Aquaculture units

Dr. Md. Akhtar Hossain

Professor, Dept. of Fisheries, RU

Land based systems

Lagoons: are natural coastal features in which populations of fish and shellfish are traditionally found, water volume ranging from less than a hectare to several thousands of hectares, fish yield are generally low and can be increased with specific management.

Salines/salt-pans/salinas: traditional shallow coastal pond areas for concentrating and collecting salt, offers an interesting resource for aquatic production, yields are more typical of conventional ponds due to adoption of certain types of aquaculture.

Reservoirs: are widely used throughout the world, represent potential resources for fishery production through enhancement or conventional aquaculture, normally sited in inland areas-particularly on river systems, size can vary from a few thousand m³ to millions of m³ in volume.

Tanks and raceways: are mainly used in intensive operations. Tanks can be of any shape. Although round tanks may be more expensive, they are superior in terms of water flow, waste removal and water quality. Larger tanks are less expensive but tanks greater than 10 m in diameter are difficult to design, install and manage. In general, a diameter: depth ratio of 5 to 10:1 is desirable to ensure good cleaning. Raceways are large elongated tanks, normally have an inflow at one end and outflow at the opposite end. Length: width: depth ratio should be 30:3:1.

Rice fields: are important sources of aquatic animals over large areas of Asia, introduction of hatchery fish to rice field appears to still be relatively localized but management and capture of wild stocks widely practiced. Rice field is modified in rice/fish culture to encourage of fish. Usually a trench or ditch is dug around the field as a refuge or place of safety for fish.

Ponds: are normally supplied with gravity or tidal flow water supplies. Generally ponds are cheap and technologically simple, and are still most widely structure for commercial aquaculture. Major pond site requirements are: **site level**- high enough for drainage and low enough for economical water supply; **exposure**-well exposed to sunlight, sufficient for good local water mixing; **soil condition**- suitable for pond construction, good fertility, avoiding acidic conditions; water quality- suitable for rearing, good growth, reduced risk; **land cost**- low purchase or lease price; **access**- reasonable access to road and /or water for construction and operation; and **services**-reasonable access to power supply, phone, labor, freshwater or alternatives available. Pond uses are found to be varied with depths.

Pond depth (m)		Pond uses
0.2 to 0.5	:	"warming ponds" for spawning fish early or fry rearing ponds
0.3 to 0.7	:	"kitchen ponds" for high productivity algal production
0.8 to 1.2	:	typical production pond depths
1.0 to 1.8	:	deeper ponds for overwintering
1.5 to 3.0	:	typical reservoir ponds also used for aquaculture

Туре	Major features	Applications/limitations
Barrage	built across suitably shaped valleys;	water storage, extensive stocking/aquaculture, cage
	shape and size depends on	culture in deep ponds, generally poorer
	topography	stock/management and poorer yield
Diversion	built in suitable locations, with well	most forms of freshwater aquaculture, can be
	controlled water supply, normally	operated and managed efficiently for good yields
	rectangular shape, size typically 100	further increased with aeration, water flow etc.
	to $5,000 \text{ m}^2$, depth 1 to 2 m.	
Sunken	size typically 100 to 50,000 m ² ,	not widely used for managed systems but may have
	depth 1 to 5 m, may need pump for	some cost advantages where sites are suitable
	drainage	
Tidal	built in lagoon and coastal plain	mainly for shrimp and marine fish, increasingly
	areas with good tidal range,	using pump-assisted water to maintain water
	acceptable water quality, size	quality and productivity
	typically 100 to 20,000 m ² , depth 1	
	to 1.5 m with separate supply and	
	drain canals	
Pumped	usually above ground, regular shape,	normally for more intensive systems where value
	size typically 100 to 5,000 m ²	and importance of environmental control justify
		use of pumps
Mixed	designed for high degree of	for experimental/high value/high intensity
	environmental control, size typically	production only
	1,000 to $2,000$ m ² , depth 1 to 3 m,	
	with central drain	

Major features of different types of ponds:

Water based systems

Cages: are the most versatile and cost effective units used for aquaculture operations. Both floating and fixed cages are used. In general, fishes are stocked at high density for farming in cages. Sufficient water flow is one of the important considerations for cage system to remove waste from the cage area. Some advantages of cages are: relatively low cost, simple and fast to assemble, not too dependent on land availability, easy to move and relocate if needed, do not require water supply installation and relatively easy to service.

Enclosures/pens: are aquaculture systems in which a section of coastal or open water is separated by a solid or open-screen wall or fence to create a partially controlled internal volume suitable for holding and rearing stock. Unlike cages, they do not have a separate floor which holds the stock above and separate from the sea, lake or reservoir bed. The basic criteria in selecting site for enclosures are that sufficient water exchange be available.