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Additive Abelion Group

i) a+beG,Va bed.

(i) a+(b+c)=(a+b)+cVa,b ced.

(iii) There exists 0 € G such that a+0=04+a=aV a € G.

(iv) For every a € G there exists, —a € G such that a + (—a) = (—a) +a = 0.
(v) a+b=b+aVa,bed.

Ring: (R, +, )

(i) R is an additive abelion group.

(i) axbeRVYa,beR.

(iii) ax(bxc)=(axb)*xcVa,b, cER.

(iv) ax(b+c¢)=a*xb+ax*xcVa,b, c€R.
(v) (a+b)xc=(axc)+ (bxc)Va,b, c€ER.

If ab = ba, then (R, +,*) is a commutative ring.

Left R-module: Let R be a ring (not necessarily commutative). Let M be an additive
abelian group then M is called a left R-module if M is closed under scalar multiplication
and satisfies the following conditions:

(i) r(z+y)=re+ry

(ii)  (rir2)(z) = ri(rez)

(iii) (ri+mo)(z) =rix + rx

(iv) if 1 € R then 1.z =z,

where, 1,79, 7 € Rand z, y € M; and r € R, v € M implies rz is the unique element in
M. The left R-module M is denoted by pM.

Right R-module: Let R be a ring (not necessarily commutative). Let M be an additive
abelian group then M is called a right R-module if M is closed under scalar multiplication
and satisfies the following conditions:

(i) (z+y)r=azr+yr

(il)  x(ryre) = (xr)r

(iil) x(ry +1r2) = xry + ary

(iv) if1 € R then .1 =z,

where, 1,75, 7 € Rand z, y € M; and r € R, v € M implies xr is the unique element in
M. The right R-module M is denoted by Mpg.

R-Module: An additive abelian group M is called an R-Module if it is both a left R-
Module and a right R-Module. If R is a commutative ring then M is both a left and a
right R-Module.



Examples:
(i)  Any ring R is an R-module (either left or right R-module).

(ii) If Ris a field then every vactor space V over R is an R-module.
(iii) 2Z is a Z-module.
(iv) Every abelian group is a Z-module.

(v) Every ideal I of a ring R is an R-module.

Bi-Module: Let R and S be two rings each with identity element. Then the additive
abelian group M is called a Bi-module if M is a left R-Module and a right S-module
and it is denoted by grMg.

Sub-Module: Let R be a ring with 1 and M be a left R-module, then a subset N of M
is said to be a sub-module of M if,

(i) N is a sub-group of M,
(ii) for each r € R and n € N implies rn € N.

Theorem: Let N;; ¢ € I be a fimily of sub-modules of a left R-module M then ﬂ N; is
iel
a sub-module of M.

Proof: Clearly, mNi is a sub-group of M. Let r € R and n € (| N;. This implies that
iel

n € N; for each i. Since, each N; is a submodule of M, rn € N; for each i. Therefore,

rn € ﬂ N;. Hence, ﬂ N; is a sub-module of M.

iel iel
Factor module: Let M be a left R-module and N be a sub-module of M. We define
M
r(m + N) = rm + N, then the factor group N becomes a left R-module. This left

M
R-module N is called a factor module of M by N, where m € M and r € R.

Note:
M
Ifx—i—yeﬁthenx—i—y:f—i—y.
M
Ifﬁeﬁthenﬁzaf:a(x%—]\f).

M
Ifxeﬁthena::m—i—]\/, where m € M.

Homomorplism: Let M and M’ are left R-modules. A mapping f : M — M’ is
called an R-hmomorplism or a linear mapping or linear homomorphism, if the following
conditions are satisfied:

i) flz+y) =f(x)+fly),Vr,yeM,

(ii)) f(rz)=rf(z)Vax e M and r € R.
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Example:

Let M be a left R-module and S be an R-sub module of M. A mapping ¢ : M — —

define by ¢(m) = m + S is an R-homomorphism.
Proof : Here given that, ¢(m) = m + S, where m € M.
Now, let my, my € M then we have,

o(my+me) =mq+mg+ S

:m1+5+m2—|—5

= ¢(m1) + ¢(ma).
Again let, r € R and m € M, then rm € M. Now, we have,

o(rm) =rm+S
=r(m+295)

=ro(m).

Hence, ¢ is an R-homomorphism.

M
S

Problem: Let M and M’ be two left R-modules. Show that the mapping ¢ : M — M’

defined by ¢(z) = 22 is not an R-homomorphism.

Proof : Given that, ¢ : x — 2.
Let x, y € M then ¢(z) = 2 and ¢(y) = y>.
Sorty) = (z+y)?
=22+ % + 22y

= ¢(x) + d(y) + 2xy.
Thus, ¢(x +y) # é(z) + o(y).

Again, if r € R, then ¢(rx) = r’z*=r?¢(z).
Which implies that, ¢(rz) # ré(z).

Hence, ¢ is not an R-homomorphism.

Problem: Let M, N, Q be three R-modules and let T': M — N and S : N — @ be
R-homomorphisms. Let ST : M — @ define by (ST)(m) = ST(m) for m € M. Prove

that ST is an R-homomorphism.

Proof: Let m, my, mg € M; n, ny, no € N and r € R.



Since, T and S are both R-homomorphism then we have,
T(my +my) = T(my) +T(my), T(rm) = rT(m)
and S(ny +ns) = S(ny) + S(ny), S(rn) = rS(n).
Now, (ST)(my +ms) = ST(my + ms)
= S(T'(m1) + T(m2))
— S(T(my)) + S(T(ms))
— ST(my) + ST(my)
= (ST)(m1) + (ST)(m2).
And, (ST)(rm) = ST(rm)
= S(rT'(m))
=rS(T'(m))
= rST(m)

= +(ST)(m).

Hence. ST : M — @ is an R-homomorphism.

Problem: Let M and ) be two R-modules and let S : M — @ and T : M — @ be
R-homomorphisms. Then show that (S +7T) : M — @ is an R-homomorphism.

Proof: Since, S and T are two R-homomorphism from M to @, then for my, my € M
and r € R, we have,

(S+T)(my+ma) = S(my+ma)+T(my+ms)
= S(ma) + S(mg) +T(ma) + T(my)
= S(my) +T(my) + S(mg) + T (my)
= (S+T)(my) + (S +T)(m2).
And, (S+T)(rm) = S(rm)+T(rm)
=7rS(m)+rT(m)
=r(S(m) +T(m))

=7r(S+T)(m).
Hence, (S + T) is an R-homomorphism.



Problem: If f: M — T be an R-homomorphism and X, Y being R-submodules of M

and T, respectively, with the property that f(X) = {f(x): 2z € X} CT. Then show that

M T
f 53 — v defined by f'(m+ X) = f(m) +Y is an R-homomorphism.

M
Proof: Let m; + X, my + X € a where mq, ms € M and r € R, then,

M
(m1+X)+(m2+X):(m1—|—m2)+X€?

Now, f'((m1+ X) + (m2 + X)) = f/((m1+m2) + X)
= f(m1+mg) +Y
= f(m1) + f(m2) +Y
= flm) +Y + f(m2) +Y
= f'(m1+ X) + f'(m2 + X).
Again, f'(r(m + X)) = f'(rm+ X)
= frm)+Y
=rf(m)+Y
=r(f(m)+Y)

=rf(m+ X)

Hence, [’ is an R-homomorphism.

Theorem: Let ¢ : M — M’ be an R-homomorphism, then show that,
(i) ¢(0) =0, where 0 € M and 0 € M’
(ii) ¢(—m) = —¢(m), where m € M.

Proof (i): We have,

i.e., ¢(m) +0 = ¢(m) + $(0)
Now, adding —¢(m) on both sides, we have, ¢(0) = 0.
Proof (ii): We have, from (i),
0 =¢(0)
= ¢(m + (=m))
= ¢(m) + ¢(—m)



Le., ¢(m)+ ¢(—m) =0
Adding —¢(m) on both sides, we get,

¢(—=m) = —¢(m)+0

Kernel and Image of an R-homomorphism: Let ¢ : M — M’ be an R-homomorphism.
Then the kernel of ¢ is defined by, ker¢p = {x € M : ¢(x) = 0} and the image of ¢ is
written as I'm¢ and is defined by I'm¢ = {p(x) : © € M }.

Theorem: Let ¢ : M — M’ be an R-homomorphism, then show that,
(i)  ker¢ is a sub-module of M.
(ii) Ime is a sub-module of M'.

Proof (i): Since ¢(0) = 0 implies 0 € ker¢, therefore ker¢ is nonempty.

Now, let my, mg € ker¢ then ¢(m;) =0 and ¢(my) = 0.

Now, ¢(my +mz) = ¢p(my) + ¢(ma) =04+0=0

which implies that m; + my € kero.

Again, let r € R and m € ker¢ then ¢(m) = 0.

Now, ¢(rm) = r¢(m) =r.0=0

which implies that rm € kere.

Hence, ker¢ is a sub-module of M.

Proof (ii): Since ¢(0) = 0 implies 0 € M’. Also 0 € Img, therefore I'm¢ is nonempty.

let ¢p(mq), p(ma) € Ime then,

d(my) + ¢(msg) = ¢p(my + ma) = ¢(mg3) where ms € M

which implies ¢(mq) + ¢(m2) € Ime.

Finally, let € R and ¢(m) € Im¢ then, r¢(m) = ¢(rm) € Imeo.

Hence r¢(m) € Im¢ and therefore Im¢ is a sub-module of M.

Epimorphism: A homomorphism f: M — M’ is called an epimorphism when
f(M) =1Imf =M.




Monomorphism: A homomorphism f : M — M’ is called a monomorphism if
flmy) = f(mg) = my = my for every my, my € M.

Isomorphism: A homomorphism f : M — M’ is called an isomorphism if f is an
epimorphism and a monomorphism.

Note: If f: M — M’ is an isomorphism and if f~!: M’ — M be a mapping defined by
Y2y ==z iff f(x) =2 then f~!is also an isomorphism. Here f~! o f is the identity
mapping of M and f o f~!is the identity of M’.

Canonical injection and projection: If N is a submodule M then the mapping J :
N — M defined by J(x) =z ¥V x € N is a monomorphism and is called the natural or
canonical injection of N into M.

M
The mapping ¢ : M — N defined by ¢(m) = m + N is called the natural or canonical

projection.
Note: The set of all homomorphism of M to M’ is denoted by Hompg(M, M").

Endomorphism and Automorphism: A homomorphism of M to M itself is called an
endomorphism and an isomorphism of M to M itself is called an automorphism.

Theorem: If R is a commutative ring and M, M’ are R-modules then the set Hompg(M, M)
is an R-module.

Proof: We define, (f1 + f2)(m) = fi(m) + fo(m), where fi, f, € Homp(M, M'").
(i) Here we have, (fi + f2)(m1+ma) = fi(my +ma) + fo(my 4 ms)
= film1) + fi(ma) + fo(m1) + fa(ma)
= film1) + fa(ma) + fi(m2) + fa(ma)

= (fi+ f2)(m1) + (fi + f2)(m2)
And, (fi + f2)(rm) = fi(rm) + f2(rm)

=rfi(m) 4+ rfa(m)
=r(fi(m) + fa(m))

=7r(f1 + fo)(m).
Thus, f1 + fo € Homg(M, M").

i.e., Homg(M, M) is closed under addition.



(ii) For any f1, fa, fs € Hompg(M, M’) we have,
(fi +(f2+ f3))(m) = film) + (fo + f5)(m)
= film) + fa(m) + f3(m)
= (fi(m) + fo(m)) + fs(m)
= (fi+ f2)(m) + fs(m)

= ((fi + f2) + f3)(m)
Hence, fi + (fo+ f3) = (fi + f2) + fs.

i.e., associative law for addition is satisfied in Homg(M, M").
(iii) We define fo : M — M’ by fo(m) = 0 such that,
(f + fo)(m) = f(m) + fo(m)
= f(m)+0

= f(m)
ie, f+fo=1f

Similarly, we have, fo + f = f
Hence, fo is the identity element of Homp(M, M’).
(iv) For every f € Homp(M, M') there exists —f € Hompg(M, M") defined by
(—=f)(m) = —f(m) such that (f + (—f))(m) = f(m)+ (=f)(m)
= f(m) — f(m)
=0

= fo(m)
Which implies f + (—f) = fo.

Similarly, we have, (—f) + f = fo

Hence, inverse element exists in Hompg(M, M’).



(v) For all fi, fo € Homg(M, M') we have,
(fi+ f2)(m) = fi(m) + fa(m)
= fa(m) + f1(m)

= (f1 + fo)(m)
This implies f1 + fo = fo+ f1

Hence Hompg(M, M') is an additive abelian group.

(vi) Now, for any r € R and f € Homg(M,M'), define (rf)(m) = rf(m) and (fr)(m) =
f(m)r. We show that rf and fr are R-homomorphisms. i.e.,rf, fr € Homg(M, M").

We have, (rf)(my +mg) = r(f(my+my))
= r(f(m) + f(mz))
= rf(ma) +rf(ms)
= (rf)(ma) + (rf)(mz)

Again, (rf)(r'm) =rf(r'm)

=7r'rf(m) (since R is commutative)

=r'(rf)(m)
Hence, rf € Homp(M, M').

Similarly, we can show that fr € Homg(M, M").

(vii) Now, for any r € R and fi, fo € Homg(M, M), we have,

(r(fi+ f2))(m) =r(fi+ fo)(m)
=r(fi(m) + fa(m))
=rfi(m) +1fa(m)

= (’I“f1 +rf2)(m)
Le, r(fi+ fo) =rfi+rf

Similarly, we can show that (f; + fo)r = fir + for



(viii) Next, for any r1, 7o € R and f € Homg(M, M), we have,

((re+72)f)(m) = (r1+7r2)f(m)
=rif(m) +raf(m)
= (rif)(m) + (r2f)(m)

= (rof +7r2f)(m)
ie, (ri+mre)f =rif +raf

Similarly, we can show that f(r; + 1) = fri+ fro

(ix) Next, for any ry, ro € R and f € Homg(M, M'), we have,

((rire) f)(m) = (rime)(f(m))
= 7”1(7’2f(m>)

= ri(r2f)(m)
ie., ((rire)f) =ri(raf)

Similarly, we can show that (f(r172)) = (fr1)re

(x) Finally, if 1 € R, then for any f € Homg(M, M"), we have, (1f)(m) = 1f(m) = f(m)
e, 1f=f

Similarly, f1 = f

Hence, Hompg(M, M’) is an R-module.

Theorem: If M is an R-module, then show that Homg(M, M) is a ring.

or, The set of all endomorphism is a ring.

Proof: We define, (fi + f2)(m) = fi(m) + fo(m), where fi, fo € Homgr(M, M).

(i) Here we have, (fi + fa)(my +m2) = fi(my +ma) + fo(my + mo)
= fi(m1) + fi(mz) + fa(m1) + fo(mz)
= fi(m1) + f2(ma) + fi(ma) + f2(m2)

= (fi + f2)(m1) + (f1 + f2)(m2)



And, (fi + f2)(rm) = fi(rm) + fao(rm)
=rfi(m) + 7 fa(m)
=r(fi(m) + fa(m))

=r(fi+ f2)(m).
Thus, f1 + fo € Homgr(M, M).

i.e., Homp(M, M) is closed under addition.
(i) For any fi, fa, fs € Homg(M, M) we have,
(fi+ (fot f3))(m) = fulm) + (f2+ f5)(m)
= film) + f2(m) + fs(m)
= (fi(m) + fo(m)) + fs(m)
= (fi+ f2)(m) + fs(m)

= ((fr + f2) + f3)(m)
Hence, fi + (fo+ f35) = (fi + f2) + f5.

i.e., associative law for addition is satisfied in Homg(M, M).
(iii) We define fo : M — M by fo(m) = 0 such that,

(f + fo)(m) = f(m) + fo(m)

e, f+fo=Ff
Similarly, we have, fo + f = f
Hence, f, is the identity element of Homp(M, M)
(iv) For every f € Homp(M, M) there exists —f € Homp(M, M) defined by
(=f)(m) = —f(m) such that (f + (=f))(m) = f(m)+ (=f)(m)
= f(m) = f(m)

Which implies f + (—f) = fo.



Similarly, we have, (—f) + f = fo
Hence, inverse element exists in Homp(M, M).
(v) For all fi, fo € Hompg(M, M) we have,
(fi+ f)(m) = film) + fa(m)
= fa(m) + f1(m)

= (f1+ f2)(m)
This implies fi + fo = fo + f1

Hence Hompg(M, M) is an additive abelian group.

(vi) Let f1, fo € Homp(M, M) and my, my € M, then
(fif2)(mi+m2) = fi(f2(ma + m2))
= fi(fa(m1) + fo(ms2))
= filfa(m1)) + fi(f2(m2))

= (fif2)(m1) + (f1f2)(m2)
Again, let f1, fo € Homg(M, M), m € M and r € R, then

(fif2)(rm) = fi(fa(rm))
= fi(rfa(m))
= 1 fi1(fa(m))

=r(fif2)(m)
This implies that, fifo € Homg(M, M).

(vil) Let f1, fo, f3 € Homp(M, M) and m € M, then
((fif2)fs)(m) = (fif2)(fs(m))
= fi(f2(f3(m)))
= fil(f2f3)(m))

= (fi(faf3))(m)
Hence, (fif2)fs = fi(f2fs).



(viii) Let fi1, fa, fs € Homg(M, M) and m € M, then
((fr+ f2)fs)(m) = (fr + f2)(fs(m))
= filfs(m)) + fa(f3(m))
= (f1fs)(m) + (f2f3)(m)

= (fifs + fof3)(m)
Hence, (f1 + f2)f3 = fifs + fafs.

Similarly, we can show that

(ix) filfa + f2) = fifa + frfs.

Hence, Homgr(M, M) is a ring.

Problem: Let R be a ring and let M and N be two arbitary R-modules. Let f: M — N
be an R-homomorphism, then f is a monomorphism (one-one) iff ker f = {0}.

Proof: First suppose that f: M — N be a monomorphism. We show that kerf = {0}.
Let a € kerf, then we have f(a) = 0.

Also, since f is a monomorphism, then f is an R-homomorphism and one-one.
Therefore, f(0) = 0. So, we have f(a) =0 = f(0). Which implies that a = 0.

Since a € kerf implies a = 0.

Hence kerf = {0}.

Conversely, let ker f = {0}, we have to show that f is a monomorphism. i.e., f is one-one.
Let f(a1) = f(az), then we have,
flar) = flaz) =0
= f(ag —az) =0
= a; —as € kerf.
Now, since kerf = {0}, then a; — as = 0.
Which implies atat a; = as.

Hence, f is one-one.



Definition: let M, M’, M” be three left R-modules and let f : M — M’ and g :
M’ — M"”, then the mapping go f : M — M" defined by (g o f)(m) = g(f(m)) is
a homomorphism of M into M'. If f and ¢ are monomorphism or epimorphism or
tsomorphism, then g o f is so.

Definition: let f : N — M be a homomorphism of two left R-modules N and M, then

and co-Imf =

we define co-kernel and co-image by co—kerf:]
m

kerf
Theorem: Let R be a ring with 1 and let A and B be two left R-modules. Let ¢ : A — B

be an R-homomorphism then = Imao.

er

or, State and prove the fundamental theorem of R-homomorphism.

A
Proof: Define a map ¢ : —— — Im¢ by
kero
Y(a + kerg) = ¢(a) for a € A.
Then, this map is well defined. For if,
a+ ker¢ =a' + kerg for a, a’ € A
Then, a —d’ € ker¢p — ¢(a—a') =0
= ¢(a) — ¢(a’) =0
— ¢(a) = ¢(a')

= Y(a+ ker¢) = Y(d' + kero)
Thus, v is well defined.

Let a + kero, a’ + kerg € i, then
ker¢
V((a+ kerd) + (' + kerg)) =1(a+ d + kerd)
= 6o+
= ¢(a) + o(d)

= (a + kerg) + (d' + ker)
and r € R, then

kerg)

Again, let a + ker¢ €

U(r(a+ kerg)) =4
=0

kero
(ra+
(ra)

= r¢(a) (since ¢ is an R-homomorphism)

=r(a + kero)

Hence, v is an R-homomorphism.



Next, let ¥(a + kerg) = ¢(a’ + ker¢) for a, a’ € A
Then, ¢(a) = ¢(a’)
= 6(a) = 9la) =0
—  dla—d)=0
= a—d € kero

= a+kerp=ad + kergo

Hence, ¢ is a monomorphism.

Now for any, a € A, ¢(a) € Im¢é. And for any ¢(a) € Im¢ there exists an element
5 such that ¥ (a + ker¢) = ¢(a). Thus, ¢ is an epimorphism.

a+ kerg €
ker

Therefore, 1 is an isomorphism.

Hence = Imao

ker¢

proved



Exact and Short Exact Sequence

Exact sequence: A sequence of R-modules and R-homomorphism,

VLIV AL VAN VAR CTOR N LS NG V LN I VA (1)

is said to be exact at M; if ker(f;) = Im(fi_1). The sequence (1) is called exact if it
is exact at each M; for all 1 <i <mn, ie., if ker(f;) = Im(fi_1) for all 1 <i <n. The
sequence (1) of R-modules and R-homomorphism may be either finite or infinite.

Note

Consider the sequence 0 — A L, B. The image of the leftmost map is {0}. Therefore
the sequence is exact if and only if ker f = {0}; that is, if and only if f is a monomorphism
(injective, or one-one).

Consider the sequence B =%+ C' — 0. The kernel of the rightmost map is C. Therefore
the sequence is exact if and only if Img = C; that is, if and only if ¢ is an epimorphism
(surjective, or onto).

Therefore, the sequence 0 — A L B~ 0is exact if and only if f is both a monomor-
phism and epimorphism, and thus, in many cases, an isomorphism from A to B.

Short exact sequence (SES): Let A, B, C be three R-modules and let f : A — B and
g : B — C be R-homomorphisms then the following sequence

0—A-L B0 —0 2)

is called a short exact sequence of R-modules and R-homomorphism if it is exact at
each of A, B and C, i.e., f is a monomorphism, g is an epimorphism and Imf = keryg.

Theorem: Let 0 —s A —+ B %5 ¢ — 0 be a short exact sequence of R-modules and
R-homomorphisms then A = kerg = Imf and C' = Img.

Proof: Since 0 — A L5 B %5 ¢ — 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have f is monomorphism, g is an epimorphism and

Imf = kerg.

Let h: A — Imf be defined by h(a) = f(a) V a € A. Then clearly h is a monomorphism
and an epimorphism. Thus h is an isomorphism, ie., A = Imf. But Imf = kerg.
Hence A = kerg = Imf.

Since g is an epimorphism, we have Img = C'.

Hence A = kerg = Imf and C' = I'mg.



Theorem: Let 0 — A —5 B %5 ¢ — 0 be a short exact sequence of R-modules and
B

Imf - kerg

R-homomorphisms then co-kerf = = Img=C.
Proof: Since 0 — A L5 B %5 ¢ — 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have f is monomorphism, ¢ is an epimorphism and

Imf = kerg.

B
By definition we have, co-kerf = ﬁ Since Imf = kerg, then we have co-kerf =
m
B B
Imf  kerg

Since g : B — (' is a homomorphism, then by the fundamental theorem we have,

= I'mg. Again since g is an epimorphism, we have Img = C.

kerg
B —_—
Imf  kerg

Hence co-kerf = = Img=C.

Split short exact sequence: A short exact sequence 0 — A - B Lo 50 of
R-modules and R-homomorphisms is called a split short exact sequence if either

(i) there exists an R-homomorphism o' : B — A such that o/a = 14,
where 1,4 is the identity mapping on A.

or, (ii) there exists an R-homomorphism (' : C — B such that 55’ = 1¢,
where 1¢ is the identity map on C.

Theorem: Let 0 —s A -5 B —“5 ¢ — 0 be a short exact sequence of R-modules and
R-homomorphism, then show that the following conditions are equivalent.

(i) there exists an R-homomorphism o' : B — A such that o/a = 14,
where 1,4 is the identity mapping on A.

(ii) there exists an R-homomorphism (' : C — B such that 55" = 1,
where 1¢ is the identity map on C.

Or, Prove that the conditions for split short exact sequence are equivalent.
Proof: Since 0 — A % B “5 ¢ — 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have « is monomorphism, [ is an epimorphism and
Ima = kerp.
Let (i) holds. Let ¢ € C then since § is an epimorphism, so 3 b € B such that 5(b) = c.
Now, define ' : C'— B such that '(c) = b — ad/(b).
First we show that 8’ is well defined.

Let ¢, ¢ € C such that ¢ = ¢.



Since 3 is an epimorphism so 3 b, ¥ € B such that §(b) = ¢ and B(V') = .
Then, f'(c) = b— ad/(b) and f'(¢) = b — ad/ (V).

Now, S(b—1b") = p(b) — B(V) (since f is a homomorphism).

=c—¢
=c—c
=0

= b—1U € kerp = Ima.
Thus, b — b = a(a) for some a € A.

Now, ad/(b—V) = ad(a(a))

—b—V

— ad/(b) — ad/ () = b— V' (since aa’ is a homomorphism).
= b—ad(b) =0 — ad (V).
— B'(c) = p(c)
Hence f' is well defined.
Also we have, for each ¢ € C, ¢ = B(b) and '(c) = b — ac/(b).
Now, 3'(c) = (b — ac/(b))
= B(b) — Blac/ (b))
= p(b) — fala/(b))
= c—0as Ima = kerf so fa =0
=c.
ie., B8'(c)=c.

Hence, 85" = 1¢ which is (ii).



2nd part
Conversely, suppose (ii) holds. Let b € B then
B(b— BB(b)) = B(b) — BF'A(D)

— B(b) - 1cB(b), (since B8 = 1c)

Therefore, b — 5'5(b) € kerf = Ima.
Which implies b — 8/5(b) = a(a) for some a € A.
Now define o/ : B — A by o/(b) = a.
We show that o is well defined.
Let b, b’ € B such that b =1'.
Since b — p'B(b), b/ — f'B(V) € kers = Ima.
Then b — f'B(b) = a(a) and v/ — p'B(V) = a(a’) for some a,a’ € A.
Thus o/(b) = a and o/ (V') = d'.
Now, b — 'B(b) =V — /B(b') asb=1'.
= afa) = a(d).
= a = d (since a is a monomorphism).
= (b)) =d/(V).
Thus o is well defined.
Also for each a € A,
dafa) =o' (b - F'5(b))
= a/(b) — o/ (8'B(b))

=a—0=a.

(since §'B(b) — B'B(6'6(b)) = B'B(b) — B'lc(B(b)) = B'B(b) — F'B(b) = O

o/ (B'5(b)) = 0)

Which implies that o/a = 14.



Thus (i) holds.
Hence the theorem.

0—4 5B 20 —o0

Theorem: Let - - be a split short exact sequence of R-

a/ B/
modules and R-homomorphism with o/a = 14 and 83’ = 1o then show that

0+— A <—a/— B <_6/_ C +— 0 is an exact sequence.
Proof: Here we have to show that,

(i) 4" is a monomorphism,

(ii) o/ is an epimorphism,
and (iii) ker o = Im [
(i) We show that 8’ is a monomorphism, i.e., ker3 = {0}. Let ¢ € kerf’ then 5'(c) = 0.
Since B4 = 1¢ so we have 56'(c) = 1¢(c) = c.
Also, B8/(c) = B(8'(c)) = B(0) =0,
Which implies ¢ = 0.
Thus kerp’ = {0}.
Hence ' is a monomorphism.

(ii) We show that o/ is an epimorphism. Since o/a = 14, then for any a € A we have,

Since for every a € A there exists a(a) € B such that a = o/(a(a)). Hence o' is an
epimorphism.

(iii) Let b € kera/ C B then b € B and «/(b) = 0.
Also B(b) = ¢ for some ¢ € C.
Thus, #/8(b) = 8/(c)

=b— ad'(b) [By the def” of f']

ie, f'B8(b)=b—a(0)=b—0=0.

ie, f'(c)=b = beImp



Therefore, kera/ C Imp" -+« vv - (1)

Again, let b € I'm (' then f'(¢) = b for some ¢ € C.

Now, a/(b) = o/(8'(c))
= /(b — ad/ (b)) [from the definition of 8" we have 5 (c) = b — ad/(b)]
= a/(b) — o/ (a/(b))

= a/(b) — (a’a)(a’(b))

Hence b € kera/
Which implies that Imfg C kera/ -+« -+ .. (2)
From (1) and (2), we have Imp’ = kerd/

Hence, the sequence is exact. [proved]



Internal and External Direct Sum

Internal Direct Sum: Let A and B be two sub-modules of a left R-module M. If
AN B = {0}, zero sub-module, then the set {a +b : a € A and b € B} is called the
internal direct sum of A and B.

Similarly, we can define the internal direct sum of a finite number of sub-modules of a left
R-module. Thus if Ay, As,..., A, are sub-modules of a left R-module M such that for
each Aj, A;N(U;xA;) = {0}, then their internal direct sum is the set {> "  a; : a; € A;}.
External Direct Sum: The external direct sum A; @ As of two R-modules A; and
A, is the R-module consisting of all ordered pairs (aq,as), for a; € A;, with the module

operations defined by

(a1,a2) + (a},ay) = (a1 + aj, az + ay) and (a1, az) = (ray, ras).

Theorem: Let M; and M; be two sub-modules of a left R-module M such that.
(i) My N My = {0} and
(17) if m € M, my € My, my € M, such that m = my + ma,
then M = M, & M.
Proof: Let us define a map f: M — M; & M, given by
f(m) = (my, my), where m = my + mo.
We show that f is well defined.

Let m,m’ € M such that m = m/. Then m = m; + my and m’ = m/ + m/, where
my, my € My; ma,my € Ms and f(m) = (m1, ma), f(m') = (m}, mj).

Now, m = m’
= my + my =m| + mj
= my —mj =mbh—my
But my; — m) € M; and m}, — my € M.
Since M; N My = {0} then we have,
my —mj =0=my —mj

Which implies that, m; = m) and my = m,.



Le., (m1,mg) = (my, mj)
= f(m) = f(m').
Hence f is well defined.
Now, we show that f is a homomorphism.

Let m,m’ € M, then m = m; +my and m’ = m/ + m}, where m;, m}| € My; ma, m}, € M,
and f(m) = (m17m2)7 f(m,> = (m/17m,2)

Now, m+m' = (mq +may) + (M} +mb) = (my +m}) + (ms + mf) where (m; +m}) € M,
and (mg +m)) € Ms.

Therefore, f(m + m') = (my + m), ma + mb) = (my, me) + (M}, mb) = f(m) + f(m).
Also, for any r € R, rm = rmy 4+ rmo where rme My and rmo € M.

Therefore, f(rm) = (rmy,rmy) = r(my, ms) = rf(m).

Thus f is an R-homomorphism.

Next, we show that f is a monomorphism.

Let m,m’ € M, then m = m; +my and m’ = m/ + mj, where m;, m}| € My; ma, m}, € M,
and f(m) = (m17m2)7 f(m,) = (mllvm,Q)

Let f(m) = f(m'), then we have,
(m1,ma) = (my,my)

= my = m) and my = m),

Thus m = my +mg =m} +mbh =m'.

Hence f is a monomorphism.

Finally, we show that f is an epimorphism.

For any (mq,ms) € My @ M, there exist an element m € M such that (my, my) = f(m),
where m; + my = m.

Thus f is an epimorphism.
Hence f is an isomorphism.

ie., M = M; @ M, [proved|



Theorem: Let A and B are sub-modules of an R-module with AN B = {0} then there

0—A ““SAaB B —0.
— —

o i2
Proof: Let a € A and b € B, then we define i;(a) = (a,0) and i5(b) = (0,b). Also define
m and 7 by mi(a,b) = b and my(a,b) = a. Then clearly iy, is, m, o are well defined and
are all R-homomorphism.

is a split short exact sequence

Here we have to show that,
(i) 41 is a monomorphism,
(ii) 7y is an epimorphism,
(iii) ker m = Im 44
(iv) moi; = 14
and (v) myip = 1p.
(i) Let 71(a1) = i1(ag) for some ay,as € A. Then
(a1,0) = (a2,0)
= a; = as.
Thus ¢; is a monomorphism.
(i) Let b € B then b = m(a,b) for some (a,b) € A® B.
Thus 7 is an epimorphism.
(iii) Let (a,b) € ker my, then
m1(a,b) =0
— b=0
Therefore, (a,b) = (a,0) = i1(a) for some a € A.
= (a,b) € Im iy
Thus ker mp C Imiq---vc-vve-- (1)

Again, let (a,b) € I'm iy, then there exists a € A such that

i1(a) = (a,b)



= (a,0) = (a,b)
— b=0
Now, m(a,b) =b=0

= (a,b) € ker m
Thus Im il g ker IR (2)

From (1) and (2) we have ker m = I'm 1.

Hence the given sequence is a short exact sequence.

(iv) For any a € A, miy(a) = m2(a,0) = a

= mot; = lyu.

(v) For any b € B, mis(b) = m(0,b) = b

— myiy = 1p.

Thus the sequence is split shot exact sequence.
Hence proved.

0—A S A@B
(__

T2

Note: For the sequence
(i) moiq = 1a,
(ii) myig = 1p,
(iii) mi; = 0,
(iv) maiz = 0,

(V) i17T2 + ’igﬂ'l = 1A€BB'

X5 B — 0, we have the following:
%_

12

Proof: (i) and (ii) is clear from the previous theorem.

(iii) For any a € A, mii(a) = m1(a,0) = 0 = 0(a). Thus mi; = 0.

(iv) For any b € B, mais(b) = m2(0,0) = 0 = 0(b). Thus mais = 0.

(V) For any (CL, b) cA D B, (i17T2 -+ 2'2771)(@, b) = ilﬁg(a, b) + i27T1 (a, b)

— iy(a) + 2 (D).

= (a,0) 4+ (0,b) = (a,b).



Hence i17T2 + igﬂ'l = 1A®B'

0—A4 5B 20 —o0

Theorem: Let - - be a split short exact sequence of R-

a/ 5/
modules and R-homomorphisms, then B = A& C.

0—A B 50 —o

— 7
a/ !
modules and R-homomorphisms, then there exist an R-homomorphism o/ : B — A such

that o/a = 14.

Proof: Since is a split short exact sequence of R-

If we define 8’ : C — B by f'(¢c) = b — &’a(b), where b € B such that 5(b) = ¢, then
clearly 3’ is well defined and also ' is an R-homomorphism and 535 = 1¢.

Now, define ¢ : B -+ A @ C by ¢(b) = (¢/(b), (b)) and also define ¢ : A® C — B by
¥(a,c) = ala) + F'(c).

Then clearly ¢ and 1 are both R-homomorphisms.
Now let b € B then vo(b) = v (o’ (b), 3(b))
= a(a/(b)) + 5'(B(b))
= aa/(b) + 5'5(b)
= ad/(b) + 5'(¢)
=ad/(b)+b—ad/(b) =0
— ¥o(b) =b
= Yo = 1.
Again, let (a,c) € A® C then,
P(a,c) = ¢(a(a) + F'(c))
= (o/(afa) + F'(¢)), Blala) + F'(c))
= (dafa) + o'B'(c), Bala) + BF'(c))
= (1a(a) + 0,0+ 1c(c)) [Since Imp’' = kera’ so o/’ = 0 and Ima = kerf3 So Ba = (]
— (a,¢)
= oY = lagc
Thus ¢ and 1 are inverse of each other. i.e., ¢ and ¢ are one-one and onto.

Hence B=2 A9 C.



Commutative Diagram: The diagram of R-module and R-homomorphism of the form

0 sy A -2 B 2, ¢ s 0
e
0 A g 0

is said to be commutative if 'f = ga: A — B"and f'g=hf: B — C".

Theorem: State and prove the Short Five Lemma.
Statement: If the commutative diagram

0 sy A s B ", ¢ s 0

0 yoA g P o ' 0

of R-modules and R-homomorphism has both rows exact, then
(i) if f and h are isomorphisms then ¢ is an isomorphism;
(ii) if f and h are monomorphisms then ¢ is a monomorphism;
(iii) if f and h are epimorphisms then ¢ is an epimorphism.
Proof:
It is clear that (ii) and (iii) implies (i). Thus we only prove (ii) and (iii).

(ii) Let f and h are monomorphisms. We have to show that g is a monomorphism. i.e.,
kerg = {0}.

So let b € kerg then g(b) = 0.

Now, 8g(6) = #(0) = 0.

= hB(b) = 0 (by the commutativity of the diagram).

Since h is a monomorphism, so 5(b) = 0.

= b € kerf = Ima (by the exactness of the top row).

Which shows that b = a(a) for some a € A.

Now, g(b) = ga(a) = o/ f(a) (by the commutativity of the diagram).

= o' f(a) =0 (since g(b) = 0).



Since o' is a monomorphism, so we have f(a) = 0.

Since f is a monomorphism, so a = 0.

Therefore b = «(0) = 0 implies kerg = {0}.

Which shows that g is a monomorphism.

Which is (i).

(ii) Let f and h are epimorphisms.

Let &’ € B'. Now §'(0') = h(c) for some ¢ € C.

Since h is an epimorphism and 3 is an epimorphism so ¢ = §(b) for some b € B.

Hence §'(b') = hj3(b).

= 'g(b) [ By the commutativity of the diagram)].

So we have, p'(b' — g(b)) = 0.

= b —g(b) € kerf’ = Ima’ [By the exactness of the botttom row]

= b —g(b) = d/(d’); for some o’ € A'.
= o/ f(a); for some a € A (since f is an epimorphism).
= ga(a) [ By the commutativity of the diagram].

= V' =g(b) + gala) = g(b+ a(a)).

Which implies that b € I'mg where b+ a(a) € B.

Hence g is epimorphism.

Which proves (ii).

Hence the theorem.

Theorem: State and prove the Five Lemma.

Statement: If the commutative diagram

Al a1 A2 a2 N A3 a3 N A4 Q4 \ A5

O

B2 Bs B3 | B, Ba | Bs

of R-modules and R-homomorphism has both rows exact, then



(i) if A1 is an epimorphism and Ay, A4 are monomorphisms then A3 is a monomorphism;
(ii) if A5 is @ monomorphism and Ay, A4 are epimorphisms then A3 is an epimorphism;
(iii) if A1,A2, A4, A5 are isomorphisms then A3 is an isomorphism.
Proof: (i) Here given that A; is an epimorphism and Ay, A4 are monomorphisms. Now,
we show that A3 is a monomorphism or equivalently kerA; = {0}.

So let az € kerAs, then as € Az such that

Thus we have, S3A3(a3) = f3(0) =0

— Mas(az) = 0 (by the commutativity of the diagram)
Since A4 is a monomorphism so asz(as) = 0

= a3 € kerag = Imay (by the exactness of the top row)
— a3z € Imay

= ag = as(ag) for some ay € Ay

Now from (1), Az(az) =0

= A3(az(az)) =0

Azaz(ag) =0

BaAa(az) = 0 (by the commutativity of the diagram)

Ao(az2) € kerfBy = Imf; (by the exactness of the bottom row)

il

Aa(az) € Imp

= Ao(az) = B1(by1) for some by € By

Also since \; is epimorphism so by = A\i(a;) for some a; € A;

e, Aa(az) = fiAi(a1) = Aai(ay) (by the commutativity of the diagram)
= Ao(az) — Xaai(a;) =0

= Ao(az —ai(a)) =0

Since Ay is a monomorphism, so we have , as — a1(a;) =0

— Q9 = al(al)



Now, az = as(az) = as(ay(ar)) = asag(ay) = 0 (since Imay = keras, then asa; = 0)
— a3 =0

Thus we have, a3 € kerA\3 = a3 =10

Thus kerA; = {0} and hence A3 is monomorphism.

This proves (i).

Proof: (ii): Let A5 be a monomorphism and Ay, A4 are epimorphisms. We show that A3
is an epimorphism.

Let b3 € Bs then f3(b3) € By.

Since A4 is epimorphism, then [3(b3) = A4(a4) for some a4 € Ay.
= [aP3(bs) = Bada(aa)

But £483(b3) = 0 as kerfy = Im/33

Thus BsA4(ay) =0

= Msau(ay) = 0 (by the commutativity of the diagram)

Since A5 is a monomorphism, we have ay(as) =0

= a4 € ker oy = Imas (by the exactness of the top row)
= a4 = az(ag) for some az € A3

Now, we have 33(b3) = \s(as) = M(as(asz)) = BsAs(az) (by the commutativity of the
diagram)

= [3(b3 — A3(a3)) =0

= by — A\3(a3) € kerfs = Imfy (by the exactness of the bottom row)
Thus we have, by — A3(a3) = [2(b2) for some by € By

Since A is an epimorphism, we have by = Ay(ag) for some ay € A,

Thus bg — A3(ag) = BoA2(az) = Azaz(ag) (by the exactness of the top row)
= by = A\3(as + as(az)).

Since as + as(as) € Az, therafore Az is an epimorphism.
This proves (ii).



Proof: (iii) Since A, A2, Ay and A5 are isomorphisms. So by (i) A3 is a monomorphism
and by (ii) A3 is an epimorphism.

Hence A3 is an isomorphism.
This proves (ii).

Hence the theorem is proved.

Theorem: State and prove the Strong Four Lemma.

Statement: If the commutative diagram

a « «
Al 1/A2 2\A3 3\A4

[ A T

B, B1 B, B2 By B3 | B,

of R-modules and R-homomorphism has both rows exact. And if v; is an epimorphism
and 4 is a monomorphisms, then

(i) kervys = az(kerys)
(i) Imys = By ' (Ims) or, Bo(Imys) = Imrys.

Proof: (i): Let ag € ker~s.

Then 73(az) = 0.

53’73(013) = 53(0) = 0.

Ysaz(az) = 0 (since B3y3 = yaa3).

as(as) = 0 (ince 74 is a monomorphism).
az € kerasg = Imas.

az = as(as), for some ay € As.

ow, v3(az) = 0.

y3ae(az) = 0.

Bava(az) = 0 (since yza = F272).

Yo(az) € kerfBy = Imp.

vYa(az) = P1(by) for some by € By.

Y2(ag) = Bi1y1(ay) (since 71 is an epimorphism, by = 7, (a;) for some a; € Ay).
Y2(az) = yoa1(ar) (since f1y1 = ya001).
Y2(az — ai(a1)) = 0.

as — ai(ay) € kery,.

ag(az — aq(ay)) € agkerys.

(a(az) — apar(ar)) € askerys.

(a3 — 0) € agkery, (since asay = 0 and as(az) = ag).
as € as(kerys).

Thus kerys C ag(keryg) -+ (A)

IR
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Conversely let az € ag(kerysy), then ag = as(ay) for some as € ker,.
Now, ay € kervy, implies y2(as) = 0.
= [ay2(az) = B2(0) = 0.



= az(az) = 0 (since Boyp = y302).
= as(ag) € kervs.
= ag € kervys (since ag = as(as)).

Thus ay(keryy) C kerysz -+« (B)

Hence from (A) and (B) we have kervys = as(kery,). Which proves (i).

Proof: (ii):
We show that Imy, = B3 (Imys) or, Ba(Imryy) = Imeys.

Let bs € Ba(Imys), then by = By(by) for some by € Imy,.

Now, by € I'm~ys, implies by = Y2(ay) for some as € A,.
Therefore, by = B5(bz) = Bay2(az) = y3a2(az) (since Baye = y3012)
— b3 S Im’}/g

Thus Sa(Imry,) C Imrys

= Imryy C By (Imryg) -+ (€)

Conversely let by € By (Imrys).

= [a(b2) € Imys.

= fPa(b2) = 73(as) for some a3 € Aj.

= 3(as) = Pa(ba).

= P373(as) = B302(ba).

= B373(a3z) = 0 (since B35, = 0).

= maz(az) = 0 (since 373 = y403).

= ag(az) = 0 (since 74 is a monomorphism).
= a3 € kerasz = I'mas.

= a3 = ay(az) for some ay € As.

Now, B2(b2) = v3(as).

= fa(b2) = y302(ay) (since az = as(az)).

= [a(b2) = Bayz(az) (since y3ag = Ba272).

= [Ba(by — 12(az)) = 0.

= (by — 72(a2)) € kerfa = Imp.

= (by — 12(ag)) = B1(by) for some by € B;.
= (by — 12(a2)) = Pfi71(ay) (since 7 is an epimorphism by € By = by = 71(ay) for
some a; € Ap).

= (ba — Y2(a2)) = v201(ay) (since f1y1 = ya001).
= by = Ya(a2) + v20u(aq).

= by = y(az + aq(a)).

= by € Ims.

Thus By ' (Imys) C Imryg - (D).

From (C) and (D) we have, By~ (Imys) = Imy,
or, fa(Im~yy) = I'mrys. Which proves (ii).



