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Spacetime:  

Spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into 

a single four-dimensional continuum (a continuous sequence in which adjacent elements are not perceptibly 

different from each other). Spacetime diagrams can be used to visualize relativistic effects such as why different 

observers perceive where and when events occur. 

Minkowski Space:  

Minkowski space (or Minkowski spacetime) is a combination of three-dimensional Euclidean space and time into 

a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial 

frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski 

for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be 

an immediate consequence of the postulates of special relativity. 

Minkowski space is closely associated with Einstein's theory of special relativity, and is the most common 

mathematical structure on which special relativity is formulated. While the individual components in Euclidean 

space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frame of 

references will agree on the total distance in spacetime between events. Because it treats time differently than it 

treats the 3 spatial dimensions, Minkowski space differs from four-dimensional Euclidean space. 

Space-Time Diagrams: 
According to classical physics, the time coordinate is unaffected by a transformation from one inertial frame to 

another i.e. the time coordinate, t', of one inertial system does not depend on the space coordinates, x, y, z of another 

inertial system, the transformation equation being t' = t.  

In relativity, however, space and time are interdependent. The time coordinate of one inertial system depends on 

both the time and the space coordinates of another inertial system, the transformation equation being 

 t′ =
𝑡−

𝑣𝑥

𝑐2

√1−
𝑣2

𝑐2

      (1) 

Hence, instead of treating space and time separately, as is quite properly done in classical theory, it is natural in 

relativity to treat them together. H. Minkowski was first to show clearly how this could be done. In what follows, 

we shall consider only one space axis, the x-axis, and shall ignore the y and z axes. We lose no generality by this 

algebraic simplification and this procedure will enable us to focus more clearly on the interdependence of space and 

time and its geometric representation. The coordinates of an event are given then by x and t. All possible space-

time coordinates can be represented on a space-time diagram in which the space axis is horizontal and the time axis 

is vertical. It is convenient to keep the dimensions of the coordinates the same; this is easily done by multiplying 

the time t by the universal constant c, the velocity of light. Let ct be represented by the symbol w. Then, the Lorentz 

transformation equations can be written as follows: 

x′ =
𝑥−𝛽𝑤

√1−𝛽2
          x =

𝑥′+𝛽𝑤′

√1−𝛽2
      (2a) 

w′ =
𝑤−𝛽𝑥

√1−𝛽2
          w =

𝑤′+𝛽𝑥′

√1−𝛽2
     (2b)  

Notice the symmetry in this form of the equations. To represent the situation geometrically, we begin by drawing 

the x and w axes of frame S orthogonal (perpendicular) to one another (Fig. 1). 
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Fig. 1. 

If we wanted to represent the motion of a particle in this frame, we would draw a curve, called a world line, which 

gives the loci of space-time points corresponding to the motion.  Minkowski referred to space-time as "the world." 

Hence, events are world points and a collection of events giving the history of a particle is a world line. Physical 

laws on the interaction of particles can be thought of as the geometric relations between their world lines. In this 

sense, Minkowski may be said to have geometrized physics. 

The tangent to the world line at any point, being 
𝑑𝑥

𝑑𝑤
=

1

𝑐

𝑑𝑥

𝑑𝑡
, is always inclined at an angle less than 45° with the 

time axis. For this angle (see Fig. 1) is given by tan𝜃 = 
𝑑𝑥

𝑑𝑤
 = 

𝑢

𝑐
 and we must have u < c for a material particle. The 

world line of a light wave, for which u = c, is a straight line making a 45° angle with the axes.  

 

Spacetime Interval:  

Under the proper conditions, different observers will disagree on the length of time between two events 

(because of time dilation) or the distance between the two events (because of length contraction). So, the 

space and time are separately not invariant that’s why they can be merged into a four dimensional 

spacetime continuum. Special relativity provides a new invariant, called the spacetime interval, which 

combines distances in space and in time. All observers who measure time and distance carefully will find 

the same spacetime interval between any two events. Suppose an observer measures two events as being 

separated in time by ∆t and a spatial distance ∆x. Then the spacetime interval ∆S between the two events 

that are separated by a distance ∆x in space and by ∆ct = c∆t in the ct-coordinate is: 

(∆S)2 = (∆ct)2 – (∆x)2 

for three space dimensions,  (∆S)2 = (∆ct)2 – (∆x)2 - (∆y)2 - (∆z)2 

It can also be written as,  (∆S)2 = - (∆ct)2 + (∆x)2 + (∆y)2 + (∆z)2 

The constant c, the speed of light is a conversion factor to make both axis in the same dimension of length.  
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Geometric Interpretation of Lorentz Transformation  
Consider now the primed frame (S') which moves relative to S with a velocity v along the common x-x' axis. The 

equation of motion of S' relative to S can be obtained by setting x' = 0 (which locates the origin of S'); from equation 

2a, we see that this corresponds to x = 𝛽𝑤 (= vt). We draw the line x' = 0 (that is, x =𝛽𝑤) on our diagram (Fig. 2) 

and note that, since v < c and 𝛽< 1, the angle which this line makes with the w-axis, 𝜙= tan-1 (𝛽), is less than 45°. 

Just as the w-axis corresponds to x = 0 and is the time axis in frame S, so the line x' = 0 gives the time axis w' in S'. 

 

Fig. 2.  

Now, if we draw the line w’ = 0 (giving the location of clocks which read t’ = 0 in S’), we shall have the space axis 

x'. That is, just as the x-axis corresponds to w = 0, so the x'-axis corresponds to w’ = 0. But, from Eq. 2b, w' = 0 

gives us w = 𝛽𝑥 as the equation of this axis on our w-x diagram (Fig. 2). The angle between the space axes is the 

same as that between the time axes. 

From Fig. 2, we see that in four-space (x.y.z.t) the Lorentz equations involve transforming from an orthogonal 

system to a non-orthogonal system. We can use this representation to show the relativity of simultaneity and to give 

a geometrical interpretation of the space-contraction and time-dilation effects, as well as to illustrate their reciprocal 

nature. To do all this clearly, let us first represent the situation on a new diagram (Fig. 3). Here we draw the two 

branches of the hyperbola w2 - x2 = 1, and the two branches of the hyperbola x2 - w2 = 1. These lines whose meaning 

will soon be clear, approach asymptotically the 45° light ray world-lines. We also draw in the x, w axes of S and 

the x', w' axes of S'. 

The space-time point P1 is the intersection of the right branch of hyperbola x2 - w2 = 1 with the x’-axis given by w 

= 𝛽x. Hence, P1 is on both these lines and its coordinates (obtained by combining the equations of the lines) are 

 
Fig. 3 
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w =
𝛽

√1−𝛽2
     and     x =

1

√1−𝛽2
     (3a) 

But, comparison of Eq. 3a with Eq. 2 shows that Eq. 3a represents unit length (i.e., x' = 1) and zero time (i.e., w' = 

0) in the S' frame. That is, the interval OP1 gives unit length along the x'-axis. Similarly, the space-time point P2 is 

the intersection of the upper branch of hyper-bola w2 - x2 = 1 with the w'-axis given by x = 𝛽w. Hence, P2 is on both 

these lines and its coordinates (obtained by combining the equations of the lines) are  

x =
𝛽

√1−𝛽2
     and     w =

1

√1−𝛽2
     (3b) 

Comparison of Eq. 3b with Eq. 2 shows that Eq. 3b represents unit time (i.e., w' = 1) and zero length (i.e., x' = 0) in 

the S' frame. That is, the interval OP2 gives unit time along the w'-axis. The hyperbolas are often referred to as 

calibration curves. Consider the upper hyperbola, for example. At x = 0, we have w = 1, which (in units of ct) is 

unit time in S. At any other point x we have c2t2 - x2 = c2(t2 - x2/c2) = C2𝜏2 = 1. Thus, points on the upper hyperbola 

give unit time on the clock at rest in S'; that is, the proper time in units of ct is equal to one. Whatever the relative 

velocity of S' to S, the intersection of the time axis with this hyperbola will give the unit time in S'. Similarly, for 

the right hyperbola we have x = 1 at w = 0, which is unit length in S (measured from the origin).  

At any other value of w, points on the hyperbola represent unit length at rest in a frame S', the velocity of S' relative 

to S being determined by the inclination of the space axis, which intersects the hyperbola at the point in question. 

Let us suppose now that we observe events from two inertial frames, S and S', whose relative velocity we know. 

The hyperbolic calibration curves determine the unit time interval and unit length interval on the axes of these 

frames; once the hyperbolas have served this purpose, we can dispense with them. In Fig. 4 we show the calibration 

of the axes S and S', the unit time interval along w' being a longer line segment than the unit time interval along w 

and the unit length interval along x' being a longer line segment than the unit length interval along x. The first thing 

we must be able to do is to determine the space-time coordinates of an event, such as P, from the Minkowski 

diagram. To find the space coordinate of the event, we simply draw a line parallel to the time axis from P to the 

space axis. The time coordinate is given similarly by a line parallel to the space axis from P to the time axis. The 

rules hold equally well for the primed frame as for the unprimed frame. In Fig. 4, for example, the event P has 

space-time coordinates x = 3, w = 2.5 in S (dashed lines), and space-time coordinates x = 2, w' = 1.5 in S' (dotted 

lines). It is as though the rectangular grid of coordinate lines of S (Fig. 5a) become squashed toward the bisecting 

45° line when the coordinate lines of S' are put on the same graph (Fig. 5b); clearly the Lorentz equations transform 

an orthogonal system to a non-orthogonal one. 
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Fig. 4 

 

Fig. 5 

 

Simultaneity, Contraction, and Dilation  

Now we can easily show the relativity of simultaneity. As measured in S', two events will be simultaneous if they 

have the same time coordinate w'. Hence, if the events lie on a line parallel to the x'-axis they are simultaneous to 

S'. In Fig. 6, for example, events Q1 and Q2 are simultaneous in S'; they obviously are not simultaneous in S, 

occurring at different times w1 and w2 there. Similarly, two events R1 and R2, which are simultaneous in S, are 

separated in time in S'. 

 

Fig. 6 

As for the space contraction, consider Fig. 7a. Let a meter stick be at rest in the S-frame, its end points being at x 

= 3 and x = 4, for ex-ample. As time goes on, the world-line of each end point traces out a vertical line parallel to 

the w-axis. The length of the stick is defined as the distance between the end points measured simultaneously. In S, 

the rest frame, the length is the distance in S between the intersections of the world lines with the x-axis, or any line 

parallel to the x-axis, for these intersecting points represent simultaneous events in S. The rest length is one meter. 

To get the length of the stick in S', where the stick moves, we must obtain the distance in S' between end points 
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measured simultaneously. This will be the separation in S' of the intersections of the world lines with the x'-axis, or 

any line parallel to the x'-axis, for these intersecting points represent simultaneous events in S'. The length of the 

(moving) stick is clearly less than one meter in S'. (See Fig. 7a). Notice how very clearly Fig. 7a reveals that it is a 

disagreement about the simultaneity of events that leads to different measured lengths. Indeed, the two observers 

do not measure the same pair of events in determining the length of a body (e.g., the S-observer uses E1 and E2, say, 

whereas the S'-observer would use E1 and E3, or E2 and E4) for events which are simultaneous to one inertial observer 

are not simultaneous to the other (see Ref. 2 for a forceful presentation of this point). We should also note that the 

x' coordinate of each endpoint decreases as time goes on (simply project from successive world-line points parallel 

to w' onto the x'-axis), consistent with the fact that the stick which is at rest in S moves towards the left in S'. 

 

Fig. 7 

The reciprocal nature of this result is shown in Fig. 7b. Here, we have a meter stick at rest in S' and the world lines 

of its end points are parallel to w' (the end points are always at x' = 3 and x' = 4, say). The rest length is one meter. 

In S, where the stick moves to the right, the measured length is the distance in S between intersections of these 

world lines with the x-axis, or any line parallel to the x-axis. The length of the (moving) stick is clearly less than 

one meter in S (see Fig. 7b).  

It remains now to demonstrate the time-dilation result geometrically. For this purpose consider Fig. 8. Let a clock 

be at rest in frame S, ticking off units of time there. The solid vertical line in Fig. 8, at x = 2.3, is the world line 

corresponding to such a single clock. T1 and T2 are the events of ticking at w (=ct) = 2 and w (= ct) = 3, the time 

interval in S between ticks being unity. In S', this clock is moving to the left so that it is at a different place there 

each time it ticks. To measure the time interval between events T1 and T2 in S', we use two different clocks, one at 

the location of event T1 and the other at the location of event T2. The difference in reading of these clocks in S' is 

the difference in times between T1 and T2 as measured in S'. From the graph, we see that this interval is greater than 

unity. Hence, from the point of view of S', the moving S-clock appears slowed down. During the interval that the 

S-clock registered unit time, the S'-clock registered a time greater than one unit. The reciprocal nature of the time-

dilation result is also shown in Fig. 8. 
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Fig. 8 

The student should construct the detailed argument. Here a clock at rest in S' emits ticks U1 and U2 separated by 

unit proper time. As measured in S, the corresponding time interval exceeds one unit. 

The Time Order of Events  
We can also use the geometrical representation of space-time to gain further insight into the concepts of simultaneity 

and the time order of events. Consider the shaded area in Fig. 9, for example. Through any point P in this shaded 

area, bounded by the world lines of light waves, we can draw a w'-axis from the origin; that is, we can find an 

inertial frame S' in which the events O and P occur at the same place (x' = 0) and are separated only in time. As 

shown in Fig. 9, event P follows event O in time (it comes later on S' clocks), as is true wherever event P is in the 

upper half of the shaded area. Hence, events in the upper half (region 1 on Fig. 10) are absolutely in the future 

relative to 0 and this region is called the Absolute Future. If event P is at a space-time point in the lower half of the 

shaded area (region 2 on Fig. 10) then P will precede event O in time. Events in the lower half are absolutely in the 

past relative to O and this region is called the Absolute Past. In the shaded regions, therefore, there is a definite time 

order of events relative to O for we can always find a frame in which O and P occur at the same place; a single 

clock will determine absolutely the time order of the event at this place. 

 

Fig. 9 Fig. 10 



9           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi 

 

Space Separation of Events 
Consider now the unshaded regions of Fig. 9. Through any point Q we can draw an x'-axis from the origin; that is, 

we can find an inertial frame S' in which the events O and Q occur at the same time (w' = ct' = 0) and are separated 

only in space. We can always find an inertial frame in which events O and Q appear to be simultaneous for space-

time points Q that are in the unshaded regions (region 3 of Fig. 10), so that this region is called the Present. In other 

inertial frames, of course, O and Q are not simultaneous and there is no absolute time order of these events but a 

relative time order, instead. 

 If we ask about the space separation of events, rather than their time order, we see that events in the present are 

absolutely separated from O, whereas those in the absolute future or absolute past have no definite space order 

relative to O. Indeed, region 3 (present) is said to be "space-like" whereas regions 1 and 2 (absolute past or future) 

are said to be "timelike." That is, a world interval such as OQ is spacelike and a world interval such as OP is 

timelike. The geometrical considerations that we have presented are connected with the invariant nature of proper 

time, that is, with the relation d𝜏2 = dt2 - 
1

𝑐2(dx2 + dy2 + dz2). We can illustrate as following   

(𝜏2 – 𝜏1)2 = (t2 – t1)2 - 
1

𝑐2 [(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2] 

let subscript one refer to the origin (t1 = 0 = x1 = y1 = z1) and let subscript two refer to any other space-time point, 

so that  

𝜏2 = t2 - 
1

𝑐2 (x2 + y2 + z2) 

Now, in our case, we have ignored y and z so that the appropriate expression is 𝜏2 = t2 - 
𝑥2

𝑐2 . We can write this 

conveniently as c2 𝜏2 = c2t2 - x2 which, in our terminology, is simply c2 𝜏2 = w2 - x2. The quantity c2 𝜏2 is an 

invariant, that is, w2 - x2 = w’2 - x'2 for the same two events. Hence, the quantity - c2 𝜏2, which we shall call 𝜎2, is 

also invariant. We have then the two relations:  

c2 𝜏2 = w2 - x2 

𝜎2 = x2 - w2 

Now consider Figs. 9 and 10. In regions 1 and 2 we have space-time points for which w > x (that is, ct > x), so that 

c2 𝜏2 = w2 - x2 > 0. The proper time is a real quantity, c2 𝜏2 being positive, in these regions. In regions 3 we have 

space-time points for which x > w (that is, x > ct), so that c2 𝜏2 = w2 - x2 < 0. The proper time is an imaginary 

quantity, c2 𝜏2 being negative, in these regions. However, the quantity 𝜎 is real here for 𝜎2 = x2 - w2 > 0 in regions 

3. Hence, either 𝜏 or 𝜎 is real for any two events (i.e., the event at the origin and the event else-where in space-time) 

and either 𝜏 or 𝜎 may be called the space-time interval between the two events. When 𝜏 is real the interval is called 

"time-like"; when 𝜎 is real the interval is called "spacelike." Because 𝜎 and 𝜏 are invariant properties of two events, 

it does not depend at all on what inertial frame is used to specify the events whether the interval between them is 

spacelike or timelike. 

In the spacelike region we can find a frame in which the two events are simultaneous, so that 𝜎 can be thought of 

as the spatial interval be-tween the events in that frame (i.e., 𝜎2 = x2 - w2 = 𝜎2 = x’2 – w’2. But w' = 0 in S' so that 𝜎 

= x'). In the timelike region we can find a frame in which the two events occur at the same place, so that T can be 

thought of as the time interval between the events in that frame (i.e., 𝜏2 = t2 - 
𝑥2

𝑐2  = t’2 - 
𝑥′2

𝑐2 ). But x' = 0 in S' so that 

𝜏 = t’. 
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What can we say about points on the 45° lines? For such points, x = w. Therefore, the proper time interval between 

two events on these lines vanishes, for c2 𝜏2 = w2 - x2 = 0 if x = w. We have seen that such lines represent the world 

lines of light rays and give the limiting velocity (v = c) of relativity. On one side of these 45° lines (shaded regions 

in Fig. 9) the proper time interval is real, on the other side (unshaded regions), it is imaginary. An imaginary value 

of 𝜏 would correspond to a velocity in excess of c. But no signals can travel faster than c. All this is relevant to an 

interesting question that can be posed about the unshaded regions.  

Causality  
In this region, which we have called the Present, there is no absolute time order of events; event O may precede 

event Q in one frame but follow event Q in another frame. What does this do to our deep-seated notions of cause 

and effect? Does relativity theory negate the causality principle? To test cause and effect, we would have to examine 

the events at the same place so that we could say absolutely that Q followed O, or that O followed Q, in each 

instance. But in the Present, or spacelike, region these two events occur in such rapid succession that the time 

difference is less than the time needed by a light ray to traverse the spatial distance between two events. We cannot 

fix the time order of such events absolutely, for no signal can travel from one event to the other faster than c. In 

other words, no frame of reference exists with respect to which the two events occur at the same place; thus, we 

simply cannot test causality for such events even in principle. Therefore, there is no violation of the law of causality 

implied by the relative time order of O and events in the spacelike region. We can arrive at this same result by an 

argument other than this operational one. If the two events, O and Q, are related causally, then they must be capable 

of interacting physically. But no physical signal can travel faster than c so that events O and Q cannot interact 

physically. Hence, their time order is immaterial for they cannot be related causally. Events that can interact 

physically with O are in regions other than the Present. For such events, O and P, relativity gives an unambiguous 

time order. Therefore, relativity is completely consistent with the causality principle. 
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