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] Perturbation treatment of He atom
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] Perturbation treatment of He atom

v Unperturbed Wave Function: Independent Electron
Approximation
— Independent Electron Approximation

Hy(1,2,..,n) = EY(1,2,..,n)
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] Perturbation treatment of He atom
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Now, what is the value of E°?
E° = Es(1) + E15(2)

1
E9 =2 x (—EZZ) = —7%au

E'=—-4qu=-174x10"1] = —-108.3 eV
« The energy thus calculated is much below the experimentally
observed value of —1.25 x 10717] = —78.4 eV
« Thus, first order correction is to be applied.



] Perturbation treatment of He atom

EM = jwoﬁ'wodT= jJ15(1)15(2)%15(1)15(2)drld12
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v" The energy of He atom in ground state is, therefore

5
Elsz = —7%+ §Z = —275au = —-—74.8¢eV = —1.196 X 10—17]

v The error is 5%.
v' The ionization of He is given by
He(1s?) = He*(1s) + e(1s)
IP = Efl¢” — EHe

1 5
IP = —522 - <—ZZ +§Z> = 0.75au = 20.4eV = 0.326]

v The experimental value is 24.6 eV or 0.393 J. Error is about 17%.
v A small error in total energy leads to a sufficiently large error in IP.



1 Variation treatment of He atom

— The presence of one electron effectively reduces the nuclear
charge of other electrons. For He atom, nuclear charge 7', instead
of 2, can be considered as adjustable parameter.
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v" The trial function can be chosen by independent electron

approximation
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Y =1s(1)1s(2) = Zﬂ
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. Variation treatment of He atom
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Where, J= [ 15(1)15(2)?121S(1)1S(2)drldrz




1 Variation treatment of He atom

Since H(1) and H(2) are Hamiltonian of He™ and they operate
separately on electron 1 and 2.

A()y(1) = Effe” Wy
H2)y(2) = E “ )y(2)
Since EHe" (1) = EFe™(2) = Ey,

= E 2 = Elsj 1s(1) 1s(1)dt, + E4, J 1s(2) 1s(2)dt, + ] = E 2

N g N 4
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— ZEls +]
Eis of He*in 1s state is given by
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1 Variation treatment of He atom

1 _,, , 1
= E,=—=Z"+Z —Z)jls - 1sdrt

2
Now,
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1 Variation treatment of He atom

> By the principle of minimization

s oy —2z42=0
YA 8
, 5 5 27
= / =Z_1_6=2_1_6=1_6

> The energy of He atom is

E..= 27\’ 2><2><27+5><27
15 = \ 16 16 ' 8 16

= —2.84 au
= —77.48¢elV
= —1.24x 10717
> The error in fotal energy is reduced to 2%.
» IPis calculated to 23.06 eV or 0.369x10-!7 J and the error is 6%.
» The screening effect



d Antisymmetric wave function

He atom

In ground state: W(1,2) = 1s(1)1s(2)
In excited state: W(1,2) = 1s(1)2s(2) (1)
or, WY(2,1)=1s(2)2s(1) (2)

Does the functions ¥(1,2) and ¥(2,1) have the same
eigenvalues?

Does the functions ¥(1,2) and ¥(2,1) have the same
physical significance?

¥(1,2) and ¥Y(2,1) differ from each other. Their
squares are also different. They lead to different

probability distributions for the same two electrons in
the same state.

Does this make any physical sense? - No. Because
electrons are indistinguishable.



d Antisymmetric wave function

« To make their physical senses, probability must not change
on merely interchanging the electron positions, i.e.,

[(W(1,2)]*= [¥(2,D]* (3)
This gives ¥(1,2) = +¥(2,1) (4)

« This means that functions (1) and (2) would be either the
same or one be simply the negative of the other.

« If the function remains unchanged on interchange of
electron positions it is ‘symmetric'.

 If it changes sign it is ‘antisymmetric’.

* Are these requirements met by the expressions (1) and
(2)? No

* Their linear combinations (sum and difference) can met
these requirements.



d Antisymmetric wave function
1

e Y. (symmetric) =7 [15(1)2s(2) + 1s(2)2s(1) (5)

« Y_(antisymmetric) = % 15(1)2s5(2) — 1s(2)2s(1)] (6)

. % IS the normalization factor which can easily be derived as
below:

[W2dr = [ [ [N{1s(1)25(2) + 15(2)2s(1)}]?d1 dT, = 1

Or, N2[[ 1s(1)?dt,[ 25(2)?dt, + [ 1s(2)?d7, [ 25(1)?d1,
+2[ 1s(1)2s(2)dr, [ 1s(2)2s(Ddt,] =1

Or, N?[1+1+0]=1 or, N=%.
« Which of the two wave functions (5) and (6) is to be used to
describe the excited state of He when both lead to the same

energy?



Electron spin

According to Goudsmith and Ulenbeck (1926), electron spins
around its axis and its “spin angular momentum” or simply “spin”
IS given by

S=sG+ 1D (7)

Spin angular momentum vector has three components,
Sx,Sy and §,.

By the quantum mechanics, only one of them can have specified
value; and usually S, is chosen.

The possible values of S, are 2s + 1, or 2; these values are
given by mS% (in SI unit), or m (atomic unit), where mg = i%.

The two states of electron corresponding to two quantum

1 . :
numbers +-are degenerate; the degeneracy is broken in a
magnetic field if the direction of field is taken as the z-axis.



 The Eigenvalue and Eigenfunctions of spin operator

The quantity of interest, S, Is represented in guantum
mechanics by its operator S, and the Eigenvalues mg L

2T
The eigenvalue equations are
A 1 h
Spa(s) = E?st) ! @
SZIB(S) — ___,B(S)

22T —

where a(s) and S (s) are the two eigenfunctions
corresponding to the two eigenvalues.

s within bracket refers to hypothetical spin coordinate and
guite independent of the space coordinates.

a(s) and [ (s) are usually written as a and f respectively,
and are taken to be orthonormal, i.e.,

[ a?ds = [ p?*ds=1and [ afds = [ fads = 0



d Spin-Orbitals
« An orbital does not give complete description of an electron.
Because it can not describe the actual state.

« The complete wave function must represent the actual state
of electron. It must give not only the probability of finding
electron in space but also the probability of spin state, a(s)

or 5(s).

« The actual state of an electron is represented by the product
of the orbital and the spin functions. The product is called
“spin-orbital”. Corresponding to an orbital ¢, there will be
two spin-orbitals ¢a and ¢pf.

* For multi-electron atom, the spin state is represented by a
product of individual spin functions. The operator for the Z-
component is given by the sum of the operator for Z-
components of individual electron, i.e.,



d Spin-Orbitals
* For two electron system, say He there are four possible
spin functions viz.

a(Da(2) (9)

B(1B(2) (10)

a(1)B(2) (11)
and a(2)5(2) (12)

* The eigenvalue for a(1)a(2), for example, is

Sla(M)a(2)] = (S, +S2)[a(Da(2)]
= S [a(Da(2)] + Sy [a(Da(2)]

1 1
= a(Z)Ea(l) + a(l)za(Z) = a(1)a(2)

« The eigenvalue ( = 1) represents the z-component of the
“total spin quantum number M (= Ym;)" and of the

111 h 7
angular momentum S, (= M; E) .



d Spin-Orbitals

Spin product functions M (= )Y m,) S, (= Mg i)

2T
a(Da(2) ~+ - +1-
BDB(2) ~377 15
a(1)B(2) ~—- 0
a(2)B(1) - 0

« By arguments similar to orbital wave function, spin
functions must be either symmetric or antisymmetric.

« Spin product functions in (9) and (10) are symmetric, but
(11) and (12) are neither symmetric nor antisymmetric.

 In analogy with equations (5) and (6), the symmetric and
antisymmetric spin functions can be obtained from the
linear combination of product spin functions.



d Spin-Orbitals

« The four spin functions for two electron system are

Spin functions _________|__ M,

a(Da(2) +1 (13)
B(DAR) -1 (14)
i 0 (15)
N [a(1)(2) + a(2)p(1)]
i - 0 (16)
N [a(1)B(2) —a(2)(1)]

« The spin functions (13), (14) and (15) are symmetric,
while the equation (16) is antisymmetric.



4 Pauli principle and antisymmetric wave functions

* For the ground state of He, there are four possible product
combinations of orbital and spin wave functions

15(1)15(2)[@(Da(2)] (17)
1s()1s(2)[BDA(2)] (18)
1s(D1s(2) % [a(DBR) + a(BD)]  (19)

1s(1)1s(2) 7 [@(DB(2) — a(BD)]  (20)

* Which of these four combination will correctly represent
the ground state of He?

* Let think about the following:
Symmetric(+) X symmetric(+) =?
Antisymmetric(—) X antisymmetric(+) =?

Antisymmetric(—) X symmetric(+) =?



4 Pauli principle and antisymmetric wave functions

 According to W. Pauli “for a system more than two
electrons the complete wave function including spin must
be antisymmetric with respect to interchange of any two
electron positions. ”

« It is, therefore, seen that the function (20) stands for the
ground state of He.

« For ground state He, there are eight possible
combination, of these following four are antisymmetric:

Wy =~ [15(1)25(2) + 15(2)2s(D][(DB2) — a(DB2)]  (21)

Y, = % [15(1)25(2) — 15(2)2s(D)][a(Da(2)] (22)

s = %[1s(1)2s<z> — 1s(2)2s(D][FDB(2)] (23)
1

=-[1s(1)2s(2) — 1s(2)2s(D][a(DBR) + a(DB(2)]  (24)



 Singlet and triplet state of He

« Energy of helium atom in excited state can be calculated as

ElsZS —

e En

Y*HYdT
f Py

(25)



JdPerturbation treatment

* Perturbation treatment of helium atom gives zeroth-
order wave function by neglecting these repulsion and
wave function would be the product of n hydrogenlike
(one electron) orbital.

WO = f,(ry, 01, p1) f2 (12,02, $2) -+ fr (T, 6y D) (2)
Where the hydrogenlike orbital are
f = Ru(MY™(6, $) (3)

« The approximate wave functions are qualitatively useful
but it suffers from quantitative accuracy.

« This method uses full nuclear charge, which neglects the
screening of electrons from nucleus.



dVariational treatment

 The variational treatment of helium and lithium atoms
gives considerable improved wave function because this
treatment make use the effective nuclear charge for
accounting the screening of electrons but it is still far from
accurate wave function.

* In this technique, variation function that has the same form
as ed. (2) but is not restricted to hydrogenlike or any other
particular form of orbitals.

b = g1(r1, 01, p1)82(1r2, 02, @2) -+ 8n (1, O, D) (4)

* Then it looks for the functions g,, 9, ....... g, that minimize
the variational integral

| ¢*Hedv/| ¢ pdv (5)



dHartree self-consistent field (SCF) method

« This technigue is basically same as variational treatment
but more harder.

 The basic difference is that the trial functions for Hartree
SCF method include some parameters and these are
varied. On the other hand, variational treatment varies the
functions g; in eq. (4).

Let us consider the best possible atomic orbitals that are the
product of a radial factor and a spherical harmonic

gi = ()Y, " (6i, b)) (6)

 The procedure for calculating the gi's was introduced by
Hartree in 1928 and is called Hartree self-consistent-field
(SCF) method. The proof that Hartree's procedure gives the
best possible variation function of the form eq. (5) was given
by Slater and Fock in 1930.



dHartree’s procedure

« The wave function of an atom containing n electrons is written as
the product of n number of one-electron functions

o = 51(11, 01, P1)52(12, 02, $2) -+ sp (1, O, 1) (1)
and the energy is
E = | ¢poHpdr (2)

If ¢ IS Normalized which Is ensured if each s, is normalized
function of r multiplied by a spherical harmonic, i.e.,

[sisi=1 (3)

The best wavefunction is that which leads to minimum
energy, I.e., which satisfies the equation

8E = 8) ¢y Hpdr = 0 (4)

for a small variation in any of the orbital.



H is the complete Hamiltonian given by

N EYC) Y- NC

1=1 =1 1i+j

where an infinitely heavy point nucleus was assumed.

« The first sum in equation (5) contains the kinetic-energy
operator for the n electrons.

« The second sum is the potential energy for the attractions
between the electrons and the nucleus of charge Ze’; for a
neutral atom, Z = n and e'? = e?/4ne,,.

 The last sum is the potential energy of the interelectronic
repulsion; the restriction i # ] ignore the nonexistent self-
repulsion (e"/r; or e"/r;) and the factor %2 average the
same interelectronic repulsions like e'/r; and e"/r;.



= The Hamiltonian, H in equation (5) can be written as

n n
N0 1Ny
A=) B0+30.0 (6)

l 1=1
where,
o= -1 pz %" 7
= (7)
e
and Vi= ) — (8)
eed T j
I#]

H? is hydrogen like Hamiltonian of the electron i and V; represents
the total potential energy of the electron i due to repulsion by all
other elctrons.



To determine V, Iin equation (8) Hartree assumes that
each electron in the atom moves in a potential field due to
the nucleus and all other electrons and assumed set of
orbitals are

S1, Sy, ... Sy
which may be hydrogen like orbital.

Now consider the electron 1 moving through the smeared
cloud of other electrons.

The potential energy of interaction between point charges

Q, and Q,

9
v @ 9)

41eyTy o
For electron 1, Q, = - e, the electronic charge; and for
electron 2, the infinitesimal charge in the infinitesimal volume
dz, is — e|s,|?dz,. Summing up the interaction between Q,
and infinitesimal elements of charge, we have




J(=e)(=e)ls,|*dr, _ 2 | Is2]?dr,

V12 — (10)
41eqy 115 T12
12 82
where, e'“ =
41e

« Adding in the interactions with the other electron, we have

n

2
S.
V]_ = V12 —+ V13 2 iR ~+ Vln = 2 eIZMde (11)

r .
== Y

* Under the central force field assumption V, is a function of r;
only. Adding V, with -Ze”?/r; and using as potential energy in
a one-electron Schrodinger equation
h? Ze'?

2
o Vi T
me Tl

+V <r1>] t; (1) = e1t;(1) (12)

and solution for t,(1) will give improved orbital for electron 1.



« However, the solution of equation (12) is very difficult
because V, required the prior knowledge of all one electron
wave functions. Hartree suggested an iteration method for
solution.

Ilteration method
Let us consider a function  X° = x+1
The iteration formula for this function can be written as
. x> —x—1
n+1 n 2
3X; —1
flr) =2 —2—1, xp=1.5

n T flxrn)
0 1.50000000 | 0.87500000
1 1.347R2608 | 0.10058217
2 1.32520039 | 0.00205836
3 1.32471817 | 0.00000092
1 1.32471795 | 0.00000000
5 1.32471795 | 0.00000000




First V, is calculated from chosen set of functions s, s, ....S,.
Using V, in equation (12), t,(1) is calculated by a numerical
method.
We now go to electron 2 and regard it as moving in charge cloud
of density
—e[[ty(D* + Is5]% + [s4]* + -+ [55]?]
due to the other electrons. Calculating V,(r,) and solving a one-
electron Schrodinger equation for electron 2 will give an improved
orbital t,(2).
This procedure is carried on until a set of improved orbitals for all
n electrons is obtained.

Then going back to electron 1 and repeating the process.

This process of iteration is to be continued until the assumed set
of s; and the calculated set become identical. The final set of
orbitals gives Hartree self-consistent-field wave functions (¢).

Finally, we have the wave function

Y=oz bn (13)



 Orbital energy and Total energy

The orbital energy ¢; of the electron i is

= [ ¢;H;¢p; d;
2
= [ ¢;H P dt; + [ ¢ Ziijelz% dt;| ¢; dr;
e'?|¢pil|p
= & +Zl-‘#]ff ]| ]| dTi de
=& + Xizi)ij (14)

In equation (14), &/ is the orbital energy of the electron i in
the absence of all other electrons, and J; Is the average
columbic energy of repulsion between two charges

represented by |¢;|? and |gbj|2.



The total energy of all the electron in the atom is

E=[WY"HW¥dr
= f (¢1 P2 -+ Pn) Ziﬁio (P1 P2 Pp)dry dTyp -+ dTy

‘|‘f (p1 P2 - ¢;)%Zi2i¢ji_;(¢1 b2 prp)dry dTy - dTy

2
. 0 1 |¢|2|¢|
=i & +§Zi2i¢jffe'2 : — = dr,d,

]

= Y& + %ZiZiij]ij (15)

-~ . 1 .
Operator H? acts on electron i only and —on electrons |
ij
and |, and all orbitals are normalized.



d Relation between Orbital energy and Total energy
From equation (14), we get
& =g — Ejij
L#]
Inserting the value of & in equation (15) gives

E=2(ei = Xizjlij) + %Ziziij]if
= i€ — idizjJij T %ZiZiij]ij

=i — %ZiZiij]ij

e ¢&; Involves, in addition to its own orbital energy In the field of
the nucleus, the interaction with all other electrons in atoms.
2.; & counts twice the interactions between electrons, like J;;

and J;;. To obtain the correct energy, the term %Ziziij]ij has
to be subtracted from };; ¢;.



lonization energy

 If an electron labeled k from the orbital ¢, is removed to infinity,
the atoms becomes ionized. If we ignore any change of the
orbital functions the energy of the ion is then given by

Eon= Ei=5 > > o ¢¢,drdr,

i1*k ik j*k,i+j

Vi —

Eioan_fd)k -

¢dek 2ff¢k¢]—¢k¢]didT]

€ j*k

Thus we have the relation
’ — —
— &y = &jpp — €

This means that -, " represents the ionization energy of the atom
in which an electron is removed from the orbital ¢,. This method
has been applied by Hartree to several atoms and ions.



Electron Spin

To explain this fine structure of atomic spectra, Uhlenbeck and Goudsmit
proposed in 1925 that the electron has an intrinsic (built-in) angular
momentum in addition to the orbital angular momentum due to its motion
about the nucleus. If we picture the electron as a sphere of charge spinning
about one of its diameters, we can see how such an intrinsic angular
momentum can arise. Hence we have the term spin angular momentum or,
more simply, spin.

However, electron "spin" is not a classical effect, and the picture of an electron
rotating about an axis has no physical reality. The intrinsic angular momentum
Is real, but no easily visualizable model can explain its origin properly. We
cannot hope to understand microscopic particles based on models taken from
our experience in the macroscopic world. Other elementary particles besides
the electron have spin angular momentum.



We have learned that each physical property has its corresponding linear
Hermitian operator in quantum mechanics. For such properties as orbital
angular momentum, we can construct the quantum-mechanical operator from
the classical expression by replacing Pxe Pys Pz by the appropriate operators.
The inherent spin angular momentum of a microscopic particle has no analog
in classical mechanics, so we cannot use this method to construct operators
for spin. For our purposes, we shall simply use symbols for the spin operators,
without giving an explicit form for them.

Analogous to the orbital angular-momentum operators L?, ix, Ly, Lz, we have
the spin angular-momentum operators S?, S x* SY' S ze Which are postulated
to be linear and Hermitian. S? is the operator for the square of the magnitude
of the total spin angular momentum of a particle. S z is the operator for the z
component of the particle's spin angular momentum. We have

§2=8+58+ 8§’ (10.1)



We postulate that the spin angular-momentum operators obey the same
commutation relations as the orbital angular-momentum operators. Analogous
to [Lx, Ly] = ifiLz, [Ly, Lz] = ifiLx, [Lz, LX] = ifiLy, we have

(S, 8,] =S, [S,8,)=iS, [S,S]=ikS, (10.2)

From (10.1) and (10.2),

[5‘2,3,,] = [32, 31,] = [jz? 5‘5] = () (10.3)
The eigenvalues of S? are
s(s+ 1%, s=0251113.. (10.4)

and the eigenvalues of S, are

mh, m,=—s5,—s+1,...,5— 1,3 (10.5)



The quantum number s is called the spin of the particle. Although nothing in
Section 5.4 restricts electrons to a single value for s, experiment shows that all
electrons do have a single value for s, namely, s = 1/2. Protons and neutrons
also have s = 1/2. Pions have s = 0. Photons have s = 1.

However, Eqg. (10.5) does not hold for photons. Photons travel at speed c in
vacuum. Because of their relativistic nature, it turns out that photons can have
either mg = + 1 or mg = -1, but not mg = 0. These two m, values correspond to
left circularly polarized and right circularly polarized light.

With s = 5 the magnitude of the total spin angular momentum of an electron is
given by the square root of (10.4) as

BEW] = 1V 3h (10.6)

Fors = Eq (10.5) gives the possible eigenvalues of §, of an electron as + 4 and — .
The eltctrc-n spin eigenfunctions that correspond to thesn: S eigenvalues are denoted
by o and 8:

Ly
=1
i

o = +fa (10.7)*
~1nB (10.8)*

T
w
I



Since § . commutes with 5%, we can take the eigenfunctions of 5, to be eigenfunctions
of §2 also, with the eigenvalue given by (10.4) with s = &:

S%a =M, SB=IB (10.9)

§, does not commute with §, or § » 50 & and B are not eigenfunctions of these opera-
tors. The terms spin up and spin down refer to m, = +3 and m, = —}, respectively. See
Fig. 10.1. We shall later show that the two possibilities for the quantum number m, give
the doubling of lines in the spectra of the alkali metals.

FIGURE 10.1 Possible orientations of the electron spin vector with
respect to the z axis. In each case, § lies on the surface of a cone whose
axis is the 7 axis.



The wave functions we have dealt with previously are functions of the spatial coor-
dinates of the particle: b = i(x, ¥, z). We might ask: What is the variable for the spin
eigenfunctions o and 57 Sometimes one talks of a spin coordinate w, without really spec-
ifying what this coordinate is. Most often, one takes the spin quantum number m, as
being the variable on which the spin eigenfunctions depend. This procedure is quite
unusual as compared with the spatial wave functions; but because we have only two pos-
sible electronic spin eigenfunctions and eigenvalues, this is a convenient choice. We have

a=alm), B=Am,) (10.10)



