best
approximation to the exact wave function .

Following the same procedure of variation, we get
- I(alh"'oz’:)i’(al ¢ +ay @) dt
E= r 3
(a, ¢|+02 ‘3_) dt

where y is assumed to be real. On expanding, the equation (8-27) will assume the
form,

(8-27)
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E G%H" +a§l~ln+20. azﬂn

2 -~ (8‘28)
ay Sy +a3 Sy +2a a, 5,

where Hy=| & o du, ty= [ 0, /10,dt

Hy,= I &) H o dt, Hy = I ‘2;’%‘“
[becauscfl i1s Hermitian)

Sn= I ¢ 9, dt, 5= I & &, dt

and Si= ] 01 0pdt. 53= [ 010, 4
For the minimisation of E, it is necessary that
dE _JE
oy = - =0 (8-29)

Using N and D for the numerator and denominator respectively, in (8-28),
we get

E == ND" (8-30)

Cl=
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Differenuating (8-30) with respect to a; and a-> and using (8-29), we get
dE _(ON 9D N

IE _ o
da, " | da, ~3a; D |D
OE (AN 9D N1
day ~ | Baz ~ da; n)o“’ gl

Since | /D cannot be uro( as that wou!d make D ie., I V2 dt infinite )

N ADN _
oN oD N
and —=0 (8-32)
da, aazD
IN '
aa.'zan“'u‘*zdz”nz-
AN ’
=2a, H»+ 2a, H
aaz ] 12 2 22J
D py Sy +2a2 S
da, 1 S +2a3 8,2
9D _ 26, Sy3 + 207 Sy (8-33)

day
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Substituting the set (8-33) in (8-32), we obtain a set of two homogeneous
linear algebraic equations, which are also called secular equations,

ay (Hyy - ESyy) +ay (Hy3 - ES)3) =0
ay (Hyy - ESy)) + ay (Hy ~ ESy) =0 (8-34)

The secular equations (8-34) have nontrivial solution (i.e., when the coeffi-
cients a; and a; are not zero) only if the determinant of the coefficients of a; and

a, Is zero i.e.,
Hy - ES Hy; - ES);

- " =0
Hy\ - ESy, Hy ~ ESy
Such a determinant is called secular determinant. Being a determinantal

equation of second order, (8-35) will have two roots for E’. viz., E; and E,. The

lower of the two values will be the minimum energy corresponding to the trial
function (8-26).

(8-35)
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Toobtain the coefficientsa; and a,, the values of E, as well as the integrals
H\y Hy, Hya, 511,82 and §j; have to be substituted in (8-34). However, these
substitutions will lead to only relative values, i.c., @; in terms of a; or vice versa.
The absolute values may then be obtained from the condition of normalisation, i.e.,

I(an 0 +a0y)’ dt=aj I o] dt +a3 I 03 dt

+2a,a | 0 6y dt=1 (8-36)
A linear variation function may consist of several basis eigenfunctions. For
the general case,
V=a,0,+a 0 +...4+a,9, (8-37)
the variation integral (8-7), and the principle of minimisation of E, i.c.,
E 9 OF

=)

da; day " da,
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= —a

will lead to a set of n secular equations,
ay(Hy -ESy) +ay(Hyy-ESyp) + ... +a, (Hy, - ESy,) =0
ay (H,, - ESy) +ay) Hyy — ES,p) + ... + a, (H,y — ES,,) =0  (8-38)
and so on and the secular determinant of n™ order,
Hy, - ESy, Hyy - ES)y ... Hy, - ES,,

Hyy - ESy, Hyy - ESy, ... Hy, - ES,,
...................................................................... =() (8-39)

......................................................................

Equation (8-39) will have n roots of E, viz., E,, Ey, Ej ... E,,.

Specific examples of linear variation function will be found in connection
with theories of chemical bonding in later chapters.
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(B) METHOD OF PERTURBATION
Perturbation method is applied if the system differs only slightly from the unper-
turbed one and if the energy (E;) and the wave function (yg) for the unperturbed

state are known. For example, a simple harmonic oscillator is an unperturbed
system whose Hamiltonian is known to be,

- T
H=-81rzmda*2'..5“2

On the other hand, an anharmonic oscillator is a perturbed system. If the
Hamiltonian for the latter be

h.-S:; £+%kz2+a?+bx‘

then, provideda and b are small, the term (ax’ + bx*) constitutes a small pertur-
bation (H’ say). The wave functions and the energies for the former are known (see
Chapter 5), Similarly, a normal hydrogen atom is an unperturbed system for which
the Hy, Yo and E; are known for each state (see Chapter 7). When placed in an

electric or magnetic field, the interaction of the electron with the field causes
perturbation.
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The perturbation theory, therefore, involves determination of the eigen
functions (y,) and eigenvalues (E,) of the perturbed Hamiltonian H in terms of

those (w2 and E2) of the unperturbed Hamiltonian #°. The perturbed Hamiltonian

is given by

H= ”o +\H (8’40)
where AH’ is very small. It is not always possible to identify A with a physical
quantity.

[Exercise : Write the Hamiltonian for a helium atom and identify the
perturbation term, if any.
0’1_.‘3_.‘3 .52_

Y
Be n’
8 n n n

‘

ry and ry are the distances of the electrons | aMmenuthcnmlcus.lH’-—

r»
where ry5 is the inter-electronic distance.
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The Perturbation Theory
The method is to calculate the correction terms for the eigenfunctions and eigen-

values and add them up to those for the unperturbed system. Expressions for the
correction terms are derived as follows:

The Schrodinger equations for the unperturbed and perturt.- systems are

wrilten as

H ) = E) ) (8-41)
and y,=E,v, (8-42)
or H +0 i)y, =E,v, (8-43)

where the subscript n denotes the state of the system. As # depends on A, both
v, and E, will depend on A. So, as a first step, we expand these functions as

Taylor series assuming that A e H

Vo=va+ Ayl 2yl (8-44)
E,=E)+ EV+ 22 E2 4 (8-45)
where w and E are the K" order correction terms to the ¢! and E°.

respectively.
In most of the chemistry problems, one has not to go beyond the terms !>’
and L‘,,z’.
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Substituting (8-44) and (8-45) in (8-43), we gt
H Ay W+ a4 2y D4 )
=(EQ+AEV+ B+ o)+ + 2P ) (8448
On rearranging the terms in (8-48) according to powers of A, we get
(O - EN) + A + 1 ) - By i - BV i)
+12(I?I°vf,2)+;l’vf," aﬁwﬁ,"-s‘,,"v:‘"-e‘,,”v;',‘)so (8-49)
The equation holds if the coefficien of each power of A 1s zero individually,

for 20 1 V= Ef.’v? (8-50)
for A H -y =+ BV D (8-51)
for 32 (- EQ P = " 4+ M V) 4 ED O (8-52)

and so on for A, A%, ...

The equation (8-50) is the Schrodinger equation for the unperturbed system
whose solutions are supposed to be known. Equations (8-51) and (8-52) provide

first order and second order corrections to the unperturbed wave function v2 and
energy 52 These correction terms are obtained as follows :
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Correction to Energy and wavefunction
v" Multiplying both sides of (8-51) by ¥2 and integration results

| waaowPar - 5 [ wiwPdr = - [wpiryddr + B [ wpar (8-53)

v" Hermitian property of H° [f YA Mar = [P A%Ydr = EO fl/)nl/)(l)d‘[]

reduces (8-53) to

52 [ Ve = 52 [ ptwVde = - [ wh A+ B [ wtydr

0 1
- 0 ij’,/,0 (1) (1) _ 07377.1.0 g1
= 0= l/)mH Il)ndT + En = En - l/)nH wndT =H nn

EV =H,, (8-54)
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Correction to wavefunction
v' Multiplying both sides of (8-51) by ¥, and integration results

[wsaouOac - 5 [ whpPdr = - [waiygar+ BD [wtutar  (8-55)

v" Hermitian property of H° [f Yo AW Var = [P AL dr = EY, fl/)ml/J(l)dT]
reduces (8-55) to

B [ wswPdr - B9 [ whVde = - [wh At + B [ whddr

— (8%~ 5D | Wi Ve = = [ whAyddr + B [ wsutar

0

— (B9, — E?) j Yo Odr = j YO AYOdr

f'wbmH l/),?d‘[ -
FT— S (8-56)

= j wmlp(l)d
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Correction to Energy and wavefunction

v" Now lp,(ll)can be evaluated through linear combination of unperturbed wavefunctions

of different states,

1
7(1 ) = alnlpg + a2nl/)(2) + e+ annlpg + et amnl/)gl

Multiplying both sides of (8-57) by ¥), and integration give

f WouPdr = ay, f YOUOdT + f YOUYSAT + + + j YL dr

0 0 1
JpH Y dT
Amn = '[l/)gllpr(ll)dl- - Tg :)l
Similarly
[ y3A"YYar [ y9A"YYar _ [y3A"YSadr

B D B =) B =) B

(8-57)
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Correction to Energy and wavefunction

D _,

v" Now n
(1) _ 0 0 0 0
n — Ain Y1 +ap Py +tan Pn+ o+ amn Ym (8-53)
— ) — ——
? ? ? ?
e = [YIH Prdz (8-54)
1y =
" (E5-E?)
- [ Y28 YPpdr
o =
" (Ep—-EJ)
Ay =7

_JunAdr
(B — ER)
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As an example of the applicability of the perturbation theory let us consider
an clectron in a one-dimensional box of length L to which a uniform clectric ficld
of strength F is being applied. In the absence of the field, the Hamiltonian (H,).

the wave functions (vg) and the energies (unperturbed) are known to be,

A W &
Hog-Btzmd(z

0-‘\,— sin X
V“ L L

nz hz
gmL>

El=

The electric field perturbs the system and the electron now experiences a
force equal to eF. Suppose the potential energy, V = eF x, rises continuously as
we move along the box, i.e, from V=0 atx=0 to V=eFL atx=L (Fig. 8.1);
then the perturbed Hamiltonian is

H=H + I,

2
L —— 4 eFx

.-BXZdez




-
APPROXIMATION METHODS

LB

h
et
Bml~®
r V=eFL
-E‘]I}l J' wli"frv?dt q;eQHL =
f]
L
=% £ [sin%{rﬁ}iin%]dx =0 N
ZFL nx
L . 3 KL
= L i:sm Ld.t
(1) 2eFL X _eFL
B="3 4"
2
E,=El+EM =12 2+“"‘F*""
8mL* 2
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Correction to the wave function
Correction lﬂ” to the ground state wave function th} is calculated as follows:

Using (8.61), we get
-z R
fWirvae . [Vira , | vifrvia
[ BR Bt e g Mt g Wt

First term within the brackets in the above equation is,

L
2eF [ . 2mx

r 2nx 48 T
R ) R )
8ml? §ml}

v =||ln+04![rFL}[":’1 ]y!}.
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First Order Perturbation for Degenerate States
The foregoing considerations are not enough to be applicable if the concerned

energy level Eﬁ is degenerate. Here we have more than one eigenfunction vﬂ..

w5, ... and one does not know to which one the perturbed wavefunction y, will
approximate when the perturbation vanishes except that it will approximate to some
arbitrary lincar combination xg.

O=a, ¥ +a,yls+ ... (8-62)
where ay, @y, ... are the arbitrarily chosen mixing coefficients. Hence our problem
is : given the operator H=H+)H, find the eigenvalues £ and eigenfunctions
V¥ in the equation

(H +1H)y=Ey (8-63)
correct to the first order.
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It is convenient to take a simple case of 2-fold degenerate level Eﬂ with
VE. and ‘I'Ez as the two eigenfunctions in the unperturbed state. Both are orthogonal

to all other eigenfunctions \pﬂ but not necessarily orthogonal to each other. Ax
before, we expand

E,=Eb+hE) + .. (8-64)
w,=n+ Ayt + (8-65)
As the perturbation A H’ becomes smaller and smaller, E, — E, while y,

— ﬂ The first thing, therefore, is to determine ﬂ which is the correct **zero order
wavefunction”".

On substituting (8-64) and (8-65) into (B-63) and equating the coefficients
of like powers of A, we have, after suitable rearrangements, the first order equation

W - B ! = B - B o (-66)

The function yf,” can be expanded in terms of all the orthonormal eigen-
functions V? of the system

vi'= 3 v (8-67)

J
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On substituting (8-64) and (8-65) into (8-63) and equating the coefficients
of like powers of A, we have, after suitable rearrangements, the first order equation

fﬂv}.”-l;fvﬂ"-&""xg-ffxg (8-66)

The function vf," can be expanded in terms of all the orthonormal eigen-
functions vf of the system

vi'=Y oV (8-67)
so that :
Hw) =3 v)=3 B o8
Further, we have j ,
X =@y Wy + a3 Wiy (8-69)

Substituting (8-67), (8-68) and (8-69) into (8-66),
Y ¢ V?(Ef°£2)=£‘u” (a) Wiy + a3 Voa)-if(ﬂl Vi + a3 Wa) (8-70)

J
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In (8-70), the summation on the left hand side involves all the eigenfunctions
y| of the unperturbed system while the terms on the right involves only the

functions vﬂ, belonging to the degenerate level E2 Multiplying both sides of the
equation by vg, (i=1,2) and integrating over the space,

Y Y -EY [ Wl de=[ WO ED (@, vl +ay v e

- J it @ Wi +a Wi s 871)

The left hand side of (8-71) is always zero because for j# n (n) or ny),
I vg,- v?dtso due to orthogonality and for j = n, sj’-£2.

Now, let

Sc‘l= I nggl‘“- So - I Vg"gzd‘-
Hy'= [ Wiy e, Hy' = | vy byl ae
The equation (8-71) may thus be written, on rearrangement, as
ay (Hy' - B 5;) +ay (Hp' - E} Sp) =0 (8-72)



e — Kl

- APPROXIMATION METHODS

If the encrgy level E:,' of the unperturbed system were k-fold degenerate
there would be & such equations. These are called *‘secular equations””.

Nontrivial solution of (8-73) is possible only if the determinant of the
cocflicients of @, and a, is equal to zero,

Hy' -ED Sy Hy -EV sy,
0 3 =() (8-74)
Hy'-E,)" Sy Hy' -E. Sy

This, on expanding, gives a 2nd degree polynomial yielding two roots of
EV viz E') andE'Y. Inother words, the originally doubly degencrate energy
level EY is split into two levels Ep + E'\)  and E2+ ELY  due to perturbation.

In case of k-fold degencracy there will be k X k& determinant yielding a kth
degree polynomial and hence k values of Ef,' ) e . E f,'.’. Ef"z). - . w.

We started with the premise that the original eigenfunctions Vf,’ s v‘,},.

W?.a belonging to the k-fold degenerate level Ef,’ are not necessarily orthogonal,
But if they are so, we have the advantage that
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Sa=l.fi=kand =0 if ik
Then the k£ x k determinant would assume the form

Hy'-E Hyy Hyy ... Hy'

’ ’ I ’ ’
Hy' Hyy' -EL Hyy' ... Hoy
................................................. =0 (8-75)
Hy' Hy' Hy' ... Hy' - ES

If, in addition, the off diagonal clements /" of the determinant are all zero,
the imtially chosen wave functions vg I ng. ... are themselves the correct zero

order wavefunctions and the roots £y, ELY. ... are obtained directly from the
“diagonal elements’’ as on expansion,

(Hy' =B (Hyy' -ED) ... My -EMy =0 (8-76)
which gives the roots
E,=H)\ E ' =Hy', ... B = Hy' (8-77)
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Corresponding to cach of these new energy states ﬂ + L‘.‘,’ is a distinct
cigenfunction expressed as a power series

5

Va =xn +A Wi + ...

Vo =Xh+Aviy+ ...
p (8-78)

.....................................

Vi =k + AV + o0

The first and second terms represent the zero and first terms respectively. To
determine the first term we have to determine the coefficients @, in the expansion

(8-62) and for the second term we need ¢; in the expansion (8-67).




