Analog Representations of Sound

Magnified phonograph grooves, viewed from above:

When viewed from the side, channel 1 goes up and down, and channel 2 goes side to side.

Analog versus Digital

Analog

Continuous signal that mimics shape of acoustic sound pressure wave

Digital

Stream of discrete numbers that represent instantaneous amplitudes of analog signal, measured at equally spaced points in time.

Analog to Digital Conversion

Instantaneous amplitudes of continuous analog signal, measured at equally spaced points in time.

A series of "snapshots"

Analog to Digital Overview

Sampling Rate

How often analog signal is measured
[samples per second, Hz]
Example: $44,100 \mathrm{~Hz}$

Sampling Resolution

[a.k.a. "sample word length," "bit depth"] Precision of numbers used for measurement: the more bits, the higher the resolution.

Example: 16 bit

Sampling Rate

Determines the highest frequency that you can represent with a digital signal.

Nyquist Theorem:

Sampling rate must be at least twice as high as the highest frequency you want to represent.

Capturing just the crest and trough of a sine wave will represent the wave exactly.

Aliasing

What happens if sampling rate not high enough?

That's called aliasing or foldover. An ADC has a low-pass anti-aliasing filter to prevent this. Synthesis software can cause aliasing.

Common Sampling Rates

Which rates can represent the range of frequencies audible by (fresh) ears?

Sampling Rate	Uses
$44.1 \mathrm{kHz}(44100)$	CD, DAT
$48 \mathrm{kHz}(48000)$	DAT, DV, DVD-Video
$96 \mathrm{kHz}(96000)$	DVD-Audio
$22.05 \mathrm{kHz}(22050)$	Old samplers

Most software can handle all these rates.

3-bit Quantization

A 3-bit binary (base 2) number has $2^{3}=8$ values.

A rough approximation

4-bit Quantization

A better approximation

Quantization Noise

Round-off error: difference between actual signal and quantization to integer values...

Random errors: sounds like low-amplitude noise

The Digital Audio Stream

It's just a series of sample numbers, to be interpreted as instantaneous amplitudes: one for every tick of the sample clock.
Previous example:
$\begin{array}{lllllllllllll}11 & 13 & 15 & 13 & 10 & 9 & 6 & 1 & 4 & 9 & 15 & 11 & 13 \\ 9\end{array}$
This is what appears in a sound file, along with a header that indicates the sampling rate, bit depth and other things.

Common Sampling Resolutions

Word length	Uses
8-bit integer	Low-res web audio
16-bit integer	CD, DAT, DV, sound files
24-bit integer	DVD-Video, DVD-Audio
32-bit floating point	Software (usually only for internal representation)

Audio File Size

CD characteristics...

- Sampling rate:

44,100 samples per second (44.1 kHz)

- Sample word length:

16 bits (i.e., 2 bytes) per sample

- Number of channels:

2 (stereo)
How big is a 5 -minute CD-quality sound file?

16-bit Sample Word Length

A 16 -bit integer can represent 2^{16}, or 65,536, values (amplitude points).

We typically use signed 16 -bit integers, and center the 65,536 values around 0 .

Audio File Size

How big is a 5 -minute CD-quality sound file?
44,100 samples * 2 bytes persample * 2 channels
$=176,400$ bytes per second
5 minutes * 60 seconds per minute
$=300$ seconds
300 seconds * 176,400 bytes per second $=52,920,000$ bytes $=c .50 .5$ megabytes (MB)

