Dept. of Computer Sclence and Engineering
University of Rajshahl
www.ru.ac.bd

Dr. Shamim Ahmad

NAND Gate (NOT-AND) using CMOS

Inverter (NOT Gate) using CMOS

Power :p-type
In=0<|: Out=1
In Out J, N-sype
Truth table for
NOT T
Ground o
n | out T
] 1
1 0
CIT 535 -5
AND Gate using CMOS

Power
A+ 14 \—4

—]
—
Ground

CIT 535

_—

Add inverter to NAND.

8/5/2019

B Combinational and Sequential Circuits

Combinational Circuit:
¢ Output only depends on the present
combination of inputs
+ Specified by a set of Boolean Functions

Logic Circuit

1.

Sequential Circuit:
¢ Output depends on the input and the state of
the storage (past inputs)

B Analysis Procedure of a Combinational Circuit

Make sure the given circuit is a combinational

circuit

B Combinational Circuit without feedback paths or
memory elements

B Feedback paths in digital circuits define a
sequential circuit

. Obtain the output Boolean functions or the truth

table

8/5/2019

B Block Diagram of Combinational Circuits

2"-input
Combinations

n Combinational Circuits ——
n inputs 0/1 ombinational Circuits " m outputs
Logic Gates H
0/1 >

B Procedure to Obtain the Output Boolean
Functions from a Logic Diagram

. Label all gate outputs that are a function of input

variables with arbitrary symbol. Determine the
Boolean functions for each gate output.

. Label the gates that are a function of input variables

and previously labeled gates with other arbitrary
symbols. Find the Boolean functions for these gates.

. Repeat the process outline in step 2 until the outputs

of the circuits are obtained

. By repeated substitution of previously defined

functions, obtain the output Boolean function in
terms of input variables.

B Procedure Example

Am AP > OE>OW>

B Procedure to Obtain the Output Boolean
Functions from the Truth Table

. Determine the number of input variables in the circuit.

For ninputs, form the 2" possible input combinations

and list the binary numbers from 0 to 2"-1 in a table

. Label the output of the selected gates with arbitrary
symbols

. Obtain the truth table for the outputs of those gates
that are a function of the input variables only

. Proceed to obtain the truth table for the outputs of
those gates that are a function of previously defined
values until the columns for all outputs are determined

8/5/2019

B Procedure Example

F, =AB + AC + BC
Step 1: T,=A+B+C

T, = ABC
Step 2: T =F'Ty
Fi=Ts+T,

F1 = T3 + Tz = FZ,T1 + ABC
Step 3-4: =(AB + AC+BC)’ (A+B+C) + ABC
=A’BC’ + A’B’C + AB’C’ + ABC

B Procedure Example

Procedure _
A B C F, T T T F
0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 0 1

Truth Table for Example

Boolean Operator

A Boolean cperator can be completely
described using a truth tabls

The truth table for the Boolean cperators
AMD and OR are shown at the right

The AND operator is alse known as a
“Boolean product”. It is also represented
with dot symbal. E.g x.y

The OR operator is the "Boolean sum™ ltis
alsoc represented with '+ symbol. Eg. x+ v

The NOT operation is most often
designated by an overbar. It is sometimes
indicated by a prime mark { '} or an "elbow”
(=} or tilda {~}

T Ess

X AND ¥
x Y xY
L L]
0 1 [
1 a o
1 1
XKORT

X ¥ N+Y¥
o o]
01 1
10 1
11 1

NOT %

X X

0 1

1 0 3-12

8/5/2019

Boolean Operator Precedence
* Az with common arithmetic,
Boolean operations have = xZ
rules of precedence Fi=,¥,2) = x3ty
x vy & E xE =ity
* The NOT operator has o o0 0 1 0 -]
highest pricrity, followsd by o 0 1 o @ o
AND and then OR o1 0 1 0 1
01 1 o 0 1
* Hence to evaluate the i g 3 ; ; ;
expression, z is negated) a q 1
first, then x is ANDed with
the previous result and 1110 @ i
finally ORed with y
CIT 585 3-14

Boolean ldentity Group |

Most Boolean identities have an AND (product)

form as well as an OR (sum) form. We give our
identities using both forms. Our first group is rather

intuitive:
Idantity AND oR
Wame Form Form
Identity Law ix = = O+ =
Hull Law 0x=0 1l+x=
Idempotent Law | xx=x | x+x=x
Inverse Law X=0 | x+®=1

oTEss

Boolean |dentity Group 1l

= Our second group of Boolean identities should be
familiar to you from your study of algebra:

Identity AND OR
Hame Form Form
Commutative Law Iy = yx Kty = yex
Asscciative Law (zy)z = x(y2) (nty)+z =x + (y+=)
Distributivae Law| x+yz = (x+y) {x+z}| x{y+z} = ay+xz

CIT 585 3-17

Boolean Identity Group I

+ Owr last group of Boolean identities are perhaps the
most useful.

- If you have studied set theory or formal logic, these
laws are also familiar to you.

Tdentity AND or
Name Form Form
BAbmorptisn Law H{x4y) = x X b Ky =X
DeMorgan's Law (xy) =X +¥ | (zty)=3x¥
Double —
Complement Law %) =x
(CIT 585 3-18

Example using Boolean Identity

= We can use Boolean identities to simplify the function:

(x=y) (& +y)

=xx'+xy +yx' +yy Distributive Law

= O+uy+yd' +y Inverse & ldempotent Law
= xy+yx'+y Identity Law

= yx+)y Distributive Law

=yl +y Inverse Law

= y+y Identity Law

=y ldempotent Law

ciT 588

De Morgan’s Law

- Sometimes it is more economical to build a
circuit using the complement of a function (and
complementing its result) than it is to implement
the function directly

- DeMorgan’s law provides an easy way of finding
the complement of a Boolean function

(xy) =x+y and (x+y)=xy

oTess 3-10

Standard or Canonical Form

+ There are two cancnical forms for Boolean expressions:
sum-ef-products and product-of-sums
Recall the Boolean product is the AND operation
and the Boolean sum is the OR operation.

+ In the sum-of-products form, ANDed variables are
ORed together.

#Forexample: F(x,y,2) = xy + xz + yz
+ In the product-of-sums form, ORed variables are

ANDed together:
For example: F(x,y,z) = (x+y) (x+z) (y+z)

ciTsss ERFE]

8/5/2019

Conversion to Sum-of-Products Form

convert a function to sum-
form using its truth table

Itis easy &
of-product

Fx,y,z) = xZ+y

We are interested in the values of the
wvariables that make the function “trus”
{i.e. output 1)

=
Hl
Y

u

¥

Using the truth table, we list the values
of the variables that result in a true
value

¥ The variables corresponding to row
with output 1 are "ANDed”

If the variable's input value is 1
then it is written as it is else the
complament of that variable is
written

FHRErRrOoOOOO K
HFHrOoDOoORROO
HORORORO N
HHORHELHGCO

Each group of variables is then "Ored”
together

o ses 3-2

Conversion to Sum-of-Products form (contd..)

= The sum-of-products form

o - —xEe
for function is: (x,y,2) = xZ+y

Xy z x4y
F(x,¥,2) = XYZ+Xyz+xy2 g g rl’ g
+xy T+
KYE+XYE e 5
One AMDed Group is 011 1
known as Minterm 10 0 1
10 1 o
- . . . o 110 1
Note: s 5
Note: Thiz function iz not in simplest T 1

terms. It was just show how the
function can be rewritten in canonical
sum-of-products form.

ciTsiE

Conversion to Product-of-Sums

We are interested in the values of
the variables that make the function
‘false” (ie. output 0)

"
Hi
by
w

Using the fruth table, we list the
values of the variables that result in
a false value
» The variables correspo
with output 0 are “ORa
If the variable's input value is 0
then it is written as it is else the
complement of that variable is
written

nding to row

FERrrOoOOO K
FrOoOCrRFrOO
FoHoRORO N
HFROKRRHOO

Each group of variables is then
ANDed” together

omess 3.3

Fix,y,2) = x&+y

Conversion to Product-of-Sums (contd..)

» The sum-of-products form for =
Fix,y,z) = xz+y

function is:
x ¥y oz KI+y
(kty+al{x+y+Z)(R+y+Z) o a0 o
001 0
o1 0 1
One ORed Group is 01 1 1
known as Maxtsrm 100 1
10 1]
110 1
111 1
oIT 538 -

8/5/2019

Logic Gate

\We have looked at Boolean functions in abstract
terms

In this section, we see that Boolean functions are
implemented in digital computer circuits are called
gates

A gate is an electronic device that produces a result
based on one or more input values

#In reality, gates consist of one to six transistors, but
digital designers think of them as a single unit

Integrated circuits contain collections of gates suited
to a particular purpose

oTess 3-22

Basic Gates

» The three simplest gates are the AND, OR, and NOT

gates -

¥ T

X AND ¥ X OR ¥ T
X ¥ Xy x ¥ X+Y % %
00| o oo o

o1 0 01| 1 D 8
10 o 10| 1 1|0
11| 1 11| 1

+ They correspond directly to their respective Boolean
operations, as you can see by their truth tables

ciTsss 3.2

XOR Gate

Another very useful gate is the exclusive OR
(XOR) gate

The output of the XOR operation is true only
when the values of the inputs differ

X HOR ¥ -

] * xg¥ I N

1 = I 1 = LET xmeny
1 | - =

o 3

Note the special symbol @
for the XOR operation. Sum of Praduct Form: Ty + %§

e e ®
Hona .

ERE

B 4 Possible Operations for Addition of Two Binary Digits

0 0

+ 0 + 1
0 1

1 1

+ 0 + 1
1 0o
Catry

8/5/2019

m Half Adder

— — S (Sum

x Half (Sum) x y 4 S
Adder

— I ¢ (Car 0 0 0 0
y (Carry) 0 1 0 1
1 0 0 1
S=x"y +xy” ! ! ! 0
C=xy Half Adder Truth Table

1. Full adders perform the arithmetic sum of three bits
2. Full adders is implemented by a 3-input 2-output

B Full Adder

combinational circuit

3. Truth Table:

y z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 1] 1 0
1 1 1 1 1

8/5/2019

m Half Adder
X —» — S (Sum
Half (Sum) x y 4 S
Adder
y —» —» C (Carry) 0 0 0 0
0 1 0 1
1 0 0 1
S=xy+xy’ 1 1 1 0
C=xy Half Adder Truth Table
Binary Multiplier
A1BI
C C

Universal Gates

+ NAND and NOR
are known as NOT x
universal gates * X
because they ars
inexpensive to
manufacture and x :D)—"D,ﬂi.“
any Boolean)
function can be
constructed using
only NAND or only
MNOR gates

o sss 3-32

NAND and NOR. gates

NAND and NOR
are two very
important gates.
Their symbels and
truth tables are
shown at the right

o sse

heee M

oM

% HAND ¥

€
o
1
o
1

A WAND ¥

1

1
1
o

x HoRY

% wom ¥

sse

x
¥

® X+Y = XY

0

¥ = XY

ol

Kmap for Sum-Of-Product Form

+ The output values placed in each cell of the
matrix are derived from the “minterms” of a
Boolean function

« A minterm is a product term that contains all
of the function’s variables exactly once, either
complemented or not complemented

oTass 3-32

Minterm Example with Two variables

- For example, the minterms for a function having
the inputs x and y are: %y, %y, x¥,and xy

Minterm

*¥
v

=¥
®Y

=B oo oo

ko s o

Mote: If variable input is 1, then it is written as it is

else the

of that variable is written

oI g8

8/5/2019

Minterm Example with Three variables

« Similarly, a function
having three inputs, = Mintewm

has the minterms Er
lh_at are shown in e
this diagram %vE
vz
XYE
X%z
XYZ
Y&

omess

X ¥ z
o 0 0
o 0o 1
o 1 o
o 1 1
1 0 o
1 o 1
i 1 0
i 1 1

Kmap Cell using SOP form: Example 1

.

A Kmap has a cell for each
minterm FiX,¥) =X¥

.

This means that it has a cell
for each line for the truth table
of a function

HEOoOo X
Hor O =

.

The truth table for the function o 0 1
Fix,y) = xy is shown at the
right along with its

corresponding Kmap 1|0

oiTs8s 3-41

8/5/2019

Kmap Cell using SOP Form: Example 2

As another example, we
give the truth table and
Kmap for the function,

Flxy)=x+y

This function is equivalent
to the OR of all of the
minterms that have a
value of 1 (Sum of Product
Form). Thus:

Fx,y)= X+¥ = XY+ XY+ XY

omess

FIX,¥) =H+Y

X ¥ K+Y
o o a
o i 1
1 o 1
i a 1

4

> 0 1
o 01
111

Kmap Simplification for Two Variables
using SOP Form
» Of course, the minterm functien that we derived
from our Kmap was not in simplest terms
That's what we started with in this example

» We can, however, reduce our complicated
expression to its simplest terms by finding adjacent
1s in the Kmap that can be collected into groups
that are “powers of two"

W

* In our example, we have two X 9 1
such groups o 0|1
— Can you find them? 1 1)1

CIT 535 Example 2 3-43

10

Reduced Expression for Example 2

+ Inthe “green” group (vertical), it does not matter what
value x has, hence the group is only dependent on
variable y

Similarly in the “pink” group {horizontal), it does not
matter what value y has, the group is only dependent on
variable x

+ Hence the Boolean function reduces tox +y

£ 0 1
o 01
1) (1]a])
oTess -4

Kmap Simplification for Two Variables
using SOP Form

The best way of selecting two groups of 1s
form our simple Kmap is shown below

We see that both groups are powers of two
and that the groups overlap.

The next slide gives guidance for selecting
Kmap groups

£, 0 1
o 0|1
1k (1)

o sss 3-25

Rules for Kmap Simplification using Sum of
Products Form (SOP)

The rules of Kmap simplification are:
Groupings can contain only 1s; no Os

Groups can be formed only at right angles;
diagonal groups are not allowed

The number of 1s in a group must be a power
of 2 —even if it contains a single 1

The groups must be made as large as possible

Groups can overlap and wrap around the sides
of the Kmap

omess 3-45

Kmap with Three Variables (SOP form)

* A Kmap for thres variables is constructed as shown in the
diagram below
‘We have placed each minterm in the cell that will hold its
valug
* Motice that the values for the yz combination at the top of the
matrix form a pattern that is not a normal binary sequence

= A Kmap must be ordered so that each minterm differs
only in one variable from each neighboring cell hence
11 appears before 10 — Rule!! {will help simplification)

X 00 01 11 10

[l =1 .47

8/5/2019

11

Kmap with Three Variables (SOP Form)

Mote:

= Thus, the first row of the Kmap contains all
minterms where x has a value of zero

- The first column contains all minterms where y
and z both have a value of zero

Y
X 00 01 11 10

0 XYE |RYE|XvE|RYE
1| XYE |XYE|XYE|XYE

oTass 3-42

Kmap - Three Variable (SOP Form): Example 1

- Consider the function:
F(X,¥,2) = X¥2 + X¥2 + X¥2 + x¥Y2

« Its Kmap is given below:

What is the largest group of 1s that is a power
of 27

YE

x 00 01 11 10
0 gl 1|1 |0
1 gl 1|1 |0

cimsas

Kmap - Three Variable (SOP form): Example1

+ This grouping tells us that changes in the
variables x and y have no influence upon the
value of the function: They are irrelevant

« This means that the function,
F(X, ¥, 2) = XYS + XYD + XYZ + XYZ
reduces to F(XY,Z) = Z

Voucouldverify | y % 00 01 11 10

thiz reduction
with identities
or a truth table. 1 o1 |1)]

omess 2.5

Kmap - Three Variable (SOP Form): Example 2

- Now for a more complicated Kmap. Consider the
function:
F(X,¥,Z) = XYZ + XTZ + XY¥YZ + XYZ + XTZ + XYZ

- Its Kmap is shown below. There are (only) two
groupings of 1s.
Can you find them?

¥z
® 00 01 11 10

0] 1|1 (1
1 i oo (1

cimsse

8/5/2019

12

Kmap - Three Variable (SOP form): Example 2

In this Kmap, we see an example of a “group that
vraps around the sides” of a Kmap.
This group tells us that the values of x and y are not
relevant to the term of the function that is
encompassed by the group
#What does this tell us about this term of the function?
= It is dependent on 7

b4
What about the b:4 U? 01 11 _IU

green group in 0 I 1] 1
the top row? =

10h)
1 1o folp

Kmap - Three Variable (SOP): Example 2

= The “green group” in the top row tells us that only
the value of x is significant in that group.

- We see input value of X is 0 i.e. minterm is
complemented in that row, so the other term of the
reduced function is X

+ Our reduced functionis: F(x.y,z) =X +Z

Recall that we had ve

six minterms in our = 00 01 11 10
original function !! 0 T (1'] ol 1
The function iz =

considerably 1 1jjo (o1

ciTsss

Kmap Simplification for Four
Variables (SOP Form)
= The model can be extended to accommodate the

16 minterms that are produced by a four-input
function

« This is the format for a 16-minterm Kmap

Wi 00 01 11 10
00 WXYEZ|WX¥z|WRYz| WRYZ
01 WXYZ|WHYE|WKYE| WRYE

11 WXTZ|WXYZ|WKYZ| WXYE
10 WXYZ|wEyz|wxvz| wivi

omass

Kmap Four Variables (SOP Form) Example

.

We have populated the Kmap shown below with
the nonzero minterms from the function:

FW,X,¥,Z)= WXYZ + WKYZ + WKYZ
+ WXYE + WHYE + WRTZ + WRYE

Can you identify {only) three groups in this
Kmap?

WX o 0o 01 11 1@
1 ! 1
Recall the -
Raules of 01 =
Simplification 11
10 1 1 1

oI 59s

8/5/2019

13

Kmap Four Variables (SOP Form) Example

« The three groups consist of:
A purple group entirely within the Kmap at the right
A pink group that wraps the top and bottom
A green group that spans the corners

« Thus we have three terms in our final function:

F(W, X, ¥, 2)=

XY + XE + WYZ Wx Y\Z"-‘m LS e S g
ooty 1| falr
01|] 1
11
10 /’1/ 1 L
A5 N,
CITS8s 3-%

Choosing Kmap Groups

- It is possible to have a choice as to how to pick
groups within a Kmap, while keeping the groups
as large as possible

= The (different) functions that result from the
groupings below are logically equivalent

we C00 o1 11 10 oo ag 01 11 10
oo _[1 1 oo (1 1

o1 1) HLE 01 1 (=T 1)
11 1 11 1)

10| |1 10 1

oI 588 3-57

Don't Care Conditions

+ Real circuits don't always need to have an output
defined for every possible input
For example, some calculator displays consist of 7-
segment LEDs. These LEDs can display 27 -1
patterns, but only ten of them are useful

If a circuit is designed so that a particular set of
inputs can never happen, we call this set of inputs
a don’t care condition

They are very helpful to us in Kmap circuit ~ ¥] g
simplification

(=t E

Don't Care Example (SOP Form)

= In a Kmap, a don't care condition is identified by
an X in the cell of the minterm(s) for the don't care
inputs, as shown below

- In performing the simplification, we are free to
include or ignore the X's when creating our groups

¥z

- 00 01 11 10
00 x [1] 1
o1 X | 1
11 * 1
10 1

o sse 3.3

8/5/2019

14

Don't Care Example (SOP Form)

- In one grouping in the Kmap below, we have the
function

F(W,X,Y,G)=WX + YZ

WX L
oo [x | 1] faf]l x
01 | 1]
11| 1
10 1

oo ess 3-20

Don't Care Example w/ Different Grouping

+ A different grouping gives us the function:
F(W,X,Y,5)=WEZ + YZ

w2 o0 01 11 10
oo x [t 1] x
o1 ~ 1
11| X 1
10 1
cisss 1oe

Don’t Care Condition Example

. Thetruthtableof ~ F(W,X,Y,%) =Wz + Y2
is different from the truth table of:

F(W,X,¥,Z)= WX + Y2

-+ However, the values for which they differ, are the
inputs for which we have don't care conditions

we 00 D1 11 10 et 00 01 11 10
0w (X 1 '1] ® 00| ¥ T J2]} =
01 x |2 01 1|
2l x 1 o, 2]
10 1 10 1
CIT 5585 3-

Kmap using Product-of-Sum (POS) Form

+ The output values placed in each cell are
derived from the “maxterm” of a Boolean
function

« A maxterm is a sum term that contains all of
the function’s variables exactly once, either
complemented or not complemented

omsss 3-84

8/5/2019

15

Maxterm Example

XY |Maxterm
00| X+Y
0|1]| X+Y
1 (0] X+Y
T (1] X+Y

Mote: If variable input is 0, then it is written as it is

else the complement of that variable is written

oI 598 ER

B Full Adder
1. Full adders perform the arithmetic sum of three bits

2. Full adders is implemented by a 3-input 2-output
combinational circuit

3. Truth Table:
X y z C N
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

8/5/2019

Kmap Rules using Product-of-Sum Form

Groupings can contain only Os; no 1s

Groups can be formed only at right angles;
diagonal groups are not allowed

The number of Os in a group must be a power
of 2 — even if it contains a single 0

The groups must be made as large as possible

Groups can overlap and wrap around the sides
of the Kmap

Use don't care conditions when you can

Binary Adder-Subtractor

B K-Maps for Full Adders

yz P~ yz P~
XN\ 00 01 11 10 XN 00 01 11 10
0 1 1 0 (M
x=1{1 1 1 x=1{1 alio] 1
M M
z=1 z=1

rr ’ 4 rr
S=XYyzZ+Xyz+Xxyz+xyz C=Xxy+XZ+yz
= X®y®z =xy + xy'z + xX'yz

16

B SOP Logic Implementations of Full Adders

NS XN X NS XN X
(%]
N N X <X
o

B Binary Adders

1. Binary adders perform the arithmetic sum of two
numbers

2. Binary adders can be constructed with full adders
connected in cascade

8/5/2019

B Full Adder Implementation with Two Half
Adders and an OR Gate

Binary Adder-Subtractor

B 4-bits Binary Adders

Subscript:

3 2

0

Input Carry
Augend
Addend

Sum
Output Carry

1
1]
]

1 1
0 0

4-bit Adder

17

B n-bits Binary Adders
- B, A
b4 '
G o] FA [am1] FA <02 qoe 2| FA |«t| FA e

; / } v

n-2 sl
n-bit Adder

1

S

l—
[>

(%)
<

B Carry Lookahead: Reduce Carry Propagation Delay

G; : Carry Generate
P; : Carry Propagate

A P
B; Si

Cisg
C;

P; = Ai® B; - { Si=P;®C;
G; = AB; Ci.1 = G; + PiC;

Binary Adder-Subtractor

B Carry Propagation Delay:

N-bit adder has 2n gate carry propagation delay !!

1 full adder has 2-gate carry propagation delay

Binary Adder-Subtractor

B Carry Lookahead: Carry Bits
o = Input Carry

\>

~N

C
C
C
C

3 =G, +P,C, —G+PG +P,P.G +

G1+PC =G, +P() G,+P,G, + P,P.C,

8/5/2019

18

B Carry Lookahead Generator

N

Qo

o o

a QQ'U Qo
gl

B 4-bit Carry Lookahead Adder

cd cd
AJ
»
5 oL
G, N
9
A 3
X
B - M S
£ 2
8 c
G £
. g
1 P a
fa% I Wi S
e C 1
G, &
T g
’ g
0 P
0 P,
By < uﬁD— S,
Gl]
cl7 cﬂ

8/5/2019

Binary Adder-Subtractor

n-bits Binary Adders (Carry look Ahead)

| Coa Cnz c Co

T Tl e

c C., (4 C
C,<— FA <X FA <2 oee 4 FA &) FA |+,
Cary x Cani X Carz X Cany X
Sp-1 Sn-z S, So
n-bit Adder
Binary Rdder-Subtractor

B Binary Subtractor
1. Implement subtraction with 2’s complement number
system
2. AAB=A+ (-B)=A+1sc B) +1
3. Implement 1’sc with XOR gates:

B M Output

0 0 Q <-----=>1'sc (Output = B) when M=0
(:>—H*(). _

1 0 1 & ~=> 1'sc (Output = B) when M=1
OD—t+—-0)+

19

8/5/2019

Binary Adder-Subtractor Binary Adder-Subtractor

B Overflow: When two numbers of n digits each are
added and the sum occupies n+1 digits, we say that
B 4-Bit Binary Adder/Subtractor an overflow occurred.
A

8-bit 2'sc number presents [-128, +127]

B, 4,

- v \
.S M=0 A+B
M: M=1 A-B
Cout Cin
\1 0/
F FOF
+70 0 1000110 -70 1 0111010
+80 0 1010000 -80 1 0110000
(+150) 1 0010110 (150> 0 1101010
> +127 <-128
Postive Overflow Negative Overflow

20

