Rings and Modules Chapter 5 Dr. Md. Masum Murshed Department of Mathematics University of Rajshahi

Additive Abelion Group

- (i) $a+b \in G, \forall a, b \in G.$
- (ii) $a + (b + c) = (a + b) + c \forall a, b, c \in G.$
- (iii) There exists $0 \in G$ such that $a + 0 = 0 + a = a \forall a \in G$.
- (iv) For every $a \in G$ there exists, $-a \in G$ such that a + (-a) = (-a) + a = 0.
- (v) $a+b=b+a \forall a, b \in G.$

Ring: (R, +, *)

- (i) R is an additive abelion group.
- (ii) $a * b \in R \forall a, b \in R$.
- (iii) $a * (b * c) = (a * b) * c \forall a, b, c \in R.$
- (iv) $a * (b + c) = a * b + a * c \forall a, b, c \in R.$
- (v) $(a+b) * c = (a * c) + (b * c) \forall a, b, c \in R.$

If ab = ba, then (R, +, *) is a commutative ring.

Left R-module: Let R be a ring (not necessarily commutative). Let M be an additive abelian group then M is called a *left R-module* if M is closed under scalar multiplication and satisfies the following conditions:

- (i) r(x+y) = rx + ry
- (ii) $(r_1 r_2)(x) = r_1(r_2 x)$
- (iii) $(r_1 + r_2)(x) = r_1 x + r_2 x$
- (iv) if $1 \in R$ then $1 \cdot x = x$,

where, $r_1, r_2, r \in R$ and $x, y \in M$; and $r \in R, x \in M$ implies rx is the unique element in M. The left *R*-module M is denoted by $_RM$.

Right R-module: Let R be a ring (not necessarily commutative). Let M be an additive abelian group then M is called a *right R-module* if M is closed under scalar multiplication and satisfies the following conditions:

- (i) (x+y)r = xr + yr
- (ii) $x(r_1r_2) = (xr_1)r_2$
- (iii) $x(r_1 + r_2) = xr_1 + xr_2$
- (iv) if $1 \in R$ then $x \cdot 1 = x$,

where, $r_1, r_2, r \in R$ and $x, y \in M$; and $r \in R, x \in M$ implies xr is the unique element in M. The right *R*-module M is denoted by M_R .

<u>R-Module</u>: An additive abelian group M is called an *R-Module* if it is both a *left R-Module* and a *right R-Module*. If R is a commutative ring then M is both a *left* and a *right R-Module*.

Examples:

- (i) Any ring R is an R-module (either left or right R-module).
- (ii) If R is a field then every vactor space V over R is an R-module.
- (iii) $2\mathbb{Z}$ is a \mathbb{Z} -module.
- (iv) Every abelian group is a \mathbb{Z} -module.
- (v) Every ideal I of a ring R is an R-module.

<u>Bi-Module</u>: Let R and S be two rings each with identity element. Then the additive abelian group M is called a *Bi-module* if M is a left *R-Module* and a *right S-module* and it is denoted by $_RM_S$.

Sub-Module: Let R be a ring with 1 and M be a *left R-module*, then a subset N of M is said to be a *sub-module* of M if,

- (i) N is a *sub-group* of M,
- (ii) for each $r \in R$ and $n \in N$ implies $rn \in N$.

<u>Theorem</u>: Let N_i ; $i \in I$ be a finity of *sub-modules* of a *left R-module* M then $\bigcap_{i \in I} N_i$ is a *sub-module* of M.

Proof: Clearly, $\bigcap_{i \in I} N_i$ is a *sub-group* of M. Let $r \in R$ and $n \in \bigcap N_i$. This implies that $n \in N_i$ for each i. Since, each N_i is a submodule of M, $rn \in N_i$ for each i. Therefore, $rn \in \bigcap_{i \in I} N_i$. Hence, $\bigcap_{i \in I} N_i$ is a *sub-module* of M.

Factor module: Let M be a left R-module and N be a sub-module of M. We define r(m + N) = rm + N, then the factor group $\frac{M}{N}$ becomes a left R-module. This left R-module $\frac{M}{N}$ is called a factor module of M by N, where $m \in M$ and $r \in R$.

<u>Note:</u>

If
$$\overline{x+y} \in \frac{M}{N}$$
 then $\overline{x+y} = \overline{x} + \overline{y}$.
If $\overline{ax} \in \frac{M}{N}$ then $\overline{ax} = a\overline{x} = a(x+N)$.
If $x \in \frac{M}{N}$ then $x = m+N$, where $m \in M$

Homomorplism: Let M and M' are left R-modules. A mapping $f : M \to M'$ is called an R-hmomorplism or a linear mapping or linear homomorphism, if the following conditions are satisfied:

- (i) $f(x+y) = f(x) + f(y), \forall x, y \in M,$
- (ii) $f(rx) = rf(x) \ \forall x \in M \text{ and } r \in R.$

Example:

Let *M* be a *left R-module* and *S* be an *R-sub module* of *M*. A mapping $\phi : M \to \frac{M}{S}$ define by $\phi(m) = m + S$ is an *R-homomorphism*.

Proof: Here given that, $\phi(m) = m + S$, where $m \in M$.

Now, let $m_1, m_2 \in M$ then we have,

$$\phi(m_1 + m_2) = m_1 + m_2 + S$$

= $m_1 + S + m_2 + S$
= $\phi(m_1) + \phi(m_2).$

Again let, $r \in R$ and $m \in M$, then $rm \in M$. Now, we have,

$$\phi(rm) = rm + S$$
$$= r(m + S)$$
$$= r\phi(m).$$

Hence, ϕ is an *R*-homomorphism.

Problem: Let M and M' be two *left R-modules*. Show that the mapping $\phi : M \to M'$ defined by $\phi(x) = x^2$ is not an *R-homomorphism*.

<u>Proof</u>: Given that, $\phi : x \to x^2$.

Let $x, y \in M$ then $\phi(x) = x^2$ and $\phi(y) = y^2$.

$$\therefore \phi(x+y) = (x+y)^2$$
$$= x^2 + y^2 + 2xy$$
$$= \phi(x) + \phi(y) + 2xy.$$
Thus, $\phi(x+y) \neq \phi(x) + \phi(y).$

Again, if $r \in R$, then $\phi(rx) = r^2 x^2 = r^2 \phi(x)$.

Which implies that, $\phi(rx) \neq r\phi(x)$.

Hence, ϕ is not an *R*-homomorphism.

Problem: Let M, N, Q be three R-modules and let $T : M \to N$ and $S : N \to Q$ be R-homomorphisms. Let $ST : M \to Q$ define by (ST)(m) = ST(m) for $m \in M$. Prove that ST is an R-homomorphism.

Proof: Let $m, m_1, m_2 \in M; n, n_1, n_2 \in N$ and $r \in R$.

Since, T and S are both R-homomorphism then we have,

$$T(m_{1} + m_{2}) = T(m_{1}) + T(m_{2}), T(rm) = rT(m)$$

and $S(n_{1} + n_{2}) = S(n_{1}) + S(n_{2}), S(rn) = rS(n).$
Now, $(ST)(m_{1} + m_{2}) = ST(m_{1} + m_{2})$
 $= S(T(m_{1}) + T(m_{2}))$
 $= S(T(m_{1}) + S(T(m_{2}))$
 $= (ST)(m_{1}) + (ST)(m_{2}).$
And, $(ST)(rm) = ST(rm)$
 $= S(rT(m))$
 $= rS(T(m))$
 $= rS(T(m))$
 $= rST(m)$
 $= r(ST)(m).$

Hence. $ST: M \to Q$ is an *R*-homomorphism.

Problem: Let M and Q be two R-modules and let $S : M \to Q$ and $T : M \to Q$ be R-homomorphisms. Then show that $(S + T) : M \to Q$ is an R-homomorphism.

Proof: Since, S and T are two *R*-homomorphism from M to Q, then for $m_1, m_2 \in M$ and $r \in R$, we have,

$$(S+T)(m_1 + m_2) = S(m_1 + m_2) + T(m_1 + m_2)$$

= $S(m_1) + S(m_2) + T(m_1) + T(m_2)$
= $S(m_1) + T(m_1) + S(m_2) + T(m_2)$
= $(S+T)(m_1) + (S+T)(m_2)$.
And, $(S+T)(rm) = S(rm) + T(rm)$
= $rS(m) + rT(m)$
= $r(S(m) + T(m))$

= r(S+T)(m).

Hence, (S+T) is an *R*-homomorphism.

Problem: If $f: M \to T$ be an *R*-homomorphism and *X*, *Y* being *R*-submodules of *M* and *T*, respectively, with the property that $f(X) = \{f(x) : x \in X\} \subseteq T$. Then show that $f': \frac{M}{X} \to \frac{T}{Y}$ defined by f'(m+X) = f(m) + Y is an *R*-homomorphism.

Proof: Let $m_1 + X$, $m_2 + X \in \frac{M}{X}$, where $m_1, m_2 \in M$ and $r \in R$, then, $(m_1 + X) + (m_2 + X) = (m_1 + m_2) + X \in \frac{M}{X}$ Now, $f'((m_1 + X) + (m_2 + X)) = f'((m_1 + m_2) + X)$ $= f(m_1 + m_2) + Y$ $= f(m_1) + f(m_2) + Y$ $= f(m_1) + Y + f(m_2) + Y$ $= f'(m_1 + X) + f'(m_2 + X).$

Again, f'(r(m+X)) = f'(rm+X)

$$= f(rm) + Y$$
$$= rf(m) + Y$$
$$= r(f(m) + Y)$$
$$= rf'(m + X)$$

Hence, f' is an *R*-homomorphism.

<u>Theorem</u>: Let $\phi : M \to M'$ be an *R*-homomorphism, then show that,

- (i) $\phi(0) = \overline{0}$, where $0 \in M$ and $\overline{0} \in M'$
- (ii) $\phi(-m) = -\phi(m)$, where $m \in M$.

Proof (i): We have,

$$\phi(m) + \bar{0} = \phi(m) = \phi(m+0) = \phi(m) + \phi(0)$$

i.e.,
$$\phi(m) + \bar{0} = \phi(m) + \phi(0)$$

Now, adding $-\phi(m)$ on both sides, we have, $\phi(0) = \overline{0}$.

Proof (ii): We have, from (i),

$$\bar{0} = \phi(0)$$
$$= \phi(m + (-m))$$
$$= \phi(m) + \phi(-m)$$

i.e., $\phi(m) + \phi(-m) = \bar{0}$

Adding $-\phi(m)$ on both sides, we get,

$$\phi(-m) = -\phi(m) + \bar{0}$$
$$= -\phi(m)$$
$$\therefore \phi(-m) = -\phi(m).$$

Kernel and Image of an R-homomorphism: Let $\phi : M \to M'$ be an *R-homomorphism*. Then the *kernel* of ϕ is defined by, $ker\phi = \{x \in M : \phi(x) = \overline{0}\}$ and the image of ϕ is written as $Im\phi$ and is defined by $Im\phi = \{\phi(x) : x \in M\}$.

<u>Theorem</u>: Let $\phi : M \to M'$ be an *R*-homomorphism, then show that,

- (i) $ker\phi$ is a sub-module of M.
- (ii) $Im\phi$ is a sub-module of M'.

Proof (i): Since $\phi(0) = \overline{0}$ implies $0 \in ker\phi$, therefore $ker\phi$ is nonempty.

Now, let $m_1, m_2 \in ker\phi$ then $\phi(m_1) = \overline{0}$ and $\phi(m_2) = \overline{0}$.

Now,
$$\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2) = \bar{0} + \bar{0} = \bar{0}$$

which implies that $m_1 + m_2 \in ker\phi$.

Again, let $r \in R$ and $m \in ker\phi$ then $\phi(m) = \overline{0}$.

Now,
$$\phi(rm) = r\phi(m) = r.\overline{0} = \overline{0}$$

which implies that $rm \in ker\phi$.

Hence, $ker\phi$ is a *sub-module* of M.

Proof (ii): Since $\phi(0) = \overline{0}$ implies $\overline{0} \in M'$. Also $\overline{0} \in Im\phi$, therefore $Im\phi$ is nonempty.

let $\phi(m_1), \phi(m_2) \in Im\phi$ then,

$$\phi(m_1) + \phi(m_2) = \phi(m_1 + m_2) = \phi(m_3)$$
 where $m_3 \in M$

which implies $\phi(m_1) + \phi(m_2) \in Im\phi$.

Finally, let $r \in R$ and $\phi(m) \in Im\phi$ then, $r\phi(m) = \phi(rm) \in Im\phi$.

Hence $r\phi(m) \in Im\phi$ and therefore $Im\phi$ is a sub-module of M'.

Epimorphism: A homomorphism $f: M \to M'$ is called an *epimorphism* when f(M) = Imf = M'.

Monomorphism: A homomorphism $f: M \to M'$ is called a *monomorphism* if $\overline{f(m_1) = f(m_2)} \implies m_1 = m_2$ for every $m_1, m_2 \in M$.

Isomorphism: A homomorphism $f: M \to M'$ is called an *isomorphism* if f is an *epimorphism* and a *monomorphism*.

<u>Note</u>: If $f: M \to M'$ is an *isomorphism* and if $f^{-1}: M' \to M$ be a mapping defined by $f^{-1}(x') = x$ iff f(x) = x' then f^{-1} is also an *isomorphism*. Here $f^{-1} \circ f$ is the identity mapping of M and $f \circ f^{-1}$ is the identity of M'.

Canonical injection and projection: If N is a submodule M then the mapping $J : N \to M$ defined by $J(x) = x \forall x \in N$ is a monomorphism and is called the *natural* or *canonical injection* of N into M.

The mapping $\phi: M \to \frac{M}{N}$ defined by $\phi(m) = m + N$ is called the *natural* or *canonical* projection.

<u>Note</u>: The set of all homomorphism of M to M' is denoted by $Hom_R(M, M')$.

Endomorphism and Automorphism: A homomorphism of M to M itself is called an *endomorphism* and an *isomorphism* of M to M itself is called an *automorphism*.

Theorem: If R is a commutative ring and M, M' are R-modules then the set $Hom_R(M, M')$ is an R-module.

Proof: We define, $(f_1 + f_2)(m) = f_1(m) + f_2(m)$, where $f_1, f_2 \in Hom_R(M, M')$.

(i) Here we have, $(f_1 + f_2)(m_1 + m_2) = f_1(m_1 + m_2) + f_2(m_1 + m_2)$

$$= f_1(m_1) + f_1(m_2) + f_2(m_1) + f_2(m_2)$$

$$= f_1(m_1) + f_2(m_1) + f_1(m_2) + f_2(m_2)$$

$$= (f_1 + f_2)(m_1) + (f_1 + f_2)(m_2)$$

And, $(f_1 + f_2)(rm) = f_1(rm) + f_2(rm)$

$$= rf_1(m) + rf_2(m)$$

$$= r(f_1(m) + f_2(m))$$

$$= r(f_1 + f_2)(m).$$

Thus, $f_1 + f_2 \in Hom_R(M, M')$.

i.e., $Hom_R(M, M')$ is closed under addition.

(ii) For any
$$f_1, f_2, f_3 \in Hom_R(M, M')$$
 we have,
 $(f_1 + (f_2 + f_3))(m) = f_1(m) + (f_2 + f_3)(m)$
 $= f_1(m) + f_2(m) + f_3(m)$
 $= (f_1(m) + f_2(m)) + f_3(m)$
 $= (f_1 + f_2)(m) + f_3(m)$
 $= ((f_1 + f_2) + f_3)(m)$
Hence, $f_1 + (f_2 + f_3) = (f_1 + f_2) + f_3$.

Hence, $f_1 + (f_2 + f_3) = (f_1 + f_2) + f_3$.

i.e., associative law for addition is satisfied in $Hom_R(M, M')$.

(iii) We define $f_0: M \to M'$ by $f_0(m) = \overline{0}$ such that,

$$(f + f_0)(m) = f(m) + f_0(m)$$
$$= f(m) + \bar{0}$$
$$= f(m)$$

i.e., $f + f_0 = f$

Similarly, we have, $f_0 + f = f$

Hence, f_0 is the identity element of $Hom_R(M, M')$.

(iv) For every $f \in Hom_R(M, M')$ there exists $-f \in Hom_R(M, M')$ defined by (-f)(m) = -f(m) such that (f + (-f))(m) = f(m) + (-f)(m) = f(m) - f(m) $= \bar{0}$ $= f_0(m)$

Which implies $f + (-f) = f_0$.

Similarly, we have, $(-f) + f = f_0$

Hence, inverse element exists in $Hom_R(M, M')$.

(v) For all $f_1, f_2 \in Hom_R(M, M')$ we have,

$$(f_1 + f_2)(m) = f_1(m) + f_2(m)$$

= $f_2(m) + f_1(m)$
= $(f_1 + f_2)(m)$

This implies $f_1 + f_2 = f_2 + f_1$

Hence $Hom_R(M, M')$ is an additive abelian group.

(vi) Now, for any $r \in R$ and $f \in Hom_R(M, M')$, define (rf)(m) = rf(m) and (fr)(m) = f(m)r. We show that rf and fr are R-homomorphisms. i.e., rf, $fr \in Hom_R(M, M')$.

We have,
$$(rf)(m_1 + m_2) = r(f(m_1 + m_2))$$

= $r(f(m_1) + f(m_2))$
= $rf(m_1) + rf(m_2)$
= $(rf)(m_1) + (rf)(m_2)$

Again, (rf)(r'm) = rf(r'm)= rr'f(m)= r'rf(m) (since R is commutative) = r'(rf)(m)

Hence, $rf \in Hom_R(M, M')$.

Similarly, we can show that $fr \in Hom_R(M, M')$.

(vii) Now, for any $r \in R$ and $f_1, f_2 \in Hom_R(M, M')$, we have,

$$\begin{aligned} (r(f_1+f_2))(m) &= r(f_1+f_2)(m) \\ &= r(f_1(m)+f_2(m)) \\ &= rf_1(m)+rf_2(m) \\ &= (rf_1+rf_2)(m) \end{aligned}$$
 i.e., $r(f_1+f_2) = rf_1+rf_2$

Similarly, we can show that $(f_1 + f_2)r = f_1r + f_2r$

(viii) Next, for any $r_1, r_2 \in R$ and $f \in Hom_R(M, M')$, we have,

$$((r_1 + r_2)f)(m) = (r_1 + r_2)f(m)$$

= $r_1f(m) + r_2f(m)$
= $(r_1f)(m) + (r_2f)(m)$
= $(r_1f + r_2f)(m)$
i.e., $(r_1 + r_2)f = r_1f + r_2f$

Similarly, we can show that $f(r_1 + r_2) = fr_1 + fr_2$

(ix) Next, for any $r_1, r_2 \in R$ and $f \in Hom_R(M, M')$, we have,

$$((r_1r_2)f)(m) = (r_1r_2)(f(m))$$
$$= r_1(r_2f(m))$$
$$= r_1(r_2f)(m)$$
i.e., $((r_1r_2)f) = r_1(r_2f)$

Similarly, we can show that $(f(r_1r_2)) = (fr_1)r_2$

(x) Finally, if $1 \in \mathbb{R}$, then for any $f \in Hom_{\mathbb{R}}(M, M')$, we have, (1f)(m) = 1f(m) = f(m)

i.e., 1f = f

Similarly, f1 = f

Hence, $Hom_R(M, M')$ is an *R*-module.

<u>Theorem</u>: If M is an *R*-module, then show that $Hom_R(M, M)$ is a ring.

or, The set of all endomorphism is a ring.

Proof: We define, $(f_1 + f_2)(m) = f_1(m) + f_2(m)$, where $f_1, f_2 \in Hom_R(M, M)$.

(i) Here we have,
$$(f_1 + f_2)(m_1 + m_2) = f_1(m_1 + m_2) + f_2(m_1 + m_2)$$

$$= f_1(m_1) + f_1(m_2) + f_2(m_1) + f_2(m_2)$$

$$= f_1(m_1) + f_2(m_1) + f_1(m_2) + f_2(m_2)$$

$$= (f_1 + f_2)(m_1) + (f_1 + f_2)(m_2)$$

And,
$$(f_1 + f_2)(rm) = f_1(rm) + f_2(rm)$$

= $rf_1(m) + rf_2(m)$
= $r(f_1(m) + f_2(m))$
= $r(f_1 + f_2)(m)$.

Thus, $f_1 + f_2 \in Hom_R(M, M)$.

i.e., $Hom_R(M, M)$ is closed under addition.

(ii) For any
$$f_1, f_2, f_3 \in Hom_R(M, M)$$
 we have,
 $(f_1 + (f_2 + f_3))(m) = f_1(m) + (f_2 + f_3)(m)$
 $= f_1(m) + f_2(m) + f_3(m)$
 $= (f_1(m) + f_2(m)) + f_3(m)$
 $= (f_1 + f_2)(m) + f_3(m)$
 $= ((f_1 + f_2) + f_3)(m)$

Hence, $f_1 + (f_2 + f_3) = (f_1 + f_2) + f_3$.

i.e., associative law for addition is satisfied in $Hom_R(M, M)$.

(iii) We define $f_0: M \to M$ by $f_0(m) = \bar{0}$ such that,

$$(f + f_0)(m) = f(m) + f_0(m)$$
$$= f(m) + \bar{0}$$
$$= f(m)$$

i.e., $f + f_0 = f$

Similarly, we have, $f_0 + f = f$

Hence, f_0 is the identity element of $Hom_R(M, M)$.

(iv) For every $f \in Hom_R(M, M)$ there exists $-f \in Hom_R(M, M)$ defined by

$$(-f)(m) = -f(m) \text{ such that } (f + (-f))(m) = f(m) + (-f)(m)$$
$$= f(m) - f(m)$$
$$= \bar{0}$$
$$= f_0(m)$$

Which implies $f + (-f) = f_0$.

Similarly, we have, $(-f) + f = f_0$

Hence, inverse element exists in $Hom_R(M, M)$.

(v) For all $f_1, f_2 \in Hom_R(M, M)$ we have, $(f_1 + f_2)(m) = f_1(m) + f_2(m)$ $= f_2(m) + f_1(m)$ $= (f_1 + f_2)(m)$

This implies $f_1 + f_2 = f_2 + f_1$

Hence $Hom_R(M, M)$ is an additive abelian group.

(vi) Let
$$f_1, f_2 \in Hom_R(M, M)$$
 and $m_1, m_2 \in M$, then
 $(f_1f_2)(m_1 + m_2) = f_1(f_2(m_1 + m_2))$
 $= f_1(f_2(m_1) + f_2(m_2))$
 $= f_1(f_2(m_1)) + f_1(f_2(m_2))$
 $= (f_1f_2)(m_1) + (f_1f_2)(m_2)$
Again, let $f_1, f_2 \in Hom_R(M, M), m \in M$ and $r \in R$, then
 $(f_1f_2)(rm) = f_1(f_2(rm))$
 $= f_1(rf_2(m))$

$$= r(f_1 f_2)(m)$$

This implies that, $f_1 f_2 \in Hom_R(M, M)$.

 $= rf_1(f_2(m))$

(vii) Let $f_1, f_2, f_3 \in Hom_R(M, M)$ and $m \in M$, then

$$((f_1f_2)f_3)(m) = (f_1f_2)(f_3(m))$$

= $f_1(f_2(f_3(m)))$
= $f_1((f_2f_3)(m))$
= $(f_1(f_2f_3))(m)$
Hence, $(f_1f_2)f_3 = f_1(f_2f_3)$.

(viii) Let
$$f_1, f_2, f_3 \in Hom_R(M, M)$$
 and $m \in M$, then
 $((f_1 + f_2)f_3)(m) = (f_1 + f_2)(f_3(m))$
 $= f_1(f_3(m)) + f_2(f_3(m))$
 $= (f_1f_3)(m) + (f_2f_3)(m)$
 $= (f_1f_3 + f_2f_3)(m)$
Hence, $(f_1 + f_2)f_3 = f_1f_3 + f_2f_3$.

Similarly, we can show that

(ix) $f_1(f_2 + f_2) = f_1 f_2 + f_1 f_3$.

Hence, $Hom_R(M, M)$ is a ring.

Problem: Let R be a ring and let M and N be two arbitrary R-modules. Let $f: M \to N$ be an R-homomorphism, then f is a monomorphism (one-one) iff $kerf = \{0\}$.

Proof: First suppose that $f: M \to N$ be a monomorphism. We show that $kerf = \{0\}$.

Let $a \in kerf$, then we have f(a) = 0.

Also, since f is a monomorphism, then f is an R-homomorphism and one-one.

Therefore, f(0) = 0. So, we have f(a) = 0 = f(0). Which implies that a = 0.

Since $a \in kerf$ implies a = 0.

Hence $kerf = \{0\}$.

Conversely, let $kerf = \{0\}$, we have to show that f is a monomorphism. i.e., f is one-one.

Let $f(a_1) = f(a_2)$, then we have,

$$f(a_1) - f(a_2) = 0$$
$$\implies f(a_1 - a_2) = 0$$
$$\implies a_1 - a_2 \in kerf.$$

Now, since $kerf = \{0\}$, then $a_1 - a_2 = 0$.

Which implies atat $a_1 = a_2$.

Hence, f is one-one.

Definition: let M, M', M'' be three left R-modules and let $f : M \to M'$ and $g : M' \to M''$, then the mapping $g \circ f : M \to M''$ defined by $(g \circ f)(m) = g(f(m))$ is a homomorphism of M into M'. If f and g are monomorphism or epimorphism or isomorphism, then $g \circ f$ is so.

Definition: let $f: N \to M$ be a homomorphism of two left *R*-modules *N* and *M*, then we define co-kernel and co-image by $co\text{-}kerf = \frac{M}{Imf}$ and $co\text{-}Imf = \frac{N}{kerf}$.

<u>Theorem</u>: Let *R* be a ring with 1 and let *A* and *B* be two *left R-modules*. Let $\phi : A \to B$ be an *R-homomorphism* then $\frac{A}{ker\phi} \cong Im\phi$.

or, State and prove the fundamental theorem of *R*-homomorphism.

<u>Proof:</u> Define a map $\psi : \frac{A}{ker\phi} \to Im\phi$ by $\psi(a + ker\phi) = \phi(a)$ for $a \in A$.

Then, this map is well defined. For if,

$$a + ker\phi = a' + ker\phi \text{ for } a, a' \in A$$

Then, $a - a' \in ker\phi \implies \phi(a - a') = 0$
 $\implies \phi(a) - \phi(a') = 0$
 $\implies \phi(a) = \phi(a')$
 $\implies \psi(a + ker\phi) = \psi(a' + ker\phi)$

Thus, ψ is well defined.

Let $a + ker\phi$, $a' + ker\phi \in \frac{A}{ker\phi}$, then $\psi((a + ker\phi) + (a' + ker\phi)) = \psi(a + a' + ker\phi)$ $= \phi(a + a')$ $= \phi(a) + \phi(a')$ $= \psi(a + ker\phi) + \psi(a' + ker\phi)$ Again, let $a + ker\phi \in \frac{A}{ker\phi}$ and $r \in R$, then $\psi(r(a + ker\phi)) = \psi(ra + ker\phi)$ $= \phi(ra)$ $= r\phi(a)$ (since ϕ is an *R*-homomorphism) $= r\psi(a + ker\phi)$

Hence, ψ is an *R*-homomorphism.

Next, let $\psi(a + ker\phi) = \psi(a' + ker\phi)$ for $a, a' \in A$ Then, $\phi(a) = \phi(a')$ $\implies \phi(a) - \phi(a') = 0$ $\implies \phi(a - a') = 0$ $\implies a - a' \in ker\phi$ $\implies a + ker\phi = a' + ker\phi$ Hence, ψ is a monomorphism.

Now for any, $a \in A$, $\phi(a) \in Im\phi$. And for any $\phi(a) \in Im\phi$ there exists an element $a + ker\phi \in \frac{A}{ker\phi}$ such that $\psi(a + ker\phi) = \phi(a)$. Thus, ψ is an *epimorphism*.

Therefore, ψ is an isomorphism.

Hence $\frac{A}{ker\phi} \cong Im\phi$ proved

Exact and Short Exact Sequence

Exact sequence: A sequence of *R*-modules and *R*-homomorphism,

 $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{f_3} \dots \xrightarrow{f_{n-2}} M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_n} M_{n+1}$ (1)

is said to be exact at M_i if $ker(f_i) = Im(f_{i-1})$. The sequence (1) is called exact if it is exact at each M_i for all $1 \le i \le n$, i.e., if $ker(f_i) = Im(f_{i-1})$ for all $1 \le i \le n$. The sequence (1) of *R*-modules and *R*-homomorphism may be either finite or infinite.

Note

Consider the sequence $0 \longrightarrow A \xrightarrow{f} B$. The image of the leftmost map is $\{0\}$. Therefore the sequence is exact if and only if $kerf = \{0\}$; that is, if and only if f is a monomorphism (injective, or one-one).

Consider the sequence $B \xrightarrow{g} C \longrightarrow 0$. The kernel of the rightmost map is C. Therefore the sequence is exact if and only if Img = C; that is, if and only if g is an epimorphism (surjective, or onto).

Therefore, the sequence $0 \longrightarrow A \xrightarrow{f} B \longrightarrow 0$ is exact if and only if f is both a monomorphism and epimorphism, and thus, in many cases, an isomorphism from A to B.

Short exact sequence (SES): Let A, B, C be three *R*-modules and let $f : A \to B$ and $g: B \to C$ be *R*-homomorphisms then the following sequence

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{2}$$

is called a *short exact sequence* of *R*-modules and *R*-homomorphism if it is exact at each of A, B and C, i.e., f is a monomorphism, g is an epimorphism and Imf = kerg.

<u>Theorem</u>: Let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be a short exact sequence of *R*-modules and *R*-homomorphisms then $A \cong kerg = Imf$ and C = Img.

<u>Proof:</u> Since $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is a short exact sequence of *R*-modules and *R*-homomorphisms then, we have f is monomorphism, g is an epimorphism and Imf = kerg.

Let $h: A \to Imf$ be defined by $h(a) = f(a) \forall a \in A$. Then clearly h is a monomorphism and an epimorphism. Thus h is an isomorphism, i.e., $A \cong Imf$. But Imf = kerg. Hence $A \cong kerg = Imf$.

Since g is an *epimorphism*, we have Img = C.

Hence $A \cong kerg = Imf$ and C = Img.

<u>Theorem</u>: Let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be a short exact sequence of *R*-modules and *R*-homomorphisms then $co\text{-}kerf = \frac{B}{Imf} = \frac{B}{kerg} \cong Img = C$.

<u>Proof:</u> Since $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is a short exact sequence of *R*-modules and *R*-homomorphisms then, we have f is monomorphism, g is an epimorphism and Imf = kerg.

By definition we have, $co\text{-}kerf = \frac{B}{Imf}$. Since Imf = kerg, then we have $co\text{-}kerf = \frac{B}{Imf} = \frac{B}{kerg}$.

Since $g : B \to C$ is a homomorphism, then by the fundamental theorem we have, $\frac{B}{kerq} \cong Img$. Again since g is an *epimorphism*, we have Img = C.

Hence $co\text{-}kerf = \frac{B}{Imf} = \frac{B}{kerg} \cong Img = C.$

Split short exact sequence: A short exact sequence $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ of *R-modules* and *R-homomorphisms* is called a split short exact sequence if either

- (i) there exists an *R*-homomorphism $\alpha' : B \to A$ such that $\alpha' \alpha = 1_A$, where 1_A is the identity mapping on *A*.
- or, (ii) there exists an *R*-homomorphism $\beta' : C \to B$ such that $\beta\beta' = 1_C$, where 1_C is the identity map on *C*.

<u>Theorem</u>: Let $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ be a short exact sequence of *R*-modules and *R*-homomorphism, then show that the following conditions are equivalent.

- (i) there exists an *R*-homomorphism $\alpha' : B \to A$ such that $\alpha' \alpha = 1_A$, where 1_A is the identity mapping on *A*.
- (ii) there exists an *R*-homomorphism $\beta' : C \to B$ such that $\beta\beta' = 1_C$, where 1_C is the identity map on *C*.

Or, Prove that the conditions for split short exact sequence are equivalent.

<u>Proof:</u> Since $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ is a short exact sequence of *R*-modules and *R*-homomorphisms then, we have α is monomorphism, β is an epimorphism and $Im\alpha = ker\beta$.

Let (i) holds. Let $c \in C$ then since β is an *epimorphism*, so $\exists b \in B$ such that $\beta(b) = c$.

Now, define $\beta': C \to B$ such that $\beta'(c) = b - \alpha \alpha'(b)$.

First we show that β' is well defined.

Let $c, c' \in C$ such that c = c'.

Since β is an *epimorphism* so $\exists b, b' \in B$ such that $\beta(b) = c$ and $\beta(b') = c'$.

Then, $\beta'(c) = b - \alpha \alpha'(b)$ and $\beta'(c') = b' - \alpha \alpha'(b')$. Now, $\beta(b - b') = \beta(b) - \beta(b')$ (since β is a homomorphism). = c - c' = c - c= 0

 $\implies b-b' \in ker\beta = Im\alpha.$

Thus, $b - b' = \alpha(a)$ for some $a \in A$.

Now,
$$\alpha \alpha'(b - b') = \alpha \alpha'(\alpha(a))$$

 $= \alpha(\alpha'(\alpha(a)))$
 $= \alpha(\alpha'\alpha(a))$
 $= \alpha(1_A(a))$
 $= b - b'$

$$\implies \alpha \alpha'(b) - \alpha \alpha'(b') = b - b' \text{ (since } \alpha \alpha' \text{ is a homomorphism).}$$
$$\implies b - \alpha \alpha'(b) = b' - \alpha \alpha'(b').$$
$$\implies \beta'(c) = \beta'(c')$$

Hence β' is well defined.

Also we have, for each $c \in C$, $c = \beta(b)$ and $\beta'(c) = b - \alpha \alpha'(b)$.

Now,
$$\beta\beta'(c) = \beta(b - \alpha\alpha'(b))$$

 $= \beta(b) - \beta(\alpha\alpha'(b))$
 $= \beta(b) - \beta\alpha(\alpha'(b))$
 $= c - 0 \text{ as } Im\alpha = ker\beta \text{ so } \beta\alpha = 0$
 $= c.$

i.e., $\beta\beta'(c) = c$.

Hence, $\beta\beta' = 1_C$ which is (ii).

2nd part

Conversely, suppose (ii) holds. Let $b \in B$ then

$$\beta(b - \beta'\beta(b)) = \beta(b) - \beta\beta'\beta(b)$$
$$= \beta(b) - 1_C\beta(b), \text{ (since } \beta\beta' = 1_C)$$
$$= \beta(b) - \beta(b)$$
$$= 0.$$

Therefore, $b - \beta' \beta(b) \in ker\beta = Im\alpha$.

Which implies $b - \beta'\beta(b) = \alpha(a)$ for some $a \in A$.

Now define $\alpha': B \to A$ by $\alpha'(b) = a$.

We show that α' is well defined.

Let $b, b' \in B$ such that b = b'.

Since $b - \beta'\beta(b)$, $b' - \beta'\beta(b') \in ker\beta = Im\alpha$.

Then $b - \beta'\beta(b) = \alpha(a)$ and $b' - \beta'\beta(b') = \alpha(a')$ for some $a, a' \in A$.

Thus $\alpha'(b) = a$ and $\alpha'(b') = a'$.

Now, $b - \beta'\beta(b) = b' - \beta'\beta(b')$ as b = b'.

$$\implies \alpha(a) = \alpha(a').$$

 $\implies a = a'$ (since α is a monomorphism).

$$\implies \alpha'(b) = \alpha'(b').$$

Thus α' is well defined.

Also for each $a \in A$,

$$\alpha'\alpha(a) = \alpha'(b - \beta'\beta(b))$$
$$= \alpha'(b) - \alpha'(\beta'\beta(b))$$
$$= a - 0 = a.$$

(since $\beta'\beta(b) - \beta'\beta(\beta'\beta(b)) = \beta'\beta(b) - \beta'I_C(\beta(b)) = \beta'\beta(b) - \beta'\beta(b) = 0 = \alpha(0)$ so $\alpha'(\beta'\beta(b)) = 0$)

Which implies that $\alpha' \alpha = 1_A$.

Thus (i) holds.

Hence the theorem.

<u>Theorem</u>: Let $\begin{array}{ccc} 0 \longrightarrow A & \stackrel{\alpha}{\longrightarrow} B & \stackrel{\beta}{\longrightarrow} C & \longrightarrow 0 \\ & \longleftarrow & & & & \\ \hline & & & & & \\ modules \text{ and } R\text{-homomorphism with } \alpha'\alpha = 1_A \text{ and } \beta\beta' = 1_C \text{ then show that} \end{array}$

 $0 \longleftarrow A \xleftarrow[\alpha']{} B \xleftarrow[\beta']{} C \longleftarrow 0 \text{ is an exact sequence.}$

<u>Proof:</u> Here we have to show that,

- (i) β' is a monomorphism,
- (ii) α' is an epimorphism,
- and (iii) ker $\alpha' = Im \beta'$

(i) We show that β' is a monomorphism, i.e., $ker\beta' = \{0\}$. Let $c \in ker\beta'$ then $\beta'(c) = 0$.

Since $\beta\beta' = 1_C$ so we have $\beta\beta'(c) = 1_C(c) = c$.

Also,
$$\beta\beta'(c) = \beta(\beta'(c)) = \beta(0) = 0.$$

Which implies c = 0.

Thus $ker\beta' = \{0\}.$

Hence β' is a monomorphism.

(ii) We show that α' is an epimorphism. Since $\alpha'\alpha = 1_A$, then for any $a \in A$ we have,

$$a = 1_A(a) = \alpha' \alpha(a) = \alpha'(\alpha(a)).$$

Since for every $a \in A$ there exists $\alpha(a) \in B$ such that $a = \alpha'(\alpha(a))$. Hence α' is an epimorphism.

(iii) Let $b \in ker\alpha' \subset B$ then $b \in B$ and $\alpha'(b) = 0$.

Also $\beta(b) = c$ for some $c \in C$.

Thus, $\beta'\beta(b) = \beta'(c)$ = $b - \alpha\alpha'(b)$ [By the defⁿ of β'] i.e., $\beta'\beta(b) = b - \alpha(0) = b - 0 = b$. i.e., $\beta'(c) = b \implies b \in Im\beta'$ Therefore, $ker\alpha' \subseteq Im\beta' \cdots \cdots \cdots \cdots \cdots \cdots (1)$

Again, let $b \in Im \ \beta'$ then $\beta'(c) = b$ for some $c \in C$.

Now,
$$\alpha'(b) = \alpha'(\beta'(c))$$

 $= \alpha'(b - \alpha\alpha'(b))$ [from the definition of β' we have $\beta'(c) = b - \alpha\alpha'(b)$]
 $= \alpha'(b) - \alpha'(\alpha\alpha'(b))$
 $= \alpha'(b) - (\alpha'\alpha)(\alpha'(b))$
 $= \alpha'(b) - 1_A(\alpha'(b))$
 $= \alpha'(b) - \alpha'(b)$

$$= 0$$

Hence $b \in ker\alpha'$

Which implies that $Im\beta' \subseteq ker\alpha' \cdots \cdots \cdots \cdots \cdots (2)$

From (1) and (2), we have $Im\beta' = ker\alpha'$

Hence, the sequence is exact. [proved]

Internal and External Direct Sum

Internal Direct Sum: Let A and B be two sub-modules of a left R-module M. If $A \cap B = \{0\}$, zero sub-module, then the set $\{a + b : a \in A \text{ and } b \in B\}$ is called the internal direct sum of A and B.

Similarly, we can define the internal direct sum of a finite number of sub-modules of a left R-module. Thus if A_1, A_2, \ldots, A_n are sub-modules of a left R-module M such that for each $A_j, A_j \cap (\bigcup_{i \neq j} A_i) = \{0\}$, then their internal direct sum is the set $\{\sum_{i=1}^n a_i : a_i \in A_i\}$.

External Direct Sum: The external direct sum $A_1 \oplus A_2$ of two *R*-modules A_1 and A_2 is the *R*-module consisting of all ordered pairs (a_1, a_2) , for $a_i \in A_i$, with the module operations defined by

$$(a_1, a_2) + (a'_1, a'_2) = (a_1 + a'_1, a_2 + a'_2)$$
 and $r(a_1, a_2) = (ra_1, ra_2)$.

Theorem: Let M_1 and M_2 be two sub-modules of a left *R*-module *M* such that.

- (i) $M_1 \cap M_2 = \{0\}$ and
- (*ii*) if $m \in M$, $m_1 \in M_1$, $m_2 \in M_2$ such that $m = m_1 + m_2$,
- then $M \cong M_1 \oplus M_2$.

Proof: Let us define a map $f: M \to M_1 \oplus M_2$ given by

 $f(m) = (m_1, m_2)$, where $m = m_1 + m_2$.

We show that f is well defined.

Let $m, m' \in M$ such that m = m'. Then $m = m_1 + m_2$ and $m' = m'_1 + m'_2$ where $m_1, m'_1 \in M_1; m_2, m'_2 \in M_2$ and $f(m) = (m_1, m_2), f(m') = (m'_1, m'_2)$.

Now, m = m'

 $\implies m_1 + m_2 = m'_1 + m'_2$ $\implies m_1 - m'_1 = m'_2 - m_2$

But $m_1 - m'_1 \in M_1$ and $m'_2 - m_2 \in M_2$.

Since $M_1 \cap M_2 = \{0\}$ then we have,

$$m_1 - m_1' = 0 = m_2 - m_2'$$

Which implies that, $m_1 = m'_1$ and $m_2 = m'_2$.

i.e., $(m_1, m_2) = (m'_1, m'_2)$

$$\implies f(m) = f(m').$$

Hence f is well defined.

Now, we show that f is a homomorphism.

Let $m, m' \in M$, then $m = m_1 + m_2$ and $m' = m'_1 + m'_2$ where $m_1, m'_1 \in M_1$; $m_2, m'_2 \in M_2$ and $f(m) = (m_1, m_2), f(m') = (m'_1, m'_2)$.

Now, $m + m' = (m_1 + m_2) + (m'_1 + m'_2) = (m_1 + m'_1) + (m_2 + m'_2)$ where $(m_1 + m'_1) \in M_1$ and $(m_2 + m'_2) \in M_2$.

Therefore, $f(m + m') = (m_1 + m'_1, m_2 + m'_2) = (m_1, m_2) + (m'_1, m'_2) = f(m) + f(m').$

Also, for any $r \in R$, $rm = rm_1 + rm_2$ where $rm_{\in}M_1$ and $rm_2 \in M_2$.

Therefore, $f(rm) = (rm_1, rm_2) = r(m_1, m_2) = rf(m)$.

Thus f is an R-homomorphism.

Next, we show that f is a monomorphism.

Let $m, m' \in M$, then $m = m_1 + m_2$ and $m' = m'_1 + m'_2$ where $m_1, m'_1 \in M_1$; $m_2, m'_2 \in M_2$ and $f(m) = (m_1, m_2), f(m') = (m'_1, m'_2)$.

Let f(m) = f(m'), then we have,

$$(m_1, m_2) = (m'_1, m'_2)$$

 $\implies m_1 = m'_1 \text{ and } m_2 = m'_2$

Thus $m = m_1 + m_2 = m'_1 + m'_2 = m'$.

Hence f is a monomorphism.

Finally, we show that f is an epimorphism.

For any $(m_1, m_2) \in M_1 \oplus M_2$ there exist an element $m \in M$ such that $(m_1, m_2) = f(m)$, where $m_1 + m_2 = m$.

Thus f is an epimorphism.

Hence f is an isomorphism.

i.e., $M \cong M_1 \oplus M_2$ [proved]

Proof: Let $a \in A$ and $b \in B$, then we define $i_1(a) = (a, 0)$ and $i_2(b) = (0, b)$. Also define π_1 and π_2 by $\pi_1(a, b) = b$ and $\pi_2(a, b) = a$. Then clearly i_1, i_2, π_1, π_2 are well defined and are all *R*-homomorphism.

Here we have to show that,

- (i) i_1 is a monomorphism,
- (ii) π_1 is an epimorphism,
- (iii) ker $\pi_1 = Im \ i_1$
- (iv) $\pi_2 i_1 = 1_A$
- and (v) $\pi_1 i_2 = 1_B$.
- (i) Let $i_1(a_1) = i_1(a_2)$ for some $a_1, a_2 \in A$. Then

$$(a_1, 0) = (a_2, 0)$$

$$\implies a_1 = a_2.$$

Thus i_1 is a monomorphism.

(ii) Let $b \in B$ then $b = \pi_1(a, b)$ for some $(a, b) \in A \oplus B$.

Thus π_1 is an epimorphism.

- (iii) Let $(a, b) \in ker \pi_1$, then
- $\pi_1(a,b) = 0$

$$\implies b = 0$$

Therefore, $(a, b) = (a, 0) = i_1(a)$ for some $a \in A$.

 $\implies (a,b) \in Im \ i_1$

Again, let $(a, b) \in Im \ i_1$, then there exists $a \in A$ such that

 $i_1(a) = (a, b)$

From (1) and (2) we have $ker \ \pi_1 = Im \ i_1$.

Hence the given sequence is a short exact sequence.

(iv) For any
$$a \in A$$
, $\pi_2 i_1(a) = \pi_2(a, 0) = a$
 $\implies \pi_2 i_1 = 1_A.$
(v) For any $b \in B$, $\pi_1 i_2(b) = \pi_1(0, b) = b$
 $\implies \pi_1 i_2 = 1_B.$

Thus the sequence is split shot exact sequence.

Hence proved.

Note: For the sequence $\begin{array}{ccc} 0 \longrightarrow A & \stackrel{i_1}{\longrightarrow} A \oplus B & \stackrel{\pi_1}{\longrightarrow} B & \longrightarrow 0$, we have the following: (i) $\pi_2 i_1 = 1_A$, (ii) $\pi_1 i_2 = 1_B$, (iii) $\pi_1 i_1 = 0$, (iv) $\pi_2 i_2 = 0$, (v) $i_1 \pi_2 + i_2 \pi_1 = 1_{A \oplus B}$. Proof: (i) and (ii) is clear from the previous theorem.

(iii) For any $a \in A$, $\pi_1 i_1(a) = \pi_1(a, 0) = 0 = 0(a)$. Thus $\pi_1 i_1 = 0$.

(iv) For any $b \in B$, $\pi_2 i_2(b) = \pi_2(0, b) = 0 = 0(b)$. Thus $\pi_2 i_2 = 0$.

(v) For any
$$(a,b) \in A \oplus B$$
, $(i_1\pi_2 + i_2\pi_1)(a,b) = i_1\pi_2(a,b) + i_2\pi_1(a,b)$

$$= i_1(a) + i_2(b).$$
$$= (a, 0) + (0, b) = (a, b).$$

Hence $i_1 \pi_2 + i_2 \pi_1 = 1_{A \oplus B}$.

<u>Theorem:</u> Let $\begin{array}{ccc} 0 \longrightarrow A & \stackrel{\alpha}{\longrightarrow} B & \stackrel{\beta}{\longrightarrow} C & \longrightarrow 0 \\ & \swarrow & & & & \\ modules \text{ and } R\text{-homomorphisms, then } B \cong A \oplus C. \end{array}$ be a split short exact sequence of R-

<u>Proof</u>: Since $\begin{array}{ccc} 0 \longrightarrow A & \stackrel{\alpha}{\longrightarrow} B & \stackrel{\beta}{\longrightarrow} C & \longrightarrow 0 \\ & \stackrel{\alpha'}{\longleftarrow} & \stackrel{\alpha'}{\longleftarrow} \end{array}$ is a split short exact sequence of *R*-modules and *R*-homomorphisms, then there exist an *R*-homomorphism $\alpha' : B \to A$ such that $\alpha' \alpha = 1_A$.

If we define $\beta' : C \to B$ by $\beta'(c) = b - \alpha' \alpha(b)$, where $b \in B$ such that $\beta(b) = c$, then clearly β' is well defined and also β' is an *R*-homomorphism and $\beta\beta' = 1_C$.

Now, define $\phi : B \to A \oplus C$ by $\phi(b) = (\alpha'(b), \beta(b))$ and also define $\psi : A \oplus C \to B$ by $\psi(a, c) = \alpha(a) + \beta'(c)$.

Then clearly ϕ and ψ are both R-homomorphisms.

Now let $b \in B$ then $\psi \phi(b) = \psi(\alpha'(b), \beta(b))$

 $= \alpha(\alpha'(b)) + \beta'(\beta(b))$ $= \alpha\alpha'(b) + \beta'\beta(b)$ $= \alpha\alpha'(b) + \beta'(c)$ $= \alpha\alpha'(b) + b - \alpha\alpha'(b) = b$ $\implies \psi\phi(b) = b$ $\implies \psi\phi = 1_B.$

Again, let $(a, c) \in A \oplus C$ then,

$$\begin{split} \phi\psi(a,c) &= \phi(\alpha(a) + \beta'(c)) \\ &= (\alpha'(\alpha(a) + \beta'(c)), \beta(\alpha(a) + \beta'(c))) \\ &= (\alpha'\alpha(a) + \alpha'\beta'(c), \beta\alpha(a) + \beta\beta'(c)) \\ &= (1_A(a) + 0, 0 + 1_C(c)) \text{ [Since } Im\beta' = ker\alpha' \text{ so } \alpha'\beta' = 0 \text{ and } Im\alpha = ker\beta \text{ So } \beta\alpha = 0 \text{]} \\ &= (a,c) \\ &\implies \phi\psi = 1_{A\oplus C} \end{split}$$

Thus ϕ and ψ are inverse of each other. i.e., ϕ and ψ are one-one and onto.

Hence $B \cong A \oplus C$.

Commutative Diagram: The diagram of *R*-module and *R*-homomorphism of the form

Theorem: State and prove the Short Five Lemma.

Statement: If the commutative diagram

of R-modules and R-homomorphism has both rows exact, then

- (i) if f and h are isomorphisms then g is an isomorphism;
- (ii) if f and h are monomorphisms then g is a monomorphism;
- (iii) if f and h are epimorphisms then g is an epimorphism.

Proof:

It is clear that (ii) and (iii) implies (i). Thus we only prove (ii) and (iii).

(ii) Let f and h are monomorphisms. We have to show that g is a monomorphism. i.e., $kerg = \{0\}$.

So let $b \in kerg$ then g(b) = 0.

Now, $\beta' g(b) = \beta'(0) = 0$.

 $\implies h\beta(b) = 0$ (by the commutativity of the diagram).

Since h is a monomorphism, so $\beta(b) = 0$.

 $\implies b \in ker\beta = Im\alpha$ (by the exactness of the top row).

Which shows that $b = \alpha(a)$ for some $a \in A$.

Now, $g(b) = g\alpha(a) = \alpha' f(a)$ (by the commutativity of the diagram).

$$\implies \alpha' f(a) = 0 \text{ (since } g(b) = 0)$$

Since α' is a monomorphism, so we have f(a) = 0.

Since f is a monomorphism, so a = 0.

Therefore $b = \alpha(0) = 0$ implies $kerg = \{0\}$.

Which shows that g is a monomorphism.

Which is (i).

(ii) Let f and h are epimorphisms.

Let $b' \in B'$. Now $\beta'(b') = h(c)$ for some $c \in C$.

Since h is an epimorphism and β is an epimorphism so $c = \beta(b)$ for some $b \in B$.

Hence $\beta'(b') = h\beta(b)$.

 $=\beta' g(b)$ [By the commutativity of the diagram].

So we have, $\beta'(b' - g(b)) = 0$.

 $\implies b' - g(b) \in ker\beta' = Im\alpha'$ [By the exactness of the bottom row]

 $\implies b' - g(b) = \alpha'(a');$ for some $a' \in A'.$

 $= \alpha' f(a)$; for some $a \in A$ (since f is an epimorphism).

 $= g\alpha(a)$ [By the commutativity of the diagram].

```
\implies b' = g(b) + g\alpha(a) = g(b + \alpha(a)).
```

Which implies that $b' \in Img$ where $b + \alpha(a) \in B$.

Hence g is epimorphism.

Which proves (ii).

Hence the theorem.

Theorem: State and prove the Five Lemma.

Statement: If the commutative diagram

of R-modules and R-homomorphism has both rows exact, then

- (i) if λ_1 is an epimorphism and λ_2 , λ_4 are monomorphisms then λ_3 is a monomorphism;
- (ii) if λ_5 is a monomorphism and λ_2 , λ_4 are epimorphisms then λ_3 is an epimorphism;
- (iii) if $\lambda_1, \lambda_2, \lambda_4, \lambda_5$ are isomorphisms then λ_3 is an isomorphism.

Proof: (i) Here given that λ_1 is an epimorphism and λ_2, λ_4 are monomorphisms. Now, we show that λ_3 is a monomorphism or equivalently $ker\lambda_3 = \{0\}$.

So let $a_3 \in ker\lambda_3$, then $a_3 \in A_3$ such that

Thus we have, $\beta_3 \lambda_3(a_3) = \beta_3(0) = 0$

 $\implies \lambda_4 \alpha_3(a_3) = 0$ (by the commutativity of the diagram)

Since λ_4 is a monomorphism so $\alpha_3(a_3) = 0$

- $\implies a_3 \in ker\alpha_3 = Im\alpha_2$ (by the exactness of the top row)
- $\implies a_3 \in Im\alpha_2$
- $\implies a_3 = \alpha_2(a_2)$ for some $a_2 \in A_2$

Now from (1), $\lambda_3(a_3) = 0$

- $\implies \lambda_3(\alpha_2(a_2)) = 0$
- $\implies \lambda_3 \alpha_2(a_2) = 0$
- $\implies \beta_2 \lambda_2(a_2) = 0$ (by the commutativity of the diagram)
- $\implies \lambda_2(a_2) \in ker\beta_2 = Im\beta_1$ (by the exactness of the bottom row)
- $\implies \lambda_2(a_2) \in Im\beta_1$
- $\implies \lambda_2(a_2) = \beta_1(b_1)$ for some $b_1 \in B_1$

Also since λ_1 is epimorphism so $b_1 = \lambda_1(a_1)$ for some $a_1 \in A_1$

i.e., $\lambda_2(a_2) = \beta_1 \lambda_1(a_1) = \lambda_2 \alpha_1(a_1)$ (by the commutativity of the diagram)

$$\implies \lambda_2(a_2) - \lambda_2 \alpha_1(a_1) = 0$$
$$\implies \lambda_2(a_2 - \alpha_1(a_1)) = 0$$

Since λ_2 is a monomorphism, so we have , $a_2 - \alpha_1(a_1) = 0$

$$\implies a_2 = \alpha_1(a_1)$$

Now, $a_3 = \alpha_2(a_2) = \alpha_2(\alpha_1(a_1)) = \alpha_2\alpha_1(a_1) = 0$ (since $Im\alpha_1 = ker\alpha_2$, then $\alpha_2\alpha_1 = 0$) $\implies a_3 = 0$

Thus we have, $a_3 \in ker\lambda_3 \implies a_3 = 0$

Thus $ker\lambda_3 = \{0\}$ and hence λ_3 is monomorphism.

This proves (i).

Proof: (ii): Let λ_5 be a monomorphism and λ_2 , λ_4 are epimorphisms. We show that λ_3 is an epimorphism.

Let $b_3 \in B_3$ then $\beta_3(b_3) \in B_4$.

Since λ_4 is epimorphism, then $\beta_3(b_3) = \lambda_4(a_4)$ for some $a_4 \in A_4$.

$$\implies \beta_4\beta_3(b_3) = \beta_4\lambda_4(a_4)$$

But $\beta_4\beta_3(b_3) = 0$ as $ker\beta_4 = Im\beta_3$

Thus $\beta_4 \lambda_4(a_4) = 0$

 $\implies \lambda_5 \alpha_4(a_4) = 0$ (by the commutativity of the diagram)

Since λ_5 is a monomorphism, we have $\alpha_4(a_4) = 0$

 $\implies a_4 \in ker \ \alpha_4 = Im\alpha_3$ (by the exactness of the top row)

$$\implies a_4 = \alpha_3(a_3)$$
 for some $a_3 \in A_3$

Now, we have $\beta_3(b_3) = \lambda_4(a_4) = \lambda_4(\alpha_3(a_3)) = \beta_3\lambda_3(a_3)$ (by the commutativity of the diagram)

$$\implies \beta_3(b_3 - \lambda_3(a_3)) = 0$$

 $\implies b_3 - \lambda_3(a_3) \in ker\beta_3 = Im\beta_2$ (by the exactness of the bottom row)

Thus we have, $b_3 - \lambda_3(a_3) = \beta_2(b_2)$ for some $b_2 \in B_2$

Since λ_2 is an epimorphism, we have $b_2 = \lambda_2(a_2)$ for some $a_2 \in A_2$

Thus $b_3 - \lambda_3(a_3) = \beta_2 \lambda_2(a_2) = \lambda_3 \alpha_2(a_2)$ (by the exactness of the top row)

$$\implies b_3 = \lambda_3(a_3 + \alpha_2(a_2)).$$

Since $a_3 + \alpha_2(a_2) \in A_3$, therafore λ_3 is an epimorphism. This proves (ii). **Proof:** (iii) Since λ_1 , λ_2 , λ_4 and λ_5 are isomorphisms. So by (i) λ_3 is a monomorphism and by (ii) λ_3 is an epimorphism.

Hence λ_3 is an isomorphism.

This proves (ii).

Hence the theorem is proved.

Theorem: State and prove the Strong Four Lemma.

<u>Statement</u>: If the commutative diagram

of *R*-modules and *R*-homomorphism has both rows exact. And if γ_1 is an epimorphism and γ_4 is a monomorphisms, then

Proof: (i): Let $a_3 \in ker\gamma_3$. Then $\gamma_3(a_3) = 0$. $\implies \beta_3 \gamma_3(a_3) = \beta_3(0) = 0.$ $\implies \gamma_4 \alpha_3(a_3) = 0$ (since $\beta_3 \gamma_3 = \gamma_4 \alpha_3$). $\implies \alpha_3(a_3) = 0$ (ince γ_4 is a monomorphism). $\implies a_3 \in ker\alpha_3 = Im\alpha_2.$ $\implies a_3 = \alpha_2(a_2)$, for some $a_2 \in A_2$. Now, $\gamma_3(a_3) = 0$. $\implies \gamma_3 \alpha_2(a_2) = 0.$ $\implies \beta_2 \gamma_2(a_2) = 0$ (since $\gamma_3 \alpha_2 = \beta_2 \gamma_2$). $\implies \gamma_2(a_2) \in ker\beta_2 = Im\beta_1.$ $\implies \gamma_2(a_2) = \beta_1(b_1)$ for some $b_1 \in B_1$. $\implies \gamma_2(a_2) = \beta_1 \gamma_1(a_1)$ (since γ_1 is an epimorphism, $b_1 = \gamma_1(a_1)$ for some $a_1 \in A_1$). $\implies \gamma_2(a_2) = \gamma_2 \alpha_1(a_1) \text{ (since } \beta_1 \gamma_1 = \gamma_2 \alpha_1 \text{)}.$ $\implies \gamma_2(a_2 - \alpha_1(a_1)) = 0.$ $\implies a_2 - \alpha_1(a_1) \in ker\gamma_2.$ $\implies \alpha_2(a_2 - \alpha_1(a_1)) \in \alpha_2 ker \gamma_2.$ $\implies (\alpha_2(a_2) - \alpha_2\alpha_1(a_1)) \in \alpha_2 ker \gamma_2.$ \implies $(a_3 - 0) \in \alpha_2 ker \gamma_2$ (since $\alpha_2 \alpha_1 = 0$ and $\alpha_2 (a_2) = a_3$). $\implies a_3 \in \alpha_2(ker\gamma_2).$ Thus $ker\gamma_3 \subset \alpha_2(ker\gamma_2) \cdots (A)$

Conversely let $a_3 \in \alpha_2(ker\gamma_2)$, then $a_3 = \alpha_2(a_2)$ for some $a_2 \in ker\gamma_2$. Now, $a_2 \in ker\gamma_2$ implies $\gamma_2(a_2) = 0$. $\implies \beta_2\gamma_2(a_2) = \beta_2(0) = 0$. $\implies \gamma_3 \alpha_2(a_2) = 0 \text{ (since } \beta_2 \gamma_2 = \gamma_3 \alpha_2).$ $\implies \alpha_2(a_2) \in ker\gamma_3.$ $\implies a_3 \in ker\gamma_3 \text{ (since } a_3 = \alpha_2(a_2)).$

Thus $\alpha_2(ker\gamma_2) \subset ker\gamma_3 \cdots \cdots \otimes (B)$

Hence from (A) and (B) we have $ker\gamma_3 = \alpha_2(ker\gamma_2)$. Which proves (i).

Proof: (ii):

We show that $Im\gamma_2 = \beta_2^{-1}(Im\gamma_3)$ or, $\beta_2(Im\gamma_2) = Im\gamma_3$.

Let $b_3 \in \beta_2(Im\gamma_2)$, then $b_3 = \beta_2(b_2)$ for some $b_2 \in Im\gamma_2$. Now, $b_2 \in Im\gamma_2$, implies $b_2 = \gamma_2(a_2)$ for some $a_2 \in A_2$. Therefore, $b_3 = \beta_2(b_2) = \beta_2\gamma_2(a_2) = \gamma_3\alpha_2(a_2)$ (since $\beta_2\gamma_2 = \gamma_3\alpha_2$) $\implies b_3 \in Im\gamma_3$. Thus $\beta_2(Im\gamma_2) \subset Im\gamma_3$ $\implies Im\gamma_2 \subset \beta_2^{-1}(Im\gamma_3) \cdots (C)$

```
Conversely let b_2 \in \beta_2^{-1}(Im\gamma_3).
\implies \beta_2(b_2) \in Im\gamma_3.
\implies \beta_2(b_2) = \gamma_3(a_3) for some a_3 \in A_3.
\implies \gamma_3(a_3) = \beta_2(b_2).
\implies \beta_3 \gamma_3(a_3) = \beta_3 \beta_2(b_2).
\implies \beta_3 \gamma_3(a_3) = 0 (since \beta_3 \beta_2 = 0).
\implies \gamma_4 \alpha_3(a_3) = 0 (since \beta_3 \gamma_3 = \gamma_4 \alpha_3).
\implies \alpha_3(a_3) = 0 (since \gamma_4 is a monomorphism).
\implies a_3 \in ker\alpha_3 = Im\alpha_2.
\implies a_3 = \alpha_2(a_2) for some a_2 \in A_2.
Now, \beta_2(b_2) = \gamma_3(a_3).
\implies \beta_2(b_2) = \gamma_3 \alpha_2(a_2) \text{ (since } a_3 = \alpha_2(a_2)).
\implies \beta_2(b_2) = \beta_2 \gamma_2(a_2) \text{ (since } \gamma_3 \alpha_2 = \beta_2 \gamma_2).
\implies \beta_2(b_2 - \gamma_2(a_2)) = 0.
\implies (b_2 - \gamma_2(a_2)) \in ker\beta_2 = Im\beta_1.
\implies (b_2 - \gamma_2(a_2)) = \beta_1(b_1) for some b_1 \in B_1.
\implies (b_2 - \gamma_2(a_2)) = \beta_1 \gamma_1(a_1) (since \gamma_1 is an epimorphism b_1 \in B_1 \implies b_1 = \gamma_1(a_1) for
some a_1 \in A_1).
\implies (b_2 - \gamma_2(a_2)) = \gamma_2 \alpha_1(a_1) \text{ (since } \beta_1 \gamma_1 = \gamma_2 \alpha_1).
\implies b_2 = \gamma_2(a_2) + \gamma_2 \alpha_1(a_1).
\implies b_2 = \gamma_2(a_2 + \alpha_1(a_1)).
\implies b_2 \in Im\gamma_2.
Thus \beta_2^{-1}(Im\gamma_3) \subset Im\gamma_2 \cdots \cdots \cdots (D).
From (C) and (D) we have, \beta_2^{-1}(Im\gamma_3) = Im\gamma_2
or, \beta_2(Im\gamma_2) = Im\gamma_3. Which proves (ii).
```