4 Basic types of Flip-Flops

- SR, JK, D, and T
- JK ff has
 - 2 inputs, J and K
 - Need to be asserted at the same time to change the state
- D ff has
 - 1 input D (DATA)
 - Which sets the ff when D = 1 and resets it when D = 0

4 Basic types of Flip-Flops

Dept. of Computer Science and Engineering

University of Rajshahi

Dr. Shamim Ahmad

www.ru.ac.bd

- T ff has
 - 1 input T (Toggle)
 - Which forces the ff to change states when T = 1
- SR ff has
 - 2 inputs, S (set) and R (reset)
 - That set or reset the output Q when asserted

SR FF (active HIGH)

(a) Active-HIGH input S-R latch

SR FF NOR gate

SR FF (active LOW)

SR FF (NAND gate)

SR FF Truth Table

INPUTS		OUTPUTS		
ŝ	R	Q	Q	COMMENTS
1	1	NC	NC	No change. Latch remains in present state
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition

SR FF with Enable input

The Gated S-R Latch

Gated D-Latch

- Ensures S and R inputs never equal to 1 at the same time
- Useful in control application where setting or resetting a flag to some condition is needed •
- Stores bits of information
- · Constructed from a gated SR latch and a Data latch

The Gated D Latch

Positive edge-triggered D FF

JK flip-flop timing diagram Complete the following timing diagram Clk_0^1 κ_0^1 σ_0^1 κ_0^1 σ_0^1 σ

Edge-Triggered D FF

Edge-Triggered JK-FF

- JK-FF is versatile and is a widely used type of flip-flop.
- The functioning of the JK-FF is identical to that of the SR-FF in the SET, RESET, and NC.
 - The **difference** is that the JK-FF **has NO invalid state** as does the SR-FF.

Edge-Triggered JK-FF

Edge-Triggered JK-FF

Asynchronous Preset and Clear Inputs

- · Most IC flip-flops have asynchronous inputs.
 - These are inputs that affect the state of the FF independent of the clock.
 - Preset (PRE) or direct set (S_D)
 - Clear (CLR) or direct reset (R_D)

Master/alama IV	J	Κ	С	Q	QN
Master/slave J-K	х	х	0	last Q	last QN
flip-flop	0	0	Л	last Q	last QN
(Pulse triggered)	0	1	Л	0	1
(88)	1	0	Л	1	0
	1	1	Л	last QN	last Q
			>		

T flip-flop

• The name T derives from the behavior of the circuit, which 'toggles' its state when T=1 - This feature makes the T flip-flop a useful element when constructing counter circuits

