Counters Based on Shift Register

- The output of LSB FF is connected as D input to MSB FF.
- This is commonly called as Ring Counter or Circular Counter.
The data is shifted to right with each clock pulse.
This counter has four different states.
This can be extended to any no. of bits.

Mod-7 Twisted Ring Counter

- The D input to MSB FF is
- The counter follows seven different states with application of clock input.
By changing feedback different counters can be obtained.

Design Procedure for Synchronous Counter

- The clock input is common to all Flip-Flops.

Any Flip-Flop can be used

- For mod-n counter 0 to $n-1$ are counter states
\square The excitation table is written considering the present state and next state of counter.The flip-flop inputs are obtained from characteristic equation.
\square By using flip-flops and logic gate the implementation of synchronous counter is obtained

Difference between
 Asynchronous and Synchronous Counter

Asynchronous Counter	Synchronous Counter
1. Clock input is applied to LSB FF. The output of first FF is connected as clock to next FF.	1. Clock input is common to all FF.
2. All Flip-Flops are toggle FF.	2. Any FF can be used.
3. Speed depends on no. of FF used for bit .	3. Speed is independent of no. of FF used.
4. No extra Logic Gates are required. Cost is less.	4. Logic Gates are required based on design. Cost is more.

Design of Mod-6 Synchronous counter

- The count sequence for Mod-6 counter is as follows:
- 000,010,011,110,101,001
- Excitation table is formed for given count sequence
- Flip-flop inputs are derived from present state and next state.
- From K -map simplification the Flip-flop input equations are obtained.
- Logic diagram of Mod-6 counter is drawn by using JK-FF and logic gates.

Excitation table for a synchronous mod- 6 counter using clocked JKflip-flops

Present state			Next state				Flip-flop inputs					
Q_{1}	Q_{2}	Ω_{3}	Q_{1}^{+}	Q_{2}^{+}	Q_{3}^{+}	J_{1}	K_{1}	J_{2}	K_{2}	J_{3}	K_{3}	
0	0	0	0	1	0	0	-	1	-	0	-	
0	1	0	0	1	1	0	-	-	0	1	-	
0	1	1	1	1	0	1	-	-	0	-	1	
1	1	0	1	0	1	-	0	-	1	1	-	
1	0	1	0	0	1	-	1	0	-	-	0	
0	0	1	0	0	0	0	-	0	-	-	1	

Determination of the minimal-sum expressions for a
synchronous mad-6 counter using clocked $J K$ flip-flops.

Logic diagram of a synchronous mod-6 counter.

DM54161/DM74161/DM74163 Synchronous 4-Bit Counters

DM74LS193
Synchronous 4-Bit Binary Counter with Dual Clock

This example is taken from T. L. Floyd, Digital Fundamentals, Fourth Edition, Macmillan Publishing, 1990, p. 395.

Present State	Next State
$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$
000	$\begin{array}{lll}0 & 0\end{array}$
$\begin{array}{lll}0 & 0 & 1\end{array}$	010
010	$\begin{array}{lll}0 & 1\end{array}$
$\begin{array}{lll}0 & 1\end{array}$	100
100	101
101	110
110	111
111	000

Output State Transitions		Flip-flop inputs		
Present State	Next State			
$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{J}_{2} \mathrm{~K}_{2}$	$\mathrm{J}_{1} \mathrm{~K}_{1}$	$\mathrm{J}_{0} \mathrm{~K}_{0}$
000	001	0 X	0 X	1 X
001	010	0 X	1 X	X 1
010	011	0 X	X 0	1 X
011	100	1 X	X 1	X 1
100	101	X 0	0 X	1 X
101	110	X 0	1 X	X 1
110	111	X 0	X 0	1 X
111	000	X 1	X 1	X 1

$$
\begin{aligned}
\mathbf{J}_{0} & =\mathbf{K}_{0}=\mathbf{1} \\
\mathbf{J}_{1} & =\mathbf{K}_{1}=\mathbf{Q}_{0} \\
\mathbf{J}_{2} & =\mathbf{K}_{2}=\mathbf{Q}_{1} * \mathbf{Q}_{0}
\end{aligned}
$$

