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❑ Perturbation treatment of He atom
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❑ Perturbation treatment of He atom

✓ Unperturbed Wave Function: Independent Electron 
Approximation 

─ Independent Electron Approximation

෡𝐻𝜓 1,2, . . , 𝑛 = 𝐸𝜓 1,2, . . , 𝑛

෡𝐻 =෍

𝑖

෡𝐻𝑖 , 𝜓 =ෑ

𝑖

𝜓𝑖 , 𝐸 =෍

𝑖

𝐸𝑖 , ෢𝐻𝑖𝜓𝑖 = 𝐸𝑖𝜓𝑖

─ Proof
෡𝐻𝜓 1,2, . . , 𝑛 = ෡𝐻1 + ෡𝐻2 +⋯ 𝜓1𝜓2⋯

= ෡𝐻1𝜓1𝜓2⋯+ ෡𝐻2𝜓1𝜓2⋯+⋯

= ෡𝐻1𝜓1𝜓2⋯+ 𝜓1 ෡𝐻2𝜓2⋯+⋯

= 𝐸1𝜓1𝜓2⋯+ 𝜓1𝐸2𝜓2⋯+⋯

= 𝐸1𝜓1𝜓2⋯+ 𝐸2𝜓1𝜓2⋯+⋯

= 𝐸1 + 𝐸2 +⋯ 𝜓1𝜓1𝜓2⋯

= 𝐸𝜓 1,2, . . , 𝑛



❑ Perturbation treatment of He atom
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𝜋
𝑒−𝑍𝑟1𝑒−𝑍𝑟2 =

𝑍3

𝜋
𝑒−𝑍(𝑟1+𝑟2)

Now, what is the value of 𝐸0?

𝐸0 = 𝐸1𝑠 1 + 𝐸1𝑠(2)

𝐸0 = 2 × −
1

2
𝑍2 = −𝑍2 𝑎𝑢

𝐸0 = −4 𝑎𝑢 = −1.74 × 10−17𝐽 = −108.3 𝑒𝑉

• The energy thus calculated is much below the experimentally 

observed value of −1.25 × 10−17𝐽 = −78.4 𝑒𝑉

• Thus, first order correction is to be applied.



❑ Perturbation treatment of He atom

𝐸(1) = න𝜓0 ෡𝐻′𝜓0𝑑𝜏 = නන1𝑠 1 1𝑠 2
1

𝑟12
1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2

=
𝑍3

𝜋

2

නන𝑒−𝑍(𝑟1+𝑟2)
1

𝑟12
𝑒−𝑍(𝑟1+𝑟2)𝑑𝜏1𝑑𝜏2 =

5

8
𝑍

✓ The energy of He atom in ground state is, therefore

𝐸1𝑠2 = −𝑍2 +
5

8
𝑍 = −2.75 𝑎𝑢 = −74.8 𝑒𝑉 = −1.196 × 10−17𝐽

✓ The error is 5%.

✓ The ionization of He is given by

𝐻𝑒(1𝑠2) = 𝐻𝑒+(1𝑠) + 𝑒(1𝑠)

𝐼𝑃 = 𝐸1𝑠
𝐻𝑒+ − 𝐸1𝑠2

𝐻𝑒

𝐼𝑃 = −
1

2
𝑍2 − −𝑍2 +

5

8
𝑍 = 0.75 𝑎𝑢 = 20.4 𝑒𝑉 = 0.326 𝐽

✓ The experimental value is 24.6 eV or 0.393 J. Error is about 17%.

✓ A small error in total energy leads to a sufficiently large error in IP.



❑ Variation treatment of He atom
─ The presence of one electron effectively reduces the nuclear 

charge of other electrons. For He atom, nuclear charge 𝑍′, instead 

of 2, can be considered as adjustable parameter.
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✓ The trial function can be chosen by independent electron 

approximation

𝜓 = 1𝑠 1 1𝑠 2 =
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✓ Using this trial function

𝐸1𝑠2 =
𝜓׬ ෡𝐻𝜓𝑑𝜏

𝜓2𝑑𝜏׬
= න𝜓෡𝐻𝜓𝑑𝜏 𝜓 is real and normalized



❑ Variation treatment of He atom

𝐸1𝑠2 =ඵ1𝑠 1 1𝑠 2 ෡𝐻 1 + ෡𝐻 2 +
1

𝑟12
1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2

=ඵ1𝑠 1 1𝑠 2 ෡𝐻 1 1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2

+ඵ1𝑠 1 1𝑠 2 ෡𝐻 2 1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2

+ඵ1𝑠 1 1𝑠 2
1

𝑟12
1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2

⟹ 𝐸1𝑠2 = න1𝑠 1 ෡𝐻 1 1𝑠 1 𝑑𝜏1න1𝑠 2 1𝑠 2 𝑑𝜏2

1

+න1𝑠 1 1𝑠 1 𝑑𝜏1

1

න1𝑠 2 ෡𝐻 2 1𝑠 2 𝑑𝜏2 + 𝐽

Where,    J = 1𝑠׭ 1 1𝑠 2
1

𝑟12
1𝑠 1 1𝑠 2 𝑑𝜏1𝑑𝜏2



❑ Variation treatment of He atom
Since ෡𝐻 1 and ෡𝐻(2) are Hamiltonian of 𝐻𝑒+ and they operate 
separately on electron 1 and 2.

෡𝐻 1 𝜓 1 = 𝐸1𝑠
𝐻𝑒+(1)𝜓 1

෡𝐻 2 𝜓 2 = 𝐸1𝑠
𝐻𝑒+(2)𝜓 2

Since 𝐸1𝑠
𝐻𝑒+ 1 = 𝐸1𝑠

𝐻𝑒+ 2 = 𝐸1𝑠

⟹ 𝐸1𝑠2 = 𝐸1𝑠න1𝑠 1 1𝑠 1 𝑑𝜏1

1

+ 𝐸1𝑠න1𝑠 2 1𝑠 2 𝑑𝜏2

1

+ 𝐽 ⟹ 𝐸1𝑠2

= 2𝐸1𝑠 + 𝐽
𝐸1𝑠 of 𝐻𝑒+in 1𝑠 state is given by 

𝐸1𝑠 = න1𝑠 −
1

2
∇2 −

𝑍

𝑟
1𝑠𝑑𝜏

= න1𝑠 −
1

2
∇2 −

𝑍′

𝑟
+

𝑍′ − 𝑍

𝑟
1𝑠𝑑𝜏

= න1𝑠 −
1

2
∇2 −

𝑍′

𝑟
1𝑠𝑑𝜏 + න1𝑠

𝑍′ − 𝑍
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❑ Variation treatment of He atom
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❑ Variation treatment of He atom

➢ By the principle of minimization

𝜕𝐸1𝑠2

𝜕𝑍′
= 2𝑍′ − 2𝑍 +

5

8
= 0

⟹ 𝑍′ = 𝑍 −
5

16
= 2 −

5

16
=
27

16
➢ The energy of He atom is 

𝐸1𝑠2 =
27

16

2

− 2 × 2 ×
27

16
+
5

8
×
27

16

= −2.84 𝑎𝑢

= −77.48 𝑒𝑉

= −1.24 × 10−17𝐽

➢ The error in total energy is reduced to 2%.

➢ IP is calculated to 23.06 eV or 0.36910−17 J and the error is 6%.

➢ The screening effect 

𝑍 − 𝑍′ = 2 −
27

16
=

5

16
= 0.3125



❑ Antisymmetric wave function

He atom

• In ground state: Ψ 1,2 = 1𝑠 1 1𝑠(2)

• In excited state: Ψ 1,2 = 1𝑠 1 2𝑠(2) (1)

or, Ψ 2,1 = 1𝑠 2 2𝑠(1) (2)

• Does the functions Ψ(1,2) and Ψ(2,1) have the same 

eigenvalues?

• Does the functions Ψ(1,2) and Ψ(2,1) have the same 

physical significance?

• Ψ(1,2) and Ψ(2,1) differ from each other. Their 

squares are also different. They lead to different 

probability distributions for the same two electrons in 

the same state.

• Does this make any physical sense? - No. Because 

electrons are indistinguishable. 



❑ Antisymmetric wave function

• To make their physical senses, probability must not change 

on merely interchanging the electron positions, i.e.,

Ψ 1,2 2= Ψ 2,1 2 (3)

This gives Ψ 1,2 = ±Ψ(2,1) (4)

• This means that functions (1) and (2) would be either the 

same or one be simply the negative of the other.

• If the function remains unchanged on interchange of 

electron positions it is ‘symmetric’.

• If it changes sign it is ‘antisymmetric’. 

• Are these requirements met by the expressions (1) and 

(2)? No

• Their linear combinations (sum and difference) can met 

these requirements.



❑ Antisymmetric wave function

• Ψ+ symmetric =
1

√2
[1𝑠 1 2𝑠 2 + 1𝑠 2 2𝑠(1)] (5)

• Ψ− antisymmetric =
1

√2
[1𝑠 1 2𝑠 2 − 1𝑠 2 2𝑠(1)] (6)

•
1

√2
is the normalization factor which can easily be derived as 

below:

Ψ2𝑑𝜏׬ = ׬ ׬ [𝑁 1𝑠 1 2𝑠 2 ± 1𝑠 2 2𝑠 1 ]2𝑑𝜏1𝑑𝜏2 = 1

Or,  𝑁2[׬ 1𝑠 1 2𝑑𝜏1׬ 2𝑠 2 2𝑑𝜏2 + ׬ 1𝑠 2 2𝑑𝜏2׬ 2𝑠 1 2𝑑𝜏1

׬±2 1𝑠 1 2𝑠 2 𝑑𝜏1׬ 1𝑠 2 2𝑠 1 𝑑𝜏2] = 1

Or,   𝑁2 1 + 1 + 0 = 1 or,  𝑁 =
1

√2
.

• Which of the two wave functions (5) and (6) is to be used to 

describe the excited state of He when both lead to the same 

energy?



❑ Electron spin

• According to Goudsmith and Ulenbeck (1926), electron spins 

around its axis and its “spin angular momentum” or simply “spin” 

is given by

𝑆 = 𝑠(𝑠 + 1)
ℎ

2𝜋
(7) 

• Spin angular momentum vector has three components, 

𝑆𝑥 , 𝑆𝑦 and 𝑆𝑧.

• By the quantum mechanics, only one of them can have specified 

value; and usually 𝑆𝑧 is chosen.

• The possible values of 𝑆𝑧 are 2𝑠 + 1, or 2; these values are 

given by 𝑚𝑠
ℎ

2𝜋
(in SI unit), or 𝑚𝑠 (atomic unit), where 𝑚𝑠 = ±

1

2
.  

• The two states of electron corresponding to two quantum 

numbers ±
1

2
are degenerate; the degeneracy is broken in a 

magnetic field if the direction of field is taken as the z-axis.



❑ The Eigenvalue and Eigenfunctions of spin operator

• The quantity of interest, 𝑆𝑧 is represented in quantum 

mechanics by its operator መ𝑆𝑧 and the Eigenvalues 𝑚𝑠
ℎ

2𝜋
.

• The eigenvalue equations are

መ𝑆𝑧𝛼 𝑠 =
1

2

ℎ

2𝜋
𝛼(𝑠)

መ𝑆𝑧𝛽 𝑠 = −
1

2

ℎ

2𝜋
𝛽 𝑠

where 𝛼(𝑠) and 𝛽(𝑠) are the two eigenfunctions

corresponding to the two eigenvalues.

• 𝑠 within bracket refers to hypothetical spin coordinate and 

quite independent of the space coordinates.

• 𝛼 𝑠 and 𝛽(𝑠) are usually written as 𝛼 and  𝛽 respectively, 

and are taken to be orthonormal, i.e.,

׬ 𝛼2𝑑𝑠 = ׬ 𝛽2𝑑𝑠 = 1 and ׬ 𝛼𝛽𝑑𝑠 = ׬ 𝛽𝛼𝑑𝑠 = 0

(8)



❑ Spin-Orbitals
• An orbital does not give complete description of an electron. 

Because it can not describe the actual state.

• The complete wave function must represent the actual state 

of electron. It must give not only the probability of finding 

electron in space but also the probability of spin state, 𝛼(𝑠)
or 𝛽(𝑠). 

• The actual state of an electron is represented by the product 

of the orbital and the spin functions. The product is called 

“spin-orbital”. Corresponding to an orbital 𝜙, there will be 

two spin-orbitals 𝜙𝛼 and 𝜙𝛽.

• For multi-electron atom, the spin state is represented by a 

product of individual spin functions. The operator for the Z-

component is given by the sum of the operator for Z-

components of individual electron, i.e.,

መ𝑆𝑧 = መ𝑆1𝑧 + መ𝑆2𝑧 +⋯⋯



❑ Spin-Orbitals

• For two electron system, say He there are four possible 

spin functions viz.

𝛼 1 𝛼(2) (9)

𝛽 1 𝛽(2) (10)

𝛼 1 𝛽(2) (11) 

and 𝛼 2 𝛽(2) (12)

• The eigenvalue for 𝛼 1 𝛼(2), for example, is

መ𝑆𝑧 𝛼 1 𝛼 2 = ( መ𝑆1𝑧+ መ𝑆2𝑧) 𝛼 1 𝛼 2

= መ𝑆1𝑧 𝛼 1 𝛼 2 + መ𝑆2𝑧 𝛼 1 𝛼 2

= 𝛼 2
1

2
𝛼 1 + 𝛼 1

1

2
𝛼 2 = 𝛼 1 𝛼 2

• The eigenvalue ( = 1) represents the z-component of the 

“total spin quantum number 𝑀𝑠 (= ∑𝑚𝑠)” and of the 

“angular momentum 𝑆𝑧 (= 𝑀𝑠
ℎ

2𝜋
)”. 



Spin product functions 𝑀𝑠 (= ∑𝑚𝑠) 𝑆𝑧(= 𝑀𝑠
ℎ

2𝜋
)

𝛼 1 𝛼(2)
1

2
+

1

2
+1

ℎ

2𝜋

𝛽 1 𝛽(2) −
1

2
−

1

2
−1

ℎ

2𝜋

𝛼 1 𝛽(2)
1

2
−

1

2
0

𝛼 2 𝛽(1)
1

2
−

1

2
0

• By arguments similar to orbital wave function, spin 

functions must be either symmetric or antisymmetric.

• Spin product functions in (9) and (10) are symmetric, but 

(11) and (12) are neither symmetric nor antisymmetric.

• In analogy with equations (5) and (6), the symmetric and 

antisymmetric spin functions can be obtained from the 

linear combination of product spin functions.

❑ Spin-Orbitals



❑ Spin-Orbitals

• The four spin functions for two electron system are

Spin functions 𝑀𝑠

𝛼 1 𝛼(2) +1 (13)

𝛽 1 𝛽(2) -1 (14)

1

2
[𝛼 1 𝛽 2 + 𝛼 2 𝛽(1)]

0 (15)

1

2
[𝛼 1 𝛽 2 − 𝛼 2 𝛽(1)]

0 (16)

• The spin functions (13), (14) and (15) are symmetric, 

while the equation (16) is antisymmetric.



❑ Pauli principle and antisymmetric wave functions

• For the ground state of He, there are four possible product 

combinations of orbital and spin wave functions

1𝑠 1 1𝑠 2 [𝛼 1 𝛼(2)] (17)

1𝑠 1 1𝑠 2 [𝛽 1 𝛽(2)] (18)

1𝑠 1 1𝑠 2
1

2
[𝛼 1 𝛽 2 + 𝛼 2 𝛽(1)] (19)

1𝑠 1 1𝑠 2
1

2
[𝛼 1 𝛽 2 − 𝛼 2 𝛽(1)] (20)

• Which of these four combination will correctly represent 

the ground state of He?

• Let think about the following:

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 + × 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 + =?

𝐴𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 − × 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 + =?

𝐴𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 − × 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 + =?



❑ Pauli principle and antisymmetric wave functions

• According to W. Pauli “for a system more than two

electrons the complete wave function including spin must

be antisymmetric with respect to interchange of any two

electron positions. ”

• It is, therefore, seen that the function (20) stands for the

ground state of He.

• For ground state He, there are eight possible

combination, of these following four are antisymmetric:

Ψ1 =
1

2
1𝑠 1 2𝑠 2 + 1𝑠 2 2𝑠 1 [𝛼 1 𝛽 2 − 𝛼 2 𝛽(2)] (21)

Ψ2 =
1

√2
1𝑠 1 2𝑠 2 − 1𝑠 2 2𝑠 1 [𝛼 1 𝛼 2 ] (22)

Ψ3 =
1

√2
1𝑠 1 2𝑠 2 − 1𝑠 2 2𝑠 1 [𝛽 1 𝛽 2 ] (23)

Ψ1 =
1

2
1𝑠 1 2𝑠 2 − 1𝑠 2 2𝑠 1 [𝛼 1 𝛽 2 + 𝛼 2 𝛽(2)] (24)



❑ Singlet and triplet state of He

• Energy of helium atom in excited state can be calculated as

ത𝐸1𝑠2𝑠 = ׬
Ψ∗ ෡𝐻Ψ𝑑𝜏

Ψ∗Ψ
(25)

• En



• Perturbation treatment of helium atom gives zeroth-

order wave function by neglecting these repulsion and

wave function would be the product of n hydrogenlike
(one electron) orbital.

❑Perturbation treatment

(2)

Where the hydrogenlike orbital are

(3)

• The approximate wave functions are qualitatively useful 

but it suffers from quantitative accuracy. 

• This method uses full nuclear charge, which neglects the 

screening of electrons from nucleus.  

ψ 0 = 𝑓1 𝑟1, 𝜃1, 𝜙1 𝑓2 𝑟2, 𝜃2, 𝜙2 ⋯𝑓𝑛(𝑟𝑛, 𝜃𝑛, 𝜙𝑛)

f = Rnl 𝑟 𝑌𝑙
𝑚(𝜃, 𝜙)



• The variational treatment of helium and lithium atoms

gives considerable improved wave function because this

treatment make use the effective nuclear charge for

accounting the screening of electrons but it is still far from

accurate wave function.

❑Variational treatment

• In this technique, variation function that has the same form 

as eq. (2) but is not restricted to hydrogenlike or any other 

particular form of orbitals. 

(4)

• Then it looks for the functions g1, g2, ……. gn that minimize 

the variational integral 

(5)

ϕ = g1 𝑟1, 𝜃1, 𝜙1 g2 𝑟2, 𝜃2, 𝜙2 ⋯gn 𝑟𝑛, 𝜃𝑛, 𝜙𝑛

׬ ϕ∗ ෡𝐻𝜙𝑑𝑣/׬ 𝜙∗𝜙𝑑𝑣



❑Hartree self-consistent field (SCF) method

• This technique is basically same as variational treatment

but more harder.

• The basic difference is that the trial functions for Hartree

SCF method include some parameters and these are

varied. On the other hand, variational treatment varies the

functions gi in eq. (4).

Let us consider the best possible atomic orbitals that are the 

product of a radial factor and a spherical harmonic

(6)

• The procedure for calculating the gi’s was introduced by

Hartree in 1928 and is called Hartree self-consistent-field

(SCF) method. The proof that Hartree’s procedure gives the

best possible variation function of the form eq. (5) was given

by Slater and Fock in 1930.

gi = ℎ𝑖 𝑟𝑖 𝑌𝑙𝑖
𝑚𝑖(𝜃𝑖, 𝜙𝑖)



❑Hartree’s procedure

(1)ϕ0 = 𝑠1(𝑟1, 𝜃1, 𝜙1)𝑠2(𝑟2, 𝜃2, 𝜙2)⋯𝑠𝑛(𝑟𝑛, 𝜃𝑛, 𝜙𝑛)

• The wave function of an atom containing n electrons is written as 

the product of n number of one-electron functions

and the energy is

E = ׬ ϕ0
∗ ෡Hϕdτ (2)

If 0 is normalized which is ensured if each si is normalized 

function of r multiplied by a spherical harmonic, i.e.,

׬ si
∗si = 1 (3)

The best wavefunction is that which leads to minimum 

energy, i.e., which satisfies the equation

δE = δ׬ ϕ0
∗ ෡𝐻𝜙𝑑𝜏 = 0 (4)

for a small variation in any of the orbital. 



Ĥ is the complete Hamiltonian given by

(5)

where an infinitely heavy point nucleus was assumed.

෡𝐻 = −
ℏ2

2𝑚𝑒
෍

𝑖=1

𝑛

𝛻𝑖
2 −෍

𝑖=1

𝑛
𝑍𝑒′2

𝑟𝑖
+
1

2
෍

𝑖=1

𝑛

෍

𝑖≠𝑗

𝑛
𝑒′2

𝑟𝑖𝑗

• The first sum in equation (5) contains the kinetic-energy 

operator for the n electrons.

• The second sum is the potential energy for the attractions 

between the electrons and the nucleus of charge Ze′; for a 

neutral atom, Z = n and e′2 = e2/40.

• The last sum is the potential energy of  the interelectronic

repulsion; the restriction i  j ignore the nonexistent self-

repulsion (e′2/rii or e′2/rjj) and the factor ½ average the 

same interelectronic repulsions like e′2/rij and e′2/rji .



▪ The Hamiltonian, Ĥ in equation (5) can be written as 

(6)෡𝐻 =෍

𝑖

𝑛

෡𝐻𝑖
0 +

1

2
෍

𝑖=1

𝑛

෠𝑉𝑖

where, 

෡𝐻𝑖
0 = −

ℏ2

2𝑚𝑒
𝛻𝑖
2 −

𝑍𝑒′2

𝑟𝑖

and ෡𝑉𝑖 =෍

𝑖≠𝑗

𝑛
𝑒′2

𝑟𝑖𝑗

(7)

(8)

෡Hi
0 is hydrogen like Hamiltonian of the electron i and ෡Vi represents
the total potential energy of the electron i due to repulsion by all
other elctrons.



• To determine Vi in equation (8) Hartree assumes that

each electron in the atom moves in a potential field due to

the nucleus and all other electrons and assumed set of

orbitals are

s1, s2, …. sn

which may be hydrogen like orbital.

• Now consider the electron 1 moving through the smeared

cloud of other electrons.

• The potential energy of interaction between point charges

Q1 and Q2

V12 =
𝑄1 𝑄2
4𝜋𝜖0𝑟12

• For electron 1, Q1 = - e, the electronic charge;  and for 

electron 2, the infinitesimal charge in the infinitesimal volume 

d2 is – e|s2|
2d2. Summing up the interaction between Q1

and infinitesimal elements of charge, we have

(9)



where, e′2 =
𝑒2

4𝜋𝜖0

V12 =
׬ −𝑒 −𝑒 𝑠2

2𝑑𝜏2

4𝜋𝜖0 𝑟12
= 𝑒′2

׬ 𝑠2
2𝑑𝜏2

𝑟12
(10)

• Adding in the interactions with the other electron, we have

𝑉1 = V12 + 𝑉13 +⋯⋯⋯+ 𝑉1𝑛 =෍

𝑗=2

𝑛

𝑒′2
𝑠𝑗

2

𝑟1𝑗
𝑑𝜏𝑗 (11)

• Under the central force field assumption V1 is a function of r1

only. Adding V1 with -Ze′2/r1 and using as potential energy in 

a one-electron Schrodinger equation

−
ℏ2

2𝑚𝑒
𝛻1
2 −

𝑍𝑒′2

𝑟1
+ 𝑉1 𝑟1 𝑡1 1 = 𝜖1𝑡1(1) (12)

and solution for t1(1) will give improved orbital for electron 1.



• However, the solution of equation (12) is very difficult 

because V1  required the prior knowledge of all one electron 

wave functions. Hartree suggested an iteration method for 

solution.

Iteration method
Let us consider a function 13 += xx

The iteration formula for this function can be written as

13

1
2

3

1
−

−−
−=+

n

n
nn

x

xx
xx



• First V1 is calculated from chosen set of functions s1, s2 ….sn.

• Using V1  in equation (12), t1(1) is calculated by a numerical 

method.

• We now go to electron 2 and regard it as moving in charge cloud 

of density

• This procedure is carried on until a set of improved orbitals for all 

n electrons is obtained.

• Then going back to electron 1 and repeating the process.

• This process of iteration is to be continued until the assumed set 

of si and the calculated set become identical. The final set of 

orbitals gives Hartree self-consistent-field wave functions (i).

• Finally, we have the wave function

−𝑒[ 𝑡1 1 2 + 𝑠3
2 + 𝑠4

2 +⋯+ 𝑠𝑛
2]

due to the other electrons. Calculating V2(r2) and solving a one-

electron Schrodinger equation for electron 2 will give an improved 

orbital t2(2).

Ψ = 𝜙1 𝜙2 𝜙3⋯⋯𝜙𝑛 (13)



❑Orbital energy and Total energy

The orbital energy 𝜀𝑖 of the electron i is 

𝜀𝑖 = ׬ 𝜙𝑖 ෡𝐻𝑖𝜙𝑖 𝑑𝜏𝑖

= ׬ 𝜙𝑖 ෡𝐻𝑖
0𝜙𝑖 𝑑𝜏𝑖 + ׬ 𝜙𝑖 ∑𝑖≠𝑗 𝑒

′2 ׬ 𝜙𝑗
2

𝑟𝑖𝑗
𝑑𝜏𝑗 𝜙𝑖 𝑑𝜏𝑖

= 𝜀𝑖
0 + ∑𝑖≠𝑗 ׬ ׬

𝑒′2 𝜙𝑖
2 𝜙𝑗

2

𝑟𝑖𝑗
𝑑𝜏𝑖 𝑑𝜏𝑗

= 𝜀𝑖
0 + ∑𝑖≠𝑗 𝐽𝑖𝑗 (14)

In equation (14), 𝜀𝑖
0 is the orbital energy of the electron i in 

the absence of all other electrons, and Jij is the average 

columbic energy of repulsion between two charges 

represented  by 𝜙𝑖
2 and  𝜙𝑗

2
.



The total energy of all the electron in the atom is

𝐸 = ∗Ψ׬ ෡𝐻 Ψ 𝑑𝜏

= ׬ 𝜙1
∗ 𝜙2

∗⋯𝜙𝑛
∗ ∑𝑖

෡𝐻𝑖
0 𝜙1 𝜙2⋯𝜙𝑛 𝑑𝜏1 𝑑𝜏2⋯𝑑𝜏𝑛

׬+ 𝜙1
∗ 𝜙2

∗⋯𝜙𝑛
∗ 1

2
∑𝑖∑𝑖≠𝑗

𝑒′2

𝑟𝑖𝑗
𝜙1 𝜙2⋯𝜙𝑛 𝑑𝜏1 𝑑𝜏2⋯𝑑𝜏𝑛

= ∑𝑖 𝜀𝑖
0 +

1

2
∑𝑖∑𝑖≠𝑗 ׬ ׬ 𝑒

′2 𝜙𝑖
2 𝜙𝑗

2

𝑟𝑖𝑗
𝑑𝜏𝑖𝑑𝜏𝑗

= ∑𝑖 𝜀𝑖
0 +

1

2
∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗 (15)

Operator ෡𝐻𝑖
0 acts on electron i only and 

1

𝑟𝑖𝑗
on electrons i

and j, and all orbitals are normalized.



❑Relation between Orbital energy and Total energy

From equation (14), we get 

𝜀𝑖
0 = 𝜀𝑖 −෍

𝑖≠𝑗

𝐽𝑖𝑗

Inserting the value of 𝜀𝑖
0 in equation (15) gives

𝐸 = ∑𝑖(𝜀𝑖 − ∑𝑖≠𝑗 𝐽𝑖𝑗) +
1

2
∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗

= ∑𝑖 𝜀𝑖 − ∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗 +
1

2
∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗

= ∑𝑖 𝜀𝑖 −
1

2
∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗

• 𝜀𝑖 involves, in addition to its own orbital energy in the field of 

the nucleus, the interaction with all other electrons in atoms. 
∑𝑖 𝜀𝑖 counts twice the interactions between electrons, like  𝐽𝑖𝑗

and 𝐽𝑗𝑖. To obtain the correct energy, the term 
1

2
∑𝑖∑𝑖≠𝑗 𝐽𝑖𝑗 has 

to be subtracted from ∑𝑖 𝜀𝑖.   



Ionization energy
• If an electron labeled k from the orbital k is removed to infinity, 

the atoms becomes ionized. If we ignore any change of the 

orbital functions the energy of the ion is then given by

Thus we have the relation

 −=− ionk

This means that -k
 represents the ionization energy of the atom 

in which an electron is removed from the orbital k. This method 
has been applied by Hartree to several atoms and ions. 

𝐸𝑖𝑜𝑛 =෍

𝑖≠𝑘

𝐸𝑘
′ −

1

2
෍

𝑖≠𝑘

෍

𝑗≠𝑘,𝑖≠𝑗

׬ ׬ 𝜙𝑖𝜙𝑗
𝑒′2

𝑟𝑖𝑗
𝜙𝑖𝜙𝑗𝑑𝜏𝑖𝑑𝜏𝑗

𝐸𝑖𝑜𝑛 = 𝐸 − ׬ 𝜙𝑘 −
1

2𝑚𝑒
𝛻𝑘
2 −

𝑍𝑒′2

𝑟𝑘
𝜙𝑘𝑑𝜏𝑘 −෍

𝑗≠𝑘

׬ ׬ 𝜙𝑘𝜙𝑗
𝑒′2

𝑟𝑗𝑘
𝜙𝑘𝜙𝑗𝑑𝜏𝑘𝑑𝜏𝑗



ElectronSpin

To explain this fine structure of atomic spectra, Uhlenbeck and Goudsmit

proposed in 1925 that the electron has an intrinsic (built-in) angular

momentum in addition to the orbital angular momentum due to its motion

about the nucleus. If we picture the electron as a sphere of charge spinning

about one of its diameters, we can see how such an intrinsic angular

momentum can arise. Hence we have the term spin angular momentum or,

more simply, spin.

However, electron "spin" is not a classical effect, and the picture of an electron

rotating about an axis has no physical reality. The intrinsic angular momentum

is real, but no easily visualizable model can explain its origin properly. We

cannot hope to understand microscopic particles based on models taken from

our experience in the macroscopic world. Other elementary particles besides

the electron have spin angular momentum.



We have learned that each physical property has its corresponding linear

Hermitian operator in quantum mechanics. For such properties as orbital

angular momentum, we can construct the quantum-mechanical operator from

the classical expression by replacing Px• Py• Pz by the appropriate operators.

The inherent spin angular momentum of a microscopic particle has no analog

in classical mechanics, so we cannot use this method to construct operators

for spin. For our purposes, we shall simply use symbols for the spin operators,

without giving an explicit form for them.

Analogous to the orbital angular-momentum operators L2, ix, Ly, Lz, we have

the spin angular-momentum operators S2, S x• SY' S z• Which are postulated

to be linear and Hermitian. S2 is the operator for the square of the magnitude

of the total spin angular momentum of a particle. S z is the operator for the z

component of the particle's spin angular momentum. We have



We postulate that the spin angular-momentum operators obey the same 

commutation relations as the orbital angular-momentum operators. Analogous 

to [Lx, Ly] = ifiLz, [Ly, Lz] = ifiLx, [Lz, Lx] = ifiLy, we have

From (10.1) and (10.2),

The eigenvalues of S2 are

and the eigenvalues of Sz are



The quantum number s is called the spin of the particle. Although nothing in

Section 5.4 restricts electrons to a single value for s, experiment shows that all

electrons do have a single value for s, namely, s = 1/2. Protons and neutrons

also have s = 1/2. Pions have s = 0. Photons have s = 1.

However, Eq. (10.5) does not hold for photons. Photons travel at speed c in

vacuum. Because of their relativistic nature, it turns out that photons can have

either ms = + 1 or ms = -1, but not ms = 0. These two ms values correspond to

left circularly polarized and right circularly polarized light.






