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Additive Abelion Group

(i) a+ b ∈ G, ∀ a, b ∈ G.
(ii) a+ (b+ c) = (a+ b) + c ∀ a, b, c ∈ G.
(iii) There exists 0 ∈ G such that a+ 0 = 0 + a = a ∀ a ∈ G.
(iv) For every a ∈ G there exists, −a ∈ G such that a+ (−a) = (−a) + a = 0.
(v) a+ b = b+ a ∀ a, b ∈ G.

Ring: (R,+, ∗)

(i) R is an additive abelion group.
(ii) a ∗ b ∈ R ∀ a, b ∈ R.
(iii) a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ R.
(iv) a ∗ (b+ c) = a ∗ b+ a ∗ c ∀ a, b, c ∈ R.
(v) (a+ b) ∗ c = (a ∗ c) + (b ∗ c) ∀ a, b, c ∈ R.

If ab = ba, then (R,+, ∗) is a commutative ring.

Left R-module: Let R be a ring (not necessarily commutative). Let M be an additive
abelian group then M is called a left R-module if M is closed under scalar multiplication
and satisfies the following conditions:

(i) r(x+ y) = rx+ ry
(ii) (r1r2)(x) = r1(r2x)
(iii) (r1 + r2)(x) = r1x+ r2x
(iv) if 1 ∈ R then 1.x = x,

where, r1, r2, r ∈ R and x, y ∈M ; and r ∈ R, x ∈M implies rx is the unique element in
M . The left R-module M is denoted by RM .

Right R-module: Let R be a ring (not necessarily commutative). Let M be an additive
abelian group then M is called a right R-module if M is closed under scalar multiplication
and satisfies the following conditions:

(i) (x+ y)r = xr + yr
(ii) x(r1r2) = (xr1)r2
(iii) x(r1 + r2) = xr1 + xr2
(iv) if 1 ∈ R then x.1 = x,

where, r1, r2, r ∈ R and x, y ∈M ; and r ∈ R, x ∈M implies xr is the unique element in
M . The right R-module M is denoted by MR.

R-Module: An additive abelian group M is called an R-Module if it is both a left R-
Module and a right R-Module. If R is a commutative ring then M is both a left and a
right R-Module.
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Examples:

(i) Any ring R is an R-module (either left or right R-module).

(ii) If R is a field then every vactor space V over R is an R-module.

(iii) 2Z is a Z-module.

(iv) Every abelian group is a Z-module.

(v) Every ideal I of a ring R is an R-module.

Bi-Module: Let R and S be two rings each with identity element. Then the additive
abelian group M is called a Bi-module if M is a left R-Module and a right S-module
and it is denoted by RMS.

Sub-Module: Let R be a ring with 1 and M be a left R-module, then a subset N of M
is said to be a sub-module of M if,

(i) N is a sub-group of M ,

(ii) for each r ∈ R and n ∈ N implies rn ∈ N .

Theorem: Let Ni; i ∈ I be a fimily of sub-modules of a left R-module M then
⋂
i∈I

Ni is

a sub-module of M .

Proof: Clearly,
⋂
i∈I

Ni is a sub-group of M . Let r ∈ R and n ∈
⋂
Ni. This implies that

n ∈ Ni for each i. Since, each Ni is a submodule of M , rn ∈ Ni for each i. Therefore,

rn ∈
⋂
i∈I

Ni. Hence,
⋂
i∈I

Ni is a sub-module of M .

Factor module: Let M be a left R-module and N be a sub-module of M . We define

r(m + N) = rm + N , then the factor group
M

N
becomes a left R-module. This left

R-module
M

N
is called a factor module of M by N , where m ∈M and r ∈ R.

Note:

If x+ y ∈ M
N

then x+ y = x+ y.

If ax ∈ M
N

then ax = ax = a(x+N).

If x ∈ M
N

then x = m+N , where m ∈M .

Homomorplism: Let M and M ′ are left R-modules. A mapping f : M → M ′ is
called an R-hmomorplism or a linear mapping or linear homomorphism, if the following
conditions are satisfied:

(i) f(x+ y) = f(x) + f(y), ∀ x, y ∈M ,

(ii) f(rx) = rf(x) ∀ x ∈M and r ∈ R.
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Example:

Let M be a left R-module and S be an R-sub module of M . A mapping φ : M → M

S
define by φ(m) = m+ S is an R-homomorphism.

Proof : Here given that, φ(m) = m+ S, where m ∈M .

Now, let m1, m2 ∈M then we have,

φ(m1 +m2) = m1 +m2 + S

= m1 + S +m2 + S

= φ(m1) + φ(m2).

Again let, r ∈ R and m ∈M , then rm ∈M . Now, we have,

φ(rm) = rm+ S

= r(m+ S)

= rφ(m).

Hence, φ is an R-homomorphism.

Problem: Let M and M ′ be two left R-modules. Show that the mapping φ : M →M ′

defined by φ(x) = x2 is not an R-homomorphism.

Proof : Given that, φ : x→ x2.

Let x, y ∈M then φ(x) = x2 and φ(y) = y2.

∴ φ(x+ y) = (x+ y)2

= x2 + y2 + 2xy

= φ(x) + φ(y) + 2xy.

Thus, φ(x+ y) 6= φ(x) + φ(y).

Again, if r ∈ R, then φ(rx) = r2x2=r2φ(x).

Which implies that, φ(rx) 6= rφ(x).

Hence, φ is not an R-homomorphism.

Problem: Let M , N , Q be three R-modules and let T : M → N and S : N → Q be
R-homomorphisms. Let ST : M → Q define by (ST )(m) = ST (m) for m ∈ M . Prove
that ST is an R-homomorphism.

Proof: Let m, m1, m2 ∈M ; n, n1, n2 ∈ N and r ∈ R.
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Since, T and S are both R-homomorphism then we have,

T (m1 +m2) = T (m1) + T (m2), T (rm) = rT (m)

and S(n1 + n2) = S(n1) + S(n2), S(rn) = rS(n).

Now, (ST )(m1 +m2) = ST (m1 +m2)

= S(T (m1) + T (m2))

= S(T (m1)) + S(T (m2))

= ST (m1) + ST (m2)

= (ST )(m1) + (ST )(m2).

And, (ST )(rm) = ST (rm)

= S(rT (m))

= rS(T (m))

= rST (m)

= r(ST )(m).

Hence. ST : M → Q is an R-homomorphism.

Problem: Let M and Q be two R-modules and let S : M → Q and T : M → Q be
R-homomorphisms. Then show that (S + T ) : M → Q is an R-homomorphism.

Proof: Since, S and T are two R-homomorphism from M to Q, then for m1, m2 ∈ M
and r ∈ R, we have,

(S + T )(m1 +m2) = S(m1 +m2) + T (m1 +m2)

= S(m1) + S(m2) + T (m1) + T (m2)

= S(m1) + T (m1) + S(m2) + T (m2)

= (S + T )(m1) + (S + T )(m2).

And, (S + T )(rm) = S(rm) + T (rm)

= rS(m) + rT (m)

= r(S(m) + T (m))

= r(S + T )(m).

Hence, (S + T ) is an R-homomorphism.
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Problem: If f : M → T be an R-homomorphism and X, Y being R-submodules of M
and T , respectively, with the property that f(X) = {f(x) : x ∈ X} ⊆ T . Then show that

f ′ :
M

X
→ T

Y
defined by f ′(m+X) = f(m) + Y is an R-homomorphism.

Proof: Let m1 +X, m2 +X ∈ M
X

, where m1, m2 ∈M and r ∈ R, then,

(m1 +X) + (m2 +X) = (m1 +m2) +X ∈ M
X

Now, f ′((m1 +X) + (m2 +X)) = f ′((m1 +m2) +X)

= f(m1 +m2) + Y

= f(m1) + f(m2) + Y

= f(m1) + Y + f(m2) + Y

= f ′(m1 +X) + f ′(m2 +X).

Again, f ′(r(m+X)) = f ′(rm+X)

= f(rm) + Y

= rf(m) + Y

= r(f(m) + Y )

= rf ′(m+X)

Hence, f ′ is an R-homomorphism.

Theorem: Let φ : M →M ′ be an R-homomorphism, then show that,

(i) φ(0) = 0, where 0 ∈M and 0 ∈M ′

(ii) φ(−m) = −φ(m), where m ∈M .

Proof (i): We have,

φ(m) + 0̄ = φ(m) = φ(m+ 0) = φ(m) + φ(0)

i.e., φ(m) + 0̄ = φ(m) + φ(0)

Now, adding −φ(m) on both sides, we have, φ(0) = 0̄.

Proof (ii): We have, from (i),

0̄ =φ(0)

= φ(m+ (−m))

= φ(m) + φ(−m)
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i.e., φ(m) + φ(−m) = 0̄

Adding −φ(m) on both sides, we get,

φ(−m) = −φ(m) + 0̄

=−φ(m)

∴ φ(−m) = −φ(m).

Kernel and Image of an R-homomorphism: Let φ : M →M ′ be anR-homomorphism.
Then the kernel of φ is defined by, kerφ = {x ∈ M : φ(x) = 0̄} and the image of φ is
written as Imφ and is defined by Imφ = {φ(x) : x ∈M}.

Theorem: Let φ : M →M ′ be an R-homomorphism, then show that,

(i) kerφ is a sub-module of M .

(ii) Imφ is a sub-module of M ′.

Proof (i): Since φ(0) = 0̄ implies 0 ∈ kerφ, therefore kerφ is nonempty.

Now, let m1, m2 ∈ kerφ then φ(m1) = 0̄ and φ(m2) = 0̄.

Now, φ(m1 +m2) = φ(m1) + φ(m2) = 0̄ + 0̄ = 0̄

which implies that m1 +m2 ∈ kerφ.

Again, let r ∈ R and m ∈ kerφ then φ(m) = 0̄.

Now, φ(rm) = rφ(m) = r.0̄ = 0̄

which implies that rm ∈ kerφ.

Hence, kerφ is a sub-module of M .

Proof (ii): Since φ(0) = 0̄ implies 0̄ ∈M ′. Also 0̄ ∈ Imφ, therefore Imφ is nonempty.

let φ(m1), φ(m2) ∈ Imφ then,

φ(m1) + φ(m2) = φ(m1 +m2) = φ(m3) where m3 ∈M

which implies φ(m1) + φ(m2) ∈ Imφ.

Finally, let r ∈ R and φ(m) ∈ Imφ then, rφ(m) = φ(rm) ∈ Imφ.

Hence rφ(m) ∈ Imφ and therefore Imφ is a sub-module of M ′.

Epimorphism: A homomorphism f : M →M ′ is called an epimorphism when
f(M) = Imf = M ′.
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Monomorphism: A homomorphism f : M →M ′ is called a monomorphism if
f(m1) = f(m2) =⇒ m1 = m2 for every m1, m2 ∈M .

Isomorphism: A homomorphism f : M →M ′ is called an isomorphism if f is an
epimorphism and a monomorphism.

Note: If f : M →M ′ is an isomorphism and if f−1 : M ′ →M be a mapping defined by
f−1(x′) = x iff f(x) = x′ then f−1 is also an isomorphism. Here f−1 ◦ f is the identity
mapping of M and f ◦ f−1 is the identity of M ′.

Canonical injection and projection: If N is a submodule M then the mapping J :
N → M defined by J(x) = x ∀ x ∈ N is a monomorphism and is called the natural or
canonical injection of N into M .

The mapping φ : M → M

N
defined by φ(m) = m + N is called the natural or canonical

projection.

Note: The set of all homomorphism of M to M ′ is denoted by HomR(M,M ′).

Endomorphism and Automorphism: A homomorphism of M to M itself is called an
endomorphism and an isomorphism of M to M itself is called an automorphism.

Theorem: IfR is a commutative ring andM , M ′ areR-modules then the setHomR(M,M ′)
is an R-module.

Proof: We define, (f1 + f2)(m) = f1(m) + f2(m), where f1, f2 ∈ HomR(M,M ′).

(i) Here we have, (f1 + f2)(m1 +m2) = f1(m1 +m2) + f2(m1 +m2)

= f1(m1) + f1(m2) + f2(m1) + f2(m2)

= f1(m1) + f2(m1) + f1(m2) + f2(m2)

= (f1 + f2)(m1) + (f1 + f2)(m2)

And, (f1 + f2)(rm) = f1(rm) + f2(rm)

= rf1(m) + rf2(m)

= r(f1(m) + f2(m))

= r(f1 + f2)(m).

Thus, f1 + f2 ∈ HomR(M,M ′).

i.e., HomR(M,M ′) is closed under addition.
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(ii) For any f1, f2, f3 ∈ HomR(M,M ′) we have,

(f1 + (f2 + f3))(m) = f1(m) + (f2 + f3)(m)

= f1(m) + f2(m) + f3(m)

= (f1(m) + f2(m)) + f3(m)

= (f1 + f2)(m) + f3(m)

= ((f1 + f2) + f3)(m)

Hence, f1 + (f2 + f3) = (f1 + f2) + f3.

i.e., associative law for addition is satisfied in HomR(M,M ′).

(iii) We define f0 : M →M ′ by f0(m) = 0̄ such that,

(f + f0)(m) = f(m) + f0(m)

= f(m) + 0̄

= f(m)

i.e., f + f0 = f

Similarly, we have, f0 + f = f

Hence, f0 is the identity element of HomR(M,M ′).

(iv) For every f ∈ HomR(M,M ′) there exists −f ∈ HomR(M,M ′) defined by

(−f)(m) = −f(m) such that (f + (−f))(m) = f(m) + (−f)(m)

= f(m)− f(m)

= 0̄

= f0(m)

Which implies f + (−f) = f0.

Similarly, we have, (−f) + f = f0

Hence, inverse element exists in HomR(M,M ′).
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(v) For all f1, f2 ∈ HomR(M,M ′) we have,

(f1 + f2)(m) = f1(m) + f2(m)

= f2(m) + f1(m)

= (f1 + f2)(m)

This implies f1 + f2 = f2 + f1

Hence HomR(M,M ′) is an additive abelian group.

(vi) Now, for any r ∈ R and f ∈ HomR(M,M ′), define (rf)(m) = rf(m) and (fr)(m) =
f(m)r. We show that rf and fr are R-homomorphisms. i.e., rf , fr ∈ HomR(M,M ′).

We have, (rf)(m1 +m2) = r(f(m1 +m2))

= r(f(m1) + f(m2))

= rf(m1) + rf(m2)

= (rf)(m1) + (rf)(m2)

Again, (rf)(r′m) = rf(r′m)

= rr′f(m)

= r′rf(m) (since R is commutative)

= r′(rf)(m)

Hence, rf ∈ HomR(M,M ′).

Similarly, we can show that fr ∈ HomR(M,M ′).

(vii) Now, for any r ∈ R and f1, f2 ∈ HomR(M,M ′), we have,

(r(f1 + f2))(m) = r(f1 + f2)(m)

= r(f1(m) + f2(m))

= rf1(m) + rf2(m)

= (rf1 + rf2)(m)

i.e., r(f1 + f2) = rf1 + rf2

Similarly, we can show that (f1 + f2)r = f1r + f2r
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(viii) Next, for any r1, r2 ∈ R and f ∈ HomR(M,M ′), we have,

((r1 + r2)f)(m) = (r1 + r2)f(m)

= r1f(m) + r2f(m)

= (r1f)(m) + (r2f)(m)

= (r1f + r2f)(m)

i.e., (r1 + r2)f = r1f + r2f

Similarly, we can show that f(r1 + r2) = fr1 + fr2

(ix) Next, for any r1, r2 ∈ R and f ∈ HomR(M,M ′), we have,

((r1r2)f)(m) = (r1r2)(f(m))

= r1(r2f(m))

= r1(r2f)(m)

i.e., ((r1r2)f) = r1(r2f)

Similarly, we can show that (f(r1r2)) = (fr1)r2

(x) Finally, if 1 ∈ R, then for any f ∈ HomR(M,M ′), we have, (1f)(m) = 1f(m) = f(m)

i.e., 1f = f

Similarly, f1 = f

Hence, HomR(M,M ′) is an R-module.

Theorem: If M is an R-module, then show that HomR(M,M) is a ring.

or, The set of all endomorphism is a ring.

Proof: We define, (f1 + f2)(m) = f1(m) + f2(m), where f1, f2 ∈ HomR(M,M).

(i) Here we have, (f1 + f2)(m1 +m2) = f1(m1 +m2) + f2(m1 +m2)

= f1(m1) + f1(m2) + f2(m1) + f2(m2)

= f1(m1) + f2(m1) + f1(m2) + f2(m2)

= (f1 + f2)(m1) + (f1 + f2)(m2)
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And, (f1 + f2)(rm) = f1(rm) + f2(rm)

= rf1(m) + rf2(m)

= r(f1(m) + f2(m))

= r(f1 + f2)(m).

Thus, f1 + f2 ∈ HomR(M,M).

i.e., HomR(M,M) is closed under addition.

(ii) For any f1, f2, f3 ∈ HomR(M,M) we have,

(f1 + (f2 + f3))(m) = f1(m) + (f2 + f3)(m)

= f1(m) + f2(m) + f3(m)

= (f1(m) + f2(m)) + f3(m)

= (f1 + f2)(m) + f3(m)

= ((f1 + f2) + f3)(m)

Hence, f1 + (f2 + f3) = (f1 + f2) + f3.

i.e., associative law for addition is satisfied in HomR(M,M).

(iii) We define f0 : M →M by f0(m) = 0̄ such that,

(f + f0)(m) = f(m) + f0(m)

= f(m) + 0̄

= f(m)

i.e., f + f0 = f

Similarly, we have, f0 + f = f

Hence, f0 is the identity element of HomR(M,M).

(iv) For every f ∈ HomR(M,M) there exists −f ∈ HomR(M,M) defined by

(−f)(m) = −f(m) such that (f + (−f))(m) = f(m) + (−f)(m)

= f(m)− f(m)

= 0̄

= f0(m)

Which implies f + (−f) = f0.
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Similarly, we have, (−f) + f = f0

Hence, inverse element exists in HomR(M,M).

(v) For all f1, f2 ∈ HomR(M,M) we have,

(f1 + f2)(m) = f1(m) + f2(m)

= f2(m) + f1(m)

= (f1 + f2)(m)

This implies f1 + f2 = f2 + f1

Hence HomR(M,M) is an additive abelian group.

(vi) Let f1, f2 ∈ HomR(M,M) and m1, m2 ∈M , then

(f1f2)(m1 +m2) = f1(f2(m1 +m2))

= f1(f2(m1) + f2(m2))

= f1(f2(m1)) + f1(f2(m2))

= (f1f2)(m1) + (f1f2)(m2)

Again, let f1, f2 ∈ HomR(M,M), m ∈M and r ∈ R, then

(f1f2)(rm) = f1(f2(rm))

= f1(rf2(m))

= rf1(f2(m))

= r(f1f2)(m)

This implies that, f1f2 ∈ HomR(M,M).

(vii) Let f1, f2, f3 ∈ HomR(M,M) and m ∈M , then

((f1f2)f3)(m) = (f1f2)(f3(m))

= f1(f2(f3(m)))

= f1((f2f3)(m))

= (f1(f2f3))(m)

Hence, (f1f2)f3 = f1(f2f3).
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(viii) Let f1, f2, f3 ∈ HomR(M,M) and m ∈M , then

((f1 + f2)f3)(m) = (f1 + f2)(f3(m))

= f1(f3(m)) + f2(f3(m))

= (f1f3)(m) + (f2f3)(m)

= (f1f3 + f2f3)(m)

Hence, (f1 + f2)f3 = f1f3 + f2f3.

Similarly, we can show that

(ix) f1(f2 + f2) = f1f2 + f1f3.

Hence, HomR(M,M) is a ring.

Problem: Let R be a ring and let M and N be two arbitary R-modules. Let f : M → N
be an R-homomorphism, then f is a monomorphism (one-one) iff kerf = {0}.

Proof: First suppose that f : M → N be a monomorphism. We show that kerf = {0}.

Let a ∈ kerf , then we have f(a) = 0.

Also, since f is a monomorphism, then f is an R-homomorphism and one-one.

Therefore, f(0) = 0. So, we have f(a) = 0 = f(0). Which implies that a = 0.

Since a ∈ kerf implies a = 0.

Hence kerf = {0}.

Conversely, let kerf = {0}, we have to show that f is a monomorphism. i.e., f is one-one.

Let f(a1) = f(a2), then we have,

f(a1)− f(a2) = 0

=⇒ f(a1 − a2) = 0

=⇒ a1 − a2 ∈ kerf .

Now, since kerf = {0}, then a1 − a2 = 0.

Which implies atat a1 = a2.

Hence, f is one-one.
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Definition: let M , M ′, M ′′ be three left R-modules and let f : M → M ′ and g :
M ′ → M ′′, then the mapping g ◦ f : M → M ′′ defined by (g ◦ f)(m) = g(f(m)) is
a homomorphism of M into M ′. If f and g are monomorphism or epimorphism or
isomorphism, then g ◦ f is so.

Definition: let f : N →M be a homomorphism of two left R-modules N and M , then

we define co-kernel and co-image by co-kerf=
M

Imf
and co-Imf =

N

kerf
.

Theorem: Let R be a ring with 1 and let A and B be two left R-modules. Let φ : A→ B

be an R-homomorphism then
A

kerφ
∼= Imφ.

or, State and prove the fundamental theorem of R-homomorphism.

Proof: Define a map ψ :
A

kerφ
→ Imφ by

ψ(a+ kerφ) = φ(a) for a ∈ A.

Then, this map is well defined. For if,

a+ kerφ = a′ + kerφ for a, a′ ∈ A

Then, a− a′ ∈ kerφ =⇒ φ(a− a′) = 0

=⇒ φ(a)− φ(a′) = 0

=⇒ φ(a) = φ(a′)

=⇒ ψ(a+ kerφ) = ψ(a′ + kerφ)

Thus, ψ is well defined.

Let a+ kerφ, a′ + kerφ ∈ A

kerφ
, then

ψ((a+ kerφ) + (a′ + kerφ)) = ψ(a+ a′ + kerφ)

= φ(a+ a′)

= φ(a) + φ(a′)

= ψ(a+ kerφ) + ψ(a′ + kerφ)

Again, let a+ kerφ ∈ A

kerφ
and r ∈ R, then

ψ(r(a+ kerφ)) = ψ(ra+ kerφ)

= φ(ra)

= rφ(a) (since φ is an R-homomorphism)

= rψ(a+ kerφ)

Hence, ψ is an R-homomorphism.
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Next, let ψ(a+ kerφ) = ψ(a′ + kerφ) for a, a′ ∈ A

Then, φ(a) = φ(a′)

=⇒ φ(a)− φ(a′) = 0

=⇒ φ(a− a′) = 0

=⇒ a− a′ ∈ kerφ

=⇒ a+ kerφ = a′ + kerφ

Hence, ψ is a monomorphism.

Now for any, a ∈ A, φ(a) ∈ Imφ. And for any φ(a) ∈ Imφ there exists an element

a+ kerφ ∈ A

kerφ
such that ψ(a+ kerφ) = φ(a). Thus, ψ is an epimorphism.

Therefore, ψ is an isomorphism.

Hence
A

kerφ
∼= Imφ

proved
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Exact and Short Exact Sequence

Exact sequence: A sequence of R-modules and R-homomorphism,

M0
f0−−→M1

f1−−→M2
f2−−→M3

f3−−→ . . .
fn−2−−−→Mn−1

fn−1−−−→Mn
fn−−→Mn+1 (1)

is said to be exact at Mi if ker(fi) = Im(fi−1). The sequence (1) is called exact if it
is exact at each Mi for all 1 ≤ i ≤ n, i.e., if ker(fi) = Im(fi−1) for all 1 ≤ i ≤ n. The
sequence (1) of R-modules and R-homomorphism may be either finite or infinite.

Note

Consider the sequence 0 −→ A
f−−→ B. The image of the leftmost map is {0}. Therefore

the sequence is exact if and only if kerf = {0}; that is, if and only if f is a monomorphism
(injective, or one-one).

Consider the sequence B
g−−→ C −→ 0. The kernel of the rightmost map is C. Therefore

the sequence is exact if and only if Img = C; that is, if and only if g is an epimorphism
(surjective, or onto).

Therefore, the sequence 0 −→ A
f−−→ B −→ 0 is exact if and only if f is both a monomor-

phism and epimorphism, and thus, in many cases, an isomorphism from A to B.

Short exact sequence (SES): Let A, B, C be three R-modules and let f : A→ B and
g : B → C be R-homomorphisms then the following sequence

0 −→ A
f−−→ B

g−−→ C −→ 0 (2)

is called a short exact sequence of R-modules and R-homomorphism if it is exact at
each of A, B and C, i.e., f is a monomorphism, g is an epimorphism and Imf = kerg.

Theorem: Let 0 −→ A
f−−→ B

g−−→ C −→ 0 be a short exact sequence of R-modules and
R-homomorphisms then A ∼= kerg = Imf and C = Img.

Proof: Since 0 −→ A
f−−→ B

g−−→ C −→ 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have f is monomorphism, g is an epimorphism and
Imf = kerg.

Let h : A→ Imf be defined by h(a) = f(a) ∀ a ∈ A. Then clearly h is a monomorphism
and an epimorphism. Thus h is an isomorphism, i.e., A ∼= Imf . But Imf = kerg.
Hence A ∼= kerg = Imf .

Since g is an epimorphism, we have Img = C.

Hence A ∼= kerg = Imf and C = Img.
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Theorem: Let 0 −→ A
f−−→ B

g−−→ C −→ 0 be a short exact sequence of R-modules and

R-homomorphisms then co-kerf =
B

Imf
=

B

kerg
∼= Img = C.

Proof: Since 0 −→ A
f−−→ B

g−−→ C −→ 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have f is monomorphism, g is an epimorphism and
Imf = kerg.

By definition we have, co-kerf =
B

Imf
. Since Imf = kerg, then we have co-kerf =

B

Imf
=

B

kerg
.

Since g : B → C is a homomorphism, then by the fundamental theorem we have,
B

kerg
∼= Img. Again since g is an epimorphism, we have Img = C.

Hence co-kerf =
B

Imf
=

B

kerg
∼= Img = C.

Split short exact sequence: A short exact sequence 0 −→ A
α−−→ B

β−−→ C −→ 0 of
R-modules and R-homomorphisms is called a split short exact sequence if either

(i) there exists an R-homomorphism α′ : B → A such that α′α = 1A,
where 1A is the identity mapping on A.

or, (ii) there exists an R-homomorphism β′ : C → B such that ββ′ = 1C ,
where 1C is the identity map on C.

Theorem: Let 0 −→ A
α−−→ B

β−−→ C −→ 0 be a short exact sequence of R-modules and
R-homomorphism, then show that the following conditions are equivalent.

(i) there exists an R-homomorphism α′ : B → A such that α′α = 1A,
where 1A is the identity mapping on A.

(ii) there exists an R-homomorphism β′ : C → B such that ββ′ = 1C ,
where 1C is the identity map on C.

Or, Prove that the conditions for split short exact sequence are equivalent.

Proof: Since 0 −→ A
α−−→ B

β−−→ C −→ 0 is a short exact sequence of R-modules
and R-homomorphisms then, we have α is monomorphism, β is an epimorphism and
Imα = kerβ.

Let (i) holds. Let c ∈ C then since β is an epimorphism, so ∃ b ∈ B such that β(b) = c.

Now, define β′ : C → B such that β′(c) = b− αα′(b).

First we show that β′ is well defined.

Let c, c′ ∈ C such that c = c′.

17



Since β is an epimorphism so ∃ b, b′ ∈ B such that β(b) = c and β(b′) = c′.

Then, β′(c) = b− αα′(b) and β′(c′) = b′ − αα′(b′).

Now, β(b− b′) = β(b)− β(b′) (since β is a homomorphism).

= c− c′

= c− c

= 0

=⇒ b− b′ ∈ kerβ = Imα.

Thus, b− b′ = α(a) for some a ∈ A.

Now, αα′(b− b′) = αα′(α(a))

= α(α′(α(a)))

= α(α′α(a))

= α(1A(a))

= α(a)

= b− b′

=⇒ αα′(b)− αα′(b′) = b− b′ (since αα′ is a homomorphism).

=⇒ b− αα′(b) = b′ − αα′(b′).

=⇒ β′(c) = β′(c′)

Hence β′ is well defined.

Also we have, for each c ∈ C, c = β(b) and β′(c) = b− αα′(b).

Now, ββ′(c) = β(b− αα′(b))

= β(b)− β(αα′(b))

= β(b)− βα(α′(b))

= c− 0 as Imα = kerβ so βα = 0

= c.

i.e., ββ′(c) = c.

Hence, ββ′ = 1C which is (ii).

18



2nd part

Conversely, suppose (ii) holds. Let b ∈ B then

β(b− β′β(b)) = β(b)− ββ′β(b)

= β(b)− 1Cβ(b), (since ββ′ = 1C)

= β(b)− β(b)

= 0.

Therefore, b− β′β(b) ∈ kerβ = Imα.

Which implies b− β′β(b) = α(a) for some a ∈ A.

Now define α′ : B → A by α′(b) = a.

We show that α′ is well defined.

Let b, b′ ∈ B such that b = b′.

Since b− β′β(b), b′ − β′β(b′) ∈ kerβ = Imα.

Then b− β′β(b) = α(a) and b′ − β′β(b′) = α(a′) for some a, a′ ∈ A.

Thus α′(b) = a and α′(b′) = a′.

Now, b− β′β(b) = b′ − β′β(b′) as b = b′.

=⇒ α(a) = α(a′).

=⇒ a = a′ (since α is a monomorphism).

=⇒ α′(b) = α′(b′).

Thus α′ is well defined.

Also for each a ∈ A,

α′α(a) = α′(b− β′β(b))

= α′(b)− α′(β′β(b))

= a− 0 = a.

(since β′β(b) − β′β(β′β(b)) = β′β(b) − β′IC(β(b)) = β′β(b) − β′β(b) = 0 = α(0) so
α′(β′β(b)) = 0)

Which implies that α′α = 1A.
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Thus (i) holds.

Hence the theorem.

Theorem: Let
0 −→ A

α−−→ B
β−−→ C −→ 0

←−−
α′

←−−
β′

be a split short exact sequence of R-

modules and R-homomorphism with α′α = 1A and ββ′ = 1C then show that

0←−− A←−−
α′

B ←−−
β′

C ←−− 0 is an exact sequence.

Proof: Here we have to show that,

(i) β′ is a monomorphism,

(ii) α′ is an epimorphism,

and (iii) ker α′ = Im β′

(i) We show that β′ is a monomorphism, i.e., kerβ′ = {0}. Let c ∈ kerβ′ then β′(c) = 0.

Since ββ′ = 1C so we have ββ′(c) = 1C(c) = c.

Also, ββ′(c) = β(β′(c)) = β(0) = 0.

Which implies c = 0.

Thus kerβ′ = {0}.

Hence β′ is a monomorphism.

(ii) We show that α′ is an epimorphism. Since α′α = 1A, then for any a ∈ A we have,

a = 1A(a) = α′α(a) = α′(α(a)).

Since for every a ∈ A there exists α(a) ∈ B such that a = α′(α(a)). Hence α′ is an
epimorphism.

(iii) Let b ∈ kerα′ ⊂ B then b ∈ B and α′(b) = 0.

Also β(b) = c for some c ∈ C.

Thus, β′β(b) = β′(c)

= b− αα′(b) [By the defn of β′]

i.e., β′β(b) = b− α(0) = b− 0 = b.

i.e., β′(c) = b =⇒ b ∈ Imβ′
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Therefore, kerα′ ⊆ Imβ′ · · · · · · · · · · · ·(1)

Again, let b ∈ Im β′ then β′(c) = b for some c ∈ C.

Now, α′(b) = α′(β′(c))

= α′(b− αα′(b)) [from the definition of β′ we have β′(c) = b− αα′(b)]

= α′(b)− α′(αα′(b))

= α′(b)− (α′α)(α′(b))

= α′(b)− 1A(α′(b))

= α′(b)− α′(b)

= 0

Hence b ∈ kerα′

Which implies that Imβ′ ⊆ kerα′ · · · · · · · · · · · ·(2)

From (1) and (2), we have Imβ′ = kerα′

Hence, the sequence is exact. [proved]
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Internal and External Direct Sum

Internal Direct Sum: Let A and B be two sub-modules of a left R-module M. If
A ∩ B = {0}, zero sub-module, then the set {a + b : a ∈ A and b ∈ B} is called the
internal direct sum of A and B.

Similarly, we can define the internal direct sum of a finite number of sub-modules of a left
R-module. Thus if A1, A2, . . . , An are sub-modules of a left R-module M such that for
each Aj, Aj∩ (∪i 6=jAi) = {0}, then their internal direct sum is the set {

∑n
i=1 ai : ai ∈ Ai}.

External Direct Sum: The external direct sum A1 ⊕ A2 of two R-modules A1 and
A2 is the R-module consisting of all ordered pairs (a1, a2), for ai ∈ Ai, with the module
operations defined by

(a1, a2) + (a′1, a
′
2) = (a1 + a′1, a2 + a′2) and r(a1, a2) = (ra1, ra2).

Theorem: Let M1 and M2 be two sub-modules of a left R-module M such that.

(i) M1 ∩M2 = {0} and

(ii) if m ∈M , m1 ∈M1, m2 ∈M2 such that m = m1 +m2,

then M ∼= M1 ⊕M2.

Proof: Let us define a map f : M →M1 ⊕M2 given by

f(m) = (m1,m2), where m = m1 +m2.

We show that f is well defined.

Let m,m′ ∈ M such that m = m′. Then m = m1 + m2 and m′ = m′1 + m′2 where
m1,m

′
1 ∈M1; m2,m

′
2 ∈M2 and f(m) = (m1,m2), f(m′) = (m′1,m

′
2).

Now, m = m′

=⇒ m1 +m2 = m′1 +m′2

=⇒ m1 −m′1 = m′2 −m2

But m1 −m′1 ∈M1 and m′2 −m2 ∈M2.

Since M1 ∩M2 = {0} then we have,

m1 −m′1 = 0 = m2 −m′2

Which implies that, m1 = m′1 and m2 = m′2.
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i.e., (m1,m2) = (m′1,m
′
2)

=⇒ f(m) = f(m′).

Hence f is well defined.

Now, we show that f is a homomorphism.

Let m,m′ ∈M , then m = m1 +m2 and m′ = m′1 +m′2 where m1,m
′
1 ∈M1; m2,m

′
2 ∈M2

and f(m) = (m1,m2), f(m′) = (m′1,m
′
2).

Now, m+m′ = (m1 +m2) + (m′1 +m′2) = (m1 +m′1) + (m2 +m′2) where (m1 +m′1) ∈M1

and (m2 +m′2) ∈M2.

Therefore, f(m+m′) = (m1 +m′1,m2 +m′2) = (m1,m2) + (m′1,m
′
2) = f(m) + f(m′).

Also, for any r ∈ R, rm = rm1 + rm2 where rm∈M1 and rm2 ∈M2.

Therefore, f(rm) = (rm1, rm2) = r(m1,m2) = rf(m).

Thus f is an R-homomorphism.

Next, we show that f is a monomorphism.

Let m,m′ ∈M , then m = m1 +m2 and m′ = m′1 +m′2 where m1,m
′
1 ∈M1; m2,m

′
2 ∈M2

and f(m) = (m1,m2), f(m′) = (m′1,m
′
2).

Let f(m) = f(m′), then we have,

(m1,m2) = (m′1,m
′
2)

=⇒ m1 = m′1 and m2 = m′2

Thus m = m1 +m2 = m′1 +m′2 = m′.

Hence f is a monomorphism.

Finally, we show that f is an epimorphism.

For any (m1,m2) ∈ M1 ⊕M2 there exist an element m ∈ M such that (m1,m2) = f(m),
where m1 +m2 = m.

Thus f is an epimorphism.

Hence f is an isomorphism.

i.e., M ∼= M1 ⊕M2 [proved]
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Theorem: Let A and B are sub-modules of an R-module with A ∩ B = {0} then there

is a split short exact sequence
0 −→ A

i1−−→ A⊕B π1−−→ B −→ 0.
←−−
π2

←−−
i2

Proof: Let a ∈ A and b ∈ B, then we define i1(a) = (a, 0) and i2(b) = (0, b). Also define
π1 and π2 by π1(a, b) = b and π2(a, b) = a. Then clearly i1, i2, π1, π2 are well defined and
are all R-homomorphism.

Here we have to show that,

(i) i1 is a monomorphism,

(ii) π1 is an epimorphism,

(iii) ker π1 = Im i1

(iv) π2i1 = 1A

and (v) π1i2 = 1B.

(i) Let i1(a1) = i1(a2) for some a1, a2 ∈ A. Then

(a1, 0) = (a2, 0)

=⇒ a1 = a2.

Thus i1 is a monomorphism.

(ii) Let b ∈ B then b = π1(a, b) for some (a, b) ∈ A⊕B.

Thus π1 is an epimorphism.

(iii) Let (a, b) ∈ ker π1, then

π1(a, b) = 0

=⇒ b = 0

Therefore, (a, b) = (a, 0) = i1(a) for some a ∈ A.

=⇒ (a, b) ∈ Im i1

Thus ker π1 ⊆ Im i1 · · · · · · · · · · · ·(1)

Again, let (a, b) ∈ Im i1, then there exists a ∈ A such that

i1(a) = (a, b)
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=⇒ (a, 0) = (a, b)

=⇒ b = 0

Now, π1(a, b) = b = 0

=⇒ (a, b) ∈ ker π1
Thus Im i1 ⊆ ker π1 · · · · · · · · · · · ·(2)

From (1) and (2) we have ker π1 = Im i1.

Hence the given sequence is a short exact sequence.

(iv) For any a ∈ A, π2i1(a) = π2(a, 0) = a

=⇒ π2i1 = 1A.

(v) For any b ∈ B, π1i2(b) = π1(0, b) = b

=⇒ π1i2 = 1B.

Thus the sequence is split shot exact sequence.

Hence proved.

Note: For the sequence
0 −→ A

i1−−→ A⊕B π1−−→ B −→ 0, we have the following:
←−−
π2

←−−
i2

(i) π2i1 = 1A,

(ii) π1i2 = 1B,

(iii) π1i1 = 0,

(iv) π2i2 = 0,

(v) i1π2 + i2π1 = 1A⊕B.

Proof: (i) and (ii) is clear from the previous theorem.

(iii) For any a ∈ A, π1i1(a) = π1(a, 0) = 0 = 0(a). Thus π1i1 = 0.

(iv) For any b ∈ B, π2i2(b) = π2(0, b) = 0 = 0(b). Thus π2i2 = 0.

(v) For any (a, b) ∈ A⊕B, (i1π2 + i2π1)(a, b) = i1π2(a, b) + i2π1(a, b)

= i1(a) + i2(b).

= (a, 0) + (0, b) = (a, b).
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Hence i1π2 + i2π1 = 1A⊕B.

Theorem: Let
0 −→ A

α−−→ B
β−−→ C −→ 0

←−−
α′

←−−
β′

be a split short exact sequence of R-

modules and R-homomorphisms, then B ∼= A⊕ C.

Proof: Since
0 −→ A

α−−→ B
β−−→ C −→ 0

←−−
α′

←−−
β′

is a split short exact sequence of R-

modules and R-homomorphisms, then there exist an R-homomorphism α′ : B → A such
that α′α = 1A.

If we define β′ : C → B by β′(c) = b − α′α(b), where b ∈ B such that β(b) = c, then
clearly β′ is well defined and also β′ is an R-homomorphism and ββ′ = 1C .

Now, define φ : B → A ⊕ C by φ(b) = (α′(b), β(b)) and also define ψ : A ⊕ C → B by
ψ(a, c) = α(a) + β′(c).

Then clearly φ and ψ are both R-homomorphisms.

Now let b ∈ B then ψφ(b) = ψ(α′(b), β(b))

= α(α′(b)) + β′(β(b))

= αα′(b) + β′β(b)

= αα′(b) + β′(c)

= αα′(b) + b− αα′(b) = b

=⇒ ψφ(b) = b

=⇒ ψφ = 1B.

Again, let (a, c) ∈ A⊕ C then,

φψ(a, c) = φ(α(a) + β′(c))

= (α′(α(a) + β′(c)), β(α(a) + β′(c))

= (α′α(a) + α′β′(c), βα(a) + ββ′(c))

= (1A(a) + 0, 0 + 1C(c)) [Since Imβ′ = kerα′ so α′β′ = 0 and Imα = kerβ So βα = 0]

= (a, c)

=⇒ φψ = 1A⊕C

Thus φ and ψ are inverse of each other. i.e., φ and ψ are one-one and onto.

Hence B ∼= A⊕ C.
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Commutative Diagram: The diagram of R-module and R-homomorphism of the form

0 −−−→ A
α−−−→ B

β−−−→ C −−−→ 0yf yg yh
0 −−−→ A′

α′−−−→ B′
β′−−−→ C ′ −−−→ 0

is said to be commutative if α′f = gα : A→ B′ and β′g = hβ : B → C ′.

Theorem: State and prove the Short Five Lemma.

Statement: If the commutative diagram

0 −−−→ A
α−−−→ B

β−−−→ C −−−→ 0yf yg yh
0 −−−→ A′

α′−−−→ B′
β′−−−→ C ′ −−−→ 0

of R-modules and R-homomorphism has both rows exact, then

(i) if f and h are isomorphisms then g is an isomorphism;

(ii) if f and h are monomorphisms then g is a monomorphism;

(iii) if f and h are epimorphisms then g is an epimorphism.

Proof:
It is clear that (ii) and (iii) implies (i). Thus we only prove (ii) and (iii).

(ii) Let f and h are monomorphisms. We have to show that g is a monomorphism. i.e.,
kerg = {0}.

So let b ∈ kerg then g(b) = 0.

Now, β′g(b) = β′(0) = 0.

=⇒ hβ(b) = 0 (by the commutativity of the diagram).

Since h is a monomorphism, so β(b) = 0.

=⇒ b ∈ kerβ = Imα (by the exactness of the top row).

Which shows that b = α(a) for some a ∈ A.

Now, g(b) = gα(a) = α′f(a) (by the commutativity of the diagram).

=⇒ α′f(a) = 0 (since g(b) = 0).
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Since α′ is a monomorphism, so we have f(a) = 0.

Since f is a monomorphism, so a = 0.

Therefore b = α(0) = 0 implies kerg = {0}.

Which shows that g is a monomorphism.

Which is (i).

(ii) Let f and h are epimorphisms.

Let b′ ∈ B′. Now β′(b′) = h(c) for some c ∈ C.

Since h is an epimorphism and β is an epimorphism so c = β(b) for some b ∈ B.

Hence β′(b′) = hβ(b).

= β′g(b) [ By the commutativity of the diagram].

So we have, β′(b′ − g(b)) = 0.

=⇒ b′ − g(b) ∈ kerβ′ = Imα′ [By the exactness of the botttom row]

=⇒ b′ − g(b) = α′(a′); for some a′ ∈ A′.

= α′f(a); for some a ∈ A (since f is an epimorphism).

= gα(a) [ By the commutativity of the diagram].

=⇒ b′ = g(b) + gα(a) = g(b+ α(a)).

Which implies that b′ ∈ Img where b+ α(a) ∈ B.

Hence g is epimorphism.

Which proves (ii).

Hence the theorem.

Theorem: State and prove the Five Lemma.

Statement: If the commutative diagram

A1
α1−−−→ A2

α2−−−→ A3
α3−−−→ A4

α4−−−→ A5yλ1 yλ2 yλ3 yλ4 yλ5
B1

β1−−−→ B2
β2−−−→ B3

β3−−−→ B4
β4−−−→ B5

of R-modules and R-homomorphism has both rows exact, then
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(i) if λ1 is an epimorphism and λ2, λ4 are monomorphisms then λ3 is a monomorphism;

(ii) if λ5 is a monomorphism and λ2, λ4 are epimorphisms then λ3 is an epimorphism;

(iii) if λ1,λ2, λ4, λ5 are isomorphisms then λ3 is an isomorphism.

Proof: (i) Here given that λ1 is an epimorphism and λ2, λ4 are monomorphisms. Now,
we show that λ3 is a monomorphism or equivalently kerλ3 = {0}.

So let a3 ∈ kerλ3, then a3 ∈ A3 such that

λ3(a3) = 0 · · · · · · · · · · · · · · · (1)

Thus we have, β3λ3(a3) = β3(0) = 0

=⇒ λ4α3(a3) = 0 (by the commutativity of the diagram)

Since λ4 is a monomorphism so α3(a3) = 0

=⇒ a3 ∈ kerα3 = Imα2 (by the exactness of the top row)

=⇒ a3 ∈ Imα2

=⇒ a3 = α2(a2) for some a2 ∈ A2

Now from (1), λ3(a3) = 0

=⇒ λ3(α2(a2)) = 0

=⇒ λ3α2(a2) = 0

=⇒ β2λ2(a2) = 0 (by the commutativity of the diagram)

=⇒ λ2(a2) ∈ kerβ2 = Imβ1 (by the exactness of the bottom row)

=⇒ λ2(a2) ∈ Imβ1

=⇒ λ2(a2) = β1(b1) for some b1 ∈ B1

Also since λ1 is epimorphism so b1 = λ1(a1) for some a1 ∈ A1

i.e., λ2(a2) = β1λ1(a1) = λ2α1(a1) (by the commutativity of the diagram)

=⇒ λ2(a2)− λ2α1(a1) = 0

=⇒ λ2(a2 − α1(a1)) = 0

Since λ2 is a monomorphism, so we have , a2 − α1(a1) = 0

=⇒ a2 = α1(a1)
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Now, a3 = α2(a2) = α2(α1(a1)) = α2α1(a1) = 0 (since Imα1 = kerα2, then α2α1 = 0)

=⇒ a3 = 0

Thus we have, a3 ∈ kerλ3 =⇒ a3 = 0

Thus kerλ3 = {0} and hence λ3 is monomorphism.

This proves (i).

Proof: (ii): Let λ5 be a monomorphism and λ2, λ4 are epimorphisms. We show that λ3
is an epimorphism.

Let b3 ∈ B3 then β3(b3) ∈ B4.

Since λ4 is epimorphism, then β3(b3) = λ4(a4) for some a4 ∈ A4.

=⇒ β4β3(b3) = β4λ4(a4)

But β4β3(b3) = 0 as kerβ4 = Imβ3

Thus β4λ4(a4) = 0

=⇒ λ5α4(a4) = 0 (by the commutativity of the diagram)

Since λ5 is a monomorphism, we have α4(a4) = 0

=⇒ a4 ∈ ker α4 = Imα3 (by the exactness of the top row)

=⇒ a4 = α3(a3) for some a3 ∈ A3

Now, we have β3(b3) = λ4(a4) = λ4(α3(a3)) = β3λ3(a3) (by the commutativity of the
diagram)

=⇒ β3(b3 − λ3(a3)) = 0

=⇒ b3 − λ3(a3) ∈ kerβ3 = Imβ2 (by the exactness of the bottom row)

Thus we have, b3 − λ3(a3) = β2(b2) for some b2 ∈ B2

Since λ2 is an epimorphism, we have b2 = λ2(a2) for some a2 ∈ A2

Thus b3 − λ3(a3) = β2λ2(a2) = λ3α2(a2) (by the exactness of the top row)

=⇒ b3 = λ3(a3 + α2(a2)).

Since a3 + α2(a2) ∈ A3, therafore λ3 is an epimorphism.
This proves (ii).
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Proof: (iii) Since λ1, λ2, λ4 and λ5 are isomorphisms. So by (i) λ3 is a monomorphism
and by (ii) λ3 is an epimorphism.

Hence λ3 is an isomorphism.

This proves (ii).

Hence the theorem is proved.

Theorem: State and prove the Strong Four Lemma.

Statement: If the commutative diagram

A1
α1−−−→ A2

α2−−−→ A3
α3−−−→ A4yγ1 yγ2 yγ3 yγ4

B1
β1−−−→ B2

β2−−−→ B3
β3−−−→ B4

of R-modules and R-homomorphism has both rows exact. And if γ1 is an epimorphism
and γ4 is a monomorphisms, then

(i) kerγ3 = α2(kerγ2)

(ii) Imγ2 = β−12 (Imγ3) or, β2(Imγ2) = Imγ3.

Proof: (i): Let a3 ∈ kerγ3.
Then γ3(a3) = 0.
=⇒ β3γ3(a3) = β3(0) = 0.
=⇒ γ4α3(a3) = 0 (since β3γ3 = γ4α3).
=⇒ α3(a3) = 0 (ince γ4 is a monomorphism).
=⇒ a3 ∈ kerα3 = Imα2.
=⇒ a3 = α2(a2), for some a2 ∈ A2.
Now, γ3(a3) = 0.
=⇒ γ3α2(a2) = 0.
=⇒ β2γ2(a2) = 0 (since γ3α2 = β2γ2).
=⇒ γ2(a2) ∈ kerβ2 = Imβ1.
=⇒ γ2(a2) = β1(b1) for some b1 ∈ B1.
=⇒ γ2(a2) = β1γ1(a1) (since γ1 is an epimorphism, b1 = γ1(a1) for some a1 ∈ A1).
=⇒ γ2(a2) = γ2α1(a1) (since β1γ1 = γ2α1).
=⇒ γ2(a2 − α1(a1)) = 0.
=⇒ a2 − α1(a1) ∈ kerγ2.
=⇒ α2(a2 − α1(a1)) ∈ α2kerγ2.
=⇒ (α2(a2)− α2α1(a1)) ∈ α2kerγ2.
=⇒ (a3 − 0) ∈ α2kerγ2 (since α2α1 = 0 and α2(a2) = a3).
=⇒ a3 ∈ α2(kerγ2).
Thus kerγ3 ⊂ α2(kerγ2) · · · · · · · · · (A)

Conversely let a3 ∈ α2(kerγ2), then a3 = α2(a2) for some a2 ∈ kerγ2.
Now, a2 ∈ kerγ2 implies γ2(a2) = 0.
=⇒ β2γ2(a2) = β2(0) = 0.
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=⇒ γ3α2(a2) = 0 (since β2γ2 = γ3α2).
=⇒ α2(a2) ∈ kerγ3.
=⇒ a3 ∈ kerγ3 (since a3 = α2(a2)).

Thus α2(kerγ2) ⊂ kerγ3 · · · · · · · · · (B)

Hence from (A) and (B) we have kerγ3 = α2(kerγ2). Which proves (i).

Proof: (ii):

We show that Imγ2 = β−12 (Imγ3) or, β2(Imγ2) = Imγ3.

Let b3 ∈ β2(Imγ2), then b3 = β2(b2) for some b2 ∈ Imγ2.
Now, b2 ∈ Imγ2, implies b2 = γ2(a2) for some a2 ∈ A2.
Therefore, b3 = β2(b2) = β2γ2(a2) = γ3α2(a2) (since β2γ2 = γ3α2)
=⇒ b3 ∈ Imγ3.
Thus β2(Imγ2) ⊂ Imγ3
=⇒ Imγ2 ⊂ β2

−1(Imγ3) · · · · · · · · · (C)

Conversely let b2 ∈ β2−1(Imγ3).
=⇒ β2(b2) ∈ Imγ3.
=⇒ β2(b2) = γ3(a3) for some a3 ∈ A3.
=⇒ γ3(a3) = β2(b2).
=⇒ β3γ3(a3) = β3β2(b2).
=⇒ β3γ3(a3) = 0 (since β3β2 = 0).
=⇒ γ4α3(a3) = 0 (since β3γ3 = γ4α3).
=⇒ α3(a3) = 0 (since γ4 is a monomorphism).
=⇒ a3 ∈ kerα3 = Imα2.
=⇒ a3 = α2(a2) for some a2 ∈ A2.
Now, β2(b2) = γ3(a3).
=⇒ β2(b2) = γ3α2(a2) (since a3 = α2(a2)).
=⇒ β2(b2) = β2γ2(a2) (since γ3α2 = β2γ2).
=⇒ β2(b2 − γ2(a2)) = 0.
=⇒ (b2 − γ2(a2)) ∈ kerβ2 = Imβ1.
=⇒ (b2 − γ2(a2)) = β1(b1) for some b1 ∈ B1.
=⇒ (b2 − γ2(a2)) = β1γ1(a1) (since γ1 is an epimorphism b1 ∈ B1 =⇒ b1 = γ1(a1) for
some a1 ∈ A1).
=⇒ (b2 − γ2(a2)) = γ2α1(a1) (since β1γ1 = γ2α1).
=⇒ b2 = γ2(a2) + γ2α1(a1).
=⇒ b2 = γ2(a2 + α1(a1)).
=⇒ b2 ∈ Imγ2.
Thus β2

−1(Imγ3) ⊂ Imγ2 · · · · · · · · · (D).
From (C) and (D) we have, β2

−1(Imγ3) = Imγ2
or, β2(Imγ2) = Imγ3. Which proves (ii).
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