2

4

Digital IC Terminology

- · Current and voltage parameters
- Fan-Out
- · Propagation delays
- · Power requirements
- Noise immunity
- · Invalid voltage levels
- Current-sourcing and current-sinking action
- IC Packages

8/5/2019

CSE, Rajshahi University

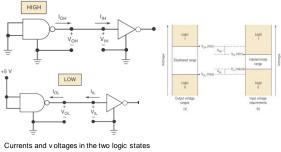
Digital IC Terminology

Dept. of Computer Science and Engineering

University of Rajshahi

Dr. Shamim Ahmad

www.ru.ac.bd


- Current and voltage parameters
- Fan-Out
- · Propagation delays
- · Power requirements
- · Noise immunity
- · Invalid voltage levels
- Current-sourcing and current-sinking action
- IC Packages

8/5/2019

CSE, Rajshahi University

3

Current and voltage parameters

CSE, Rajshahi University

8/5/2019

Current and voltage parameters Voltage Levels

- + $V_{\text{IH}}(\text{min})$: High Level Input Voltage : minimum voltage level required for logic 1 at an input
- V_{IL}(max): Low Level Input Voltage : maximum voltage level required for logic 0 at an input
- V_{oH}(min): High Level Output Voltage : minimum voltage level at an output for logic 1 state
- V_{oL}(max): Low Level Output Voltage : maximum voltage level at an output for logic 1 state

Current and voltage parameters Current Levels

- $I_{I\!H}$: High Level Input Current : Current flowing into an input at a logic state 1
- $\textbf{I}_{\textbf{IL}}$: Low Level Input Current : Current flowing into an input at a logic state 0
- + I_{OH} : High Level Output Current : Current flowing from an output at logic state 1
- I_{oL}: Low Level Output Current : Current flowing from an output at logic state 0

CSE. Raishahi University

8/5/2019

CSE, Rajshahi University

Fan-Out

- Maximum number of logic inputs that an output can drive reliably
- Depends on the logic family
- Example: a logic gate specified with a fan-out of 10, can drive 10 logic inputs. If this is exceeded, the output logic levels cannot be guaranteed

Propagation Delay

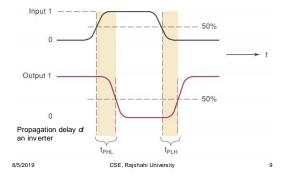
- Delay encountered by a signal in going through a circuit
 tPLH delay time in going from logic 0 to logic 1
 - t_{PHL} delay time in going from logic 1 to logic 0
- + t_{PLH} and t_{PHL} are not necessarily the same values
- Propagation Delay is a measure of the relative speed of logic circuits. The smaller the delay, the faster the circuit

8/5/2019

CSE, Rajshahi University

7

5


8/5/2019

8/5/2019

CSE, Rajshahi University

8

Propagation Delay

Power Requirements

- $I_{CC(avg)} = (I_{CCH} + I_{CCL})/2$
- P(avg)= I_{CC(avg)} * V_{CC}

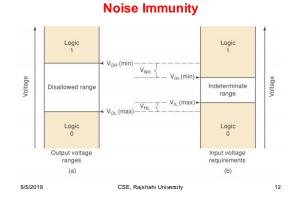
8/5/2019

CSE, Rajshahi University

10

Noise Immunity

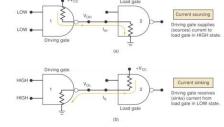
High-state noise margin,


 V_{NH} = $V_{OH}(min) - V_{IH}(min)$ Negative noise spikes greater than V_{NH} can cause the voltage to drop into the indeterminate range

· Low-state noise margin,

V_{NL}= V_{IL}(max)- V_{OL}(max)

Positive noise spikes greater than V_{NL} can cause the voltage to rise into the indeterminate range

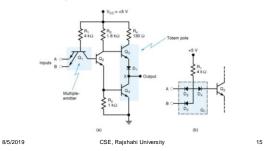

Invalid Voltage Levels

Current-Sourcing and Current-Sinking Action

- Proper operation requires the input voltages be kept outside the indeterminate range

 (less than V_{IL}(max) or greater than V_{IH}(min)
- Voltage output (connected to an input) could be outside the valid region due to malfunctioning or being overloaded (fan-out exceeded)
- Power supply voltages outside acceptable range can cause invalid voltage levels.

8/5/2019



An output must be able to source or sink a current when connected to an input

CSE, Rajshahi University 13 8/5/2019 CSE, Rajshahi University

The TTL Logic Family

• The NAND gate is a basic TTL circuit.

The TTL Logic Family

- Current sinking action: A TTL output acts as a current sink in the low state
- Current sourcing action: A TTL output acts as a current source in the high state

8/5/2019

CSE, Rajshahi University

16

The TTL Logic Family

- · TTL circuits have a similar structure
- The input will be the cathode of a PN junction
 - A HIGH input will turn off the junction and only a leakage current is generated.
 - A LOW input turns on the junction and a relatively large current is generated
- Most TTL circuits have some type of totem-pole
 output configuration

CSE. Raishahi University

TTL Data Sheets

- First line of TTL ICs was the **54/74** series - 54 series operates over a wider temperature range
- Same numbering system, **prefix** indicates manufacturer
 - SN Texas Instruments
 - DM National Semiconductor
 - S Signetics

8/5/2019

- DM7402, SN7402, S7402 all perform the same function
- Data sheets contain electrical characteristics, switching characteristics, and recommended operating conditions.

CSE, Rajshahi University

17

TTL Data Sheets

recommended operating conditions

		SN	SN54ALS00A		SN74ALS00A			UNIT	
	- A (C)	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8‡			0.8	v	
VIL	VIL Low-level input voltage			0.7§					
ЮН	High-level output current		-0.4			-0.4			
IOL	Low-level output current			4		-1301	8	mA	
TA	Operating free-air temperature	-55		125	0		70	C	

[‡] Applies over temperature range – 55°C to 70°C § Applies over temperature range 70°C to 125°C

8/5/2019

8/5/2019

CSE, Rajshahi University

19

Vcc = 4.5 V

V_{CC} = 5.5 V_{CC} = 5.5

VCC = 5.5

Vcc = 5.5

PARAMETER

VIK VOH

1н 11 10[‡]

ICCH

8/5/2019

CSE, Rajshahi University

e a current that closely appro

TTL Data Sheets

electrical characteristics over recommended operating free-air temperature range unless otherwise noted)

TYPT

TEST CONDITIONS

V_I = 7 V V_I = 2.7 V

VI = 0.4 V VO = 2.25 UNIT

ν

MIN TYPT

nates one half of the true short-circuit output ci

TTL Data Sheets

switching	characteristics	(see	Figure	1)

PARAMETER	FROM	TO (OUTPUT)	CL	C = 4.5 V to 5.5 V, = 50 pF, = 500 Ω, = MIN to MAX§			UNIT
			SN54A	SN54ALS00A		SN74ALS00A	
		1	MIN	MAX	MIN	MAX	
¹ PLH	A or B		3	15	3	11	
1PHL	A OF B	r	2	9	2	8	ns

TTL Series Characteristics

- Standard 74 series TTL has evolved into other series:
 - Standard TTL, 74 series
 - Schottky TTL, 74S series
 - Low power Schottky TTL, 74LS series (LS-TTL)
 - Advanced Schottky TTL, 74AS series (AS-TTL)
 - Advanced low power Schottky TTL, 74ALS series
 - 74F fast TTL

8/5/2019

8/5	/201	a

CSE, Rajshahi University

21

CSE, Rajshahi University

22

TTL Series Characteristics

	74	745	74LS	74AS	74ALS	74F
Performance ratings			and the	-	11-11-10	1
Propagation delay (ns)	9	3	9.5	1.7	4	3
Power dissipation (mW)	10	20	2	8	1.2	6
Speed-power product (pJ)	90	60	19	13.6	4.8	18
Max. clock rate (MHz)	35	125	45	200	70	100
Fan-out (same series)	10	20	20	40	20	33
Voltage parameters						
V _{OH} (min)	2.4	2.7	2.7	2.5	2.5	2.5
V _{OL} (max)	0.4	0.5	0.5	0.5	0.5	0.5
V _{IH} (min)	2.0	2.0	2.0	2.0	2.0	2.0
V _{II} (max)	0.8	0.8	0.8	0.8	0.8	0.8

8/5/2019

CSE, Rajshahi University

23

TTL Loading and Fan Out

- Fan out refers to the load drive capability of an IC output
 - A TTL output has a limit on how much current it can sink in the LOW state
 - A TTL output has a **limit on how** much current it **can** source in the HIGH state.
 - Exceeding these currents will result in output voltage levels outside specified ranges

8/5/2019

TTL Loading and Fan Out

- · Determining fan out
 - Add the I_H for all inputs connected to an output. The sum must be less than the output I_{OH} specification.
 - Add the $I_{\rm L}$ for all inputs connected to an output. The sum must be less than the output I_{OL} specification.
 - See example 8-5 page 510

TTL Loading and Fan Out

· Determining fan out :

8/5/2019

How many 74ALS00 NAND gate inputs can be driven by a 74ALS00 NAND gate output?

IoL(max)=8 mA IIL(max)=0.1 mA fan-out (low)= I_{oL}(max)/ I_{IL}(max)=8/0.1=80 I_{oH}(max)=0.4 mA=400μA I_{IH}(max)=20μA fan-out (high)= I_{oH}(max)/ I_{IH}(max)=400/20=20

Choose the smaller:Fan-out=20

Therefore, the 74ALS00 NAND gate can drive up to 20 other 74ALS00 NAND gates

8/5/2019

CSE. Raishahi University

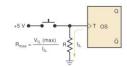
25

CSE. Raishahi University

26

Other TTL Characteristics

- Unconnected (floating) inputs: an input unconnected acts like a logic 1 applied to that input. left
- Unused inputs: (will pick noise)
- Tied together inputs : Input current = sum of individual currents single current for NAND/AND gates in low states


Current transients

- When a totem pole TTL output goes from LOW to HIGH, a high amplitude current spike is drawn from the $V_{\rm CC}$ supply Ceramic disk capacitors (.01 or .1 $\mu F)$ are used to short these high frequency spikes to ground.

27

Other TTL Characteristics

· Biasing TTL inputs Low R is needed to keep the T input low while the switch is open

Voltage drop across R should be less than VIL (max) $R_{max} = (V_{IL}(max)/I_{IL})$

R is chosen slightly below R_{max} to reduce current drain Example: (V_{IL}(max) = 0.8 V I_{IL} = 0.4 mA

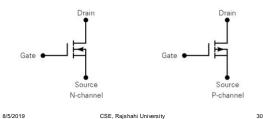
 $R_{max} = 0.8 V/0.4 m A = 2000 \Omega$ Choose R=1.8kΩ (standard resistor)

8/5/2019

MOS Technology

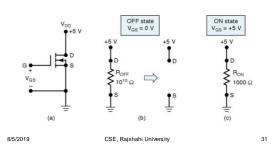
- Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
 - Simple and cheap to fabricate
 - Consume very little power

8/5/2019


- More circuit elements are possible
- Susceptible to static electricity damage

CSE, Rajshahi University

29


MOS Technology

• Schematic symbols for P and N channel enhancement MOSFETs.

MOS Technology

· The basic MOSFET switch

Complementary MOS Logic

- P-MOS uses only P channel enhancement MOSFETs
- N-MOS uses only N channel enhancement MOSFETs
- CMOS uses both P and N channel devices
 - Faster
 - Consumes less power
 - More complex fabrication

8/5/2019

CSE, Rajshahi University

Complementary MOS Logic

	CMOS								TTL	
Parameter	4000B	74HC	74HCT	74AC	74ACT	74AHC	74AHCT	74	74LS	74A5
V _{IH} (min)	3.5	3.5	2.0	3.5	2.0	3.85	2.0	2.0	2.0	2.0
V _{IL} (max)	1.5	1.0	0.8	1.5	0.8	1.65	0.8	0.8	0.8	0.8
V _{OH} (min)	4.95	4.9	4.9	4.9	4.9	4.4	3.15	2.4	2.7	2.7
V _{OL} (max)	0.05	0.1	0.1	0.1	0.1	0.44	0.1	0.4	0.5	0.5
VNH	1.45	1.4	2.9	1.4	2.9	0.55	1.15	0.4	0.7	0.7
VNL	1.45	0.9	0.7	1.4	0.7	1.21	0.7	0.4	0.3	0.3

8/5/2019	

CSE, Rajshahi University

33

CMOS Series Characteristics

- CMOS devices compete directly with TTL
 Pin compatible
 - Functionally equivalent
 - Electrically compatible
- 4000/1400 series
- +000/1+00 36
- 74C series
- 74HC/HCT (high-speed CMOS) are functionally and pin compatible with TTL IC's with the same name. The HCT is also electrically compatible with TTL

CSE, Rajshahi University

8/5/2019

34

CMOS Series Characteristics

- 74AC/ACT (advanced CMOS)
- 74AHC/AHCT (advanced high-speed CMOS)
- · BiCMOS 5-volt logic

CMOS	Series	Characteristics
------	--------	-----------------

- + $\mathbf{P}_{\mathbf{D}}$ increases with frequency
- Fan out (large)
- Switching speed
- Unused inputs (will pick static, cause heat, invalid output). Unused inputs should be connectd to 0V or V_{DD} or another input
- Static sensitivity – ESD precautions
 - ESD piecauli
- Latch up

8/5/2019

35

8/5/2019

CSE, Rajshahi University

Low Voltage Technology

· CMOS family:

- 74LVC (low voltage CMOS)
- 74ALVC (advanced low voltage CMOS)
- 74LV (low voltage)
- 74AVC (advanced very low voltage CMOS)
- 74AUC (advanced ultra-low voltage CMOS)
- 74AUP (advanced ultra-low power)
- 74CBT (cross bartechnology)
- 74CBTLV (cross bar technology low voltage)
- 74GTLP (gunning transceiver logic plus)
- 74SSTV (stub series terminated logic)
- 74TVC (translation voltage clamp)

8/5/2019

CSE, Rajshahi University

37

Low Voltage Technology

BiCMOS family:

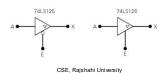
8/5/2019

- 74LVT (low voltage BiCMOS technology)
- 74ALVT (advanced low voltage BiCMOS technology)
- 74ALB (advanced low voltage BiCMOS)
- 74VME (VERSA Module Eurocard)
- The move toward low voltage systems will continue and the technician must be prepared to operate in an environment where devices may not necessarily operate on 5 volts.

CSE. Raishahi University

Open Collector/Open Drain Outputs

- Conventional CMOS outputs and TTL totem pole outputs should never be connected to the same point. (will fight each other)
- Open-collector/open-drain outputs (need an external pull-up resistor to V_{CC}. (the pull-up transistor of the totem pole is removed)
- Open-collector/open-drain buffer/drivers
- · IEEE/A NSI symbols for open collector/drain outputs


CSE, Rajshahi University

8/5/2019

39

Tristate (Three-State) Logic Outputs

- Three states are possible: HIGH, LOW, and high impedance.
- · Advantages of tristate devices
- Tristate buffers
- Tristate ICs
- · IEEE/ANSI symbol for tristate outputs

8/5/2019

40

· Basic ECL circuit · At high frequencies bus wires of more than about 4 · ECL OR/NOR gate inches in length act like transmission lines. · ECL characteristics · In order to prevent reflected waves, the end of a bus must be terminated with a resistance equal to the line - -0.8 V logic 1, -1.7 V logic 0 impedance (about 50 Ohms). - Noise margins approximately 150 mV - Output complement is produced, eliminating need for · Figure 8-40 illustrates termination techniques. inverters - Typical fan out is 25

The ECL Digital IC Family

- Emitter coupled logic increases switching speed.
 - Very fast switching, typical propagation delay is 360 ps

 - Typical power dissipation is 25 mW
 - Current flow remains constant, eliminating noise spikes

8/5/2019

CSE. Raishahi University

High-Speed Bus Interface Logic

41

8/5/2019

CSE. Raishahi University

42

44

CMOS Transmission Gate (Bilateral Switch)

- · Acts as a single pole, single throw switch
- · Controlled by an input logic level
- · Passes signals in both directions
- · Signals applied to the input can be analog or digital
- Input must be between 0 and V_{DD} volts.

IC Interfacing

- Driver provides the output signal.
- · Load receives the signal.
- · Interface circuit connected between driver and load to condition the signal for the load.

- Interfacing between logic families is common in digital systems.

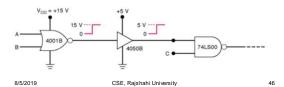
8/5/2019

CSE, Rajshahi University

43

8/5/2019

CSE, Rajshahi University


Interfacing 5-V TTL and CMOS

- TTL easily meets CMOS input current requirements. CMOS can drive TTL loads.
- TTL output voltage must be raised for input to some CMOS devices. The most common solution is a pull-up resistor.

CSE. Raishahi University

Interfacing 5-V TTL and CMOS

- · CMOS output for both logic states
- · CMOS driving TTL in the HIGH state
- CMOS driving TTL in the LOW state
- High voltage CMOS driving TTL

Analog Voltage Comparators

- · Useful in systems with analog and digital components
- Compares two voltages. If voltage on the (+) input is greater than (-) input the output is high. If input on the (-) is greater the output is low.
- May be considered a one bit analog to digital converter.
- •

8/5/2019

Troubleshooting

- Logic pulser tool that generates a short pulse when actuated
 - Senses the existing voltage level and produces a pulse in the opposite polarity
 - Output impedance of 2 Ohms or less
- · Using logic pulser and probe to test a circuit
- · Finding shorted nodes

8/5/2019

CSE, Rajshahi University

47

45

8/5/2019

CSE, Rajshahi University