

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Flash (Parallel) Converter

If Vin > Vref then Vout = Vcc (Logic high) If Vin < Vref then Vout = 0 (Logic low) An n-bit flash converter uses 2ⁿ-1 comparators

Flash (Parallel) Converter

Example-

If Vin = 6.00v, then the first 4 comparators from the bottom will return a logic high signal while the top three will return a low signal.

Octal 4 = Binary 100

Flash (Parallel) Converter

- Advantages
 - Very Fast

Disadvantages

- Lower resolution (many comparators are required for higher resolution: 8 bit = 255 comparators)
- Higher cost

Dual-Slope Converter

Vin/RC

CTRL allows capacitor (C) to charge with rate given by Vin/RC for time T₀ (N₀ clock cycles). Then CTRL switched and allows capacitor to discharge for to time T₁ (N₁ clock cycles) at a rate given by Vref/RC.

Vref/N1=Vin/N0

Vref and N₀ are known and N₁ is measured, so:

Vin=(N₁/N₀)Vref

Dual-Slope Converter

Advantages

- Higher resolution
- Higher accuracy
- Lower cost
- Good noise immunity

Disadvantages

- Slow

Voltage-to-Frequency Converters

Converter takes in a voltage (Vin) and returns a series of pulses. Frequency of pulses is proportional to Vin.

Voltage-to-Frequency Converters

Advantages

Excellent noise reduction

Disadvantages

- Slow
- Generally limited to 10bits or less

Successive Approximation Converter

Successive Approximation Converter

- Reliable
- Capable of high speed
- Conversion time is clock rate times number of bits.
 - Example with 8-bit, 2-MHz clock rate:
 - Conversion time= (clock period) x (#bits being converted)
 - Conversion time= (0.5 micro-sec) x (8-bits) = 4µs

Successive Approximation Example

- 10-bit resolution or 0.0009765625V of V_{ref}
- V_{in} =0.6V
- V_{ref}=1V
- Find the digital value of V_{in}

Bit	Voltage
1	.5
2	.25
3	.125
4	.0625
5	.03125
6	.015625
7	.0078125
8	.00390625
9	.001952125
10	.0009765625

MSB (bit 1)

- Divide V_{ref} by 2 = .5V
- Compare V_{ref} /2 with V_{in}
- If V_{in} is greater, turn MSB* ON
- If V_{in} is less than V_{ref} /2, turn MSB off
- Compare V_{in}=0.6V and V= 0.5V
- Since $0.6 > 0.5 \rightarrow MSB = 1$ (turned on)

- Calculate the state of MSB-1 (bit 2)
 - Compare V_{in} =0.6V and V=V_{ref}/2 + V_{ref}/4 = 0.5+0.25 = 0.75V
 - Since 0.6 < 0.75 → MSB-1 =0 (turned off)
- Calculate the state of MSB-2 (bit 3)
 - Go back to the last voltage value that caused it to be turned on (in this case 0.5V) and add V_{ref}/8 to it and compare with V_{in}.
 - Compare V_{in} and (0.5 + (V_{ref}/8)=0.625)
 - Since 0.6 < 0.625 → MSB-2 =0 (turned off)

- Calculate the state of MSB-3 (bit 4)
 - Go back to the last voltage value that caused it to be turned on (in this case 0.5V) and add V_{ref}/16 to it and compare with V_{in}.
 - Compare V_{in} and (0.5 + (V_{ref}/16)=0.5625)
 - Since $0.6 > 0.5625 \rightarrow MSB-3 = 1$ (turned on)

MSB	MSB-1	MSB-2	MSB-3			
1	0	0	1			

Digital Results:

- Note that the driving point impedance (resistance) is the same for each cell.
- R-2R Ladder achieves large current division ratios with only two resistor values

Successive-Approximation A/D

Flash A/D Converter

Brute-force A/D conversion

Simultaneously compare the analog value with every possible reference value

Fastest method of A/D conversion

ize scales exponentially with precision (requires 2N comparators)

ADC 0809

Block Diagram

Dual-In-Line Package

TL/H/5672-11

Order Number ADC0808CCN, ADC0809CCN, ADC0808CCJ or AD C0808CJ See NS Package J28A or N28A

The DIGITAL to ANALOG CONVERTERS (DAC) are devices that convert digital to analog signals:

Summing Amplifier

Exercise : Show that V_{out} = - (V1+V2+V3)

R-2R Network to convert Digital to Analog

Output Op-Amp

