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WHAT DO WE KNOW ABOUT METAL?

The metallic state is favored by element; more than 2/3 are metals.

Metal atoms consist of ionic core surrounded by a small number of
more loosely bound valence electrons.

Metals form crystal structure with relatively large number of
neighbor atoms (hcp — 12, fcc — 12, bcc — 8, but ionic & covalent
crystals have neighbor atom 4-6). Large coordination number &
small valence electron indicate that valence electrons in atoms are
occupying space between the ionic cores uniformly.

Evenly spreading of valence electrons between the ionic cores
suggests that metal atom binds together by undirectional bonds. On
the other hand, ionic and covalent solids bind together by
directional bonds.

A Lot of empty space in metal (Li-Li interatomic distance 34, ionic
radius is 0.5 A) implies that there are large volume available for the
valence electrons to move around it.

Large volume accounts the stability of metal as valence electrons
spread out rather confine to small regions and hence reduce zero
point energy.
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ELECTRON THEORY OF SOLIDS?

v The electron theory of solids aims to explain the structures
and properties of solids through their electronic structure.

v The electron theory of solids has been developed in three
main stages.

v (I) The classical free electron theory: Drude and Lorentz
developed this theory in 1900. According to this theory, the
metals containing free electrons obey the laws of classical
mechanics.

v (ITI) The Quantum free electron theory: Sommerfeld
developed this theory during 1928. According to this theory,
the free electrons obey quantum laws.

v (ITI) The Zone theory: Bloch stated this theory in 1928,
According to this theory, the free electrons move in a
periodic field provided by the lattice. This theory is also
called "Band theory of solids".



DRUDE THEORY OF METAL

Assumptions of Drude theory

> In an atom electrons revolve around the nucleus
and a metal is composed of such atoms.

> The valence electrons of atoms are free to move
about the whole volume of the metals like the
molecules of a perfect gas in a container. The
collection of valence electrons from all the atoms
in a given piece of metal forms electrons gas. It is
free to move throughout the volume of the metal

> These free electrons move in random directions
and collide with either positive ions fixed to the
lattice or other free electrons. All the collisions
are elastic i.e., there is no loss of energy.



DRUDE THEORY OF METAL

The movements of free electrons obey the laws
of the classical kinetic theory of gases.

The electron velocities in a metal obey the
classical Maxwell - Boltzmann distribution of
velocities.

The electrons move in a completely uniform
potential field due to ions fixed in the lattice.

When an electric field is applied to the metal, the
free electrons are accelerated in the direction
opposite to the direction of applied electric field.



LORENTZ EXTENSION OF DRUDE THEORY FOR METAL

Lorentz modified the oversimplified Drude model
and constructed his theory called Drude-Lorentz
electron theory on the basis of following points:

v The assumptions related to move electrons with
the same thermal velocity is abandoned.

v' The presence of an electric field or thermal
gradient  perturbs the classical Maxwell-
Boltzmann velocity distribution. Both of these
disturbs the equilibrium velocity distribution and
distort its symmetry.

v' The Boltzmann transport equation is used fto
describe the transport of charge and kinetic
energy of electrons by a statistical distribution
of mobile electrons constituting the electron gas.



LORENTZ EXTENSION OF DRUDE THEORY FOR METAL

Based on these assumptions, Lorentz derived the
equation for conductivity of metals

8 ne?A
O-L =
While Drude derived as
nezA
O-D —
3mkT

The relation between them is as follows:

Op = gUL — 1.0901
N




SUCCESS OF CLASSICAL FREE ELECTRON THEORY

v' (1). It verifies Ohm's law.

v' (2). It explains the electrical and thermal
conductivities of metals.

v' (3). It derives Wiedemann - Franz law. (i.e.,
the relation between electrical conductivity
and thermal conductivity)

v' (4). It explains optical properties of metals.



DRAWBACKS OF CLASSICAL FREE ELECTRON THEORY

v The phenomena such a photoelectric effect, Compton effect and
the black body radiation couldn't be explained by classical free
electron theory.

v' According to the classical free electron theory the value of
specific heat of metals is given by 4.5R, where R is the Universal
gas constant whereas the experimental value is nearly equal to
3R. Also according to this theory the value of electronic specific
heat is equal to 3/2R while the actual value is about 0.01R only.

v' Electrical conductivity of semiconductor or insulators couldn't be
explained using this model.

v Though K/oT is a constant (Wiedemann - Franz Law) according to
the Classical free electron theory, it is not a constant at low
temperature.

v' Ferromagnetism couldn't be explained by this theory. The
theoretical value of paramagnetic susceptibility is greater than
the experimental value.



QUANTUM FREE ELECTRON THEORY

In 1928, Arnold Sommerfeld modified classical free electron
theory using Plank's Quantum mechanical principles and Pauli
Exclusion Principle.

Assumptions:

v' The energy values of conduction electrons are quantized
with various allowed energy levels.

v' The distribution of electrons in these allowed energy level
takes place as per Pauli exclusion principle.

v' The free electrons travel in a constant potential inside the
metal but confined their stay within the metal. (CFE)

v'  The attractive force between free electrons and lattice
ions; and repulsive force between free electrons themselves

are ignored. (CFE)



QUANTUM FREE ELECTRON THEORY

Electrons travels inside
box freely, and hence V
is zero. Electron is not

allowed outside the box,

so the Vis « outside
the box.

Schrodinger Equation:

2 d%y) d*p  2m,E

2m, dx2 =E-VY =57 dx2  h2

For one-dimensional box:

2,232
nem-h 2 . nm

E = > 1/J=\/:51n(—x)
2mea a a

For three-dimensional box:

252 /.2 2 2
T°h* [n n n
E = <;+b+g>

a C

b2
—

Y = ) % sin (nZn x) sin (nzﬁn y) sin (nCTn z)




QUANTUM FREE ELECTRON THEORY

Energy levels:

> For one-dimensional solids, each n value

produces a single energy level.

» However, for 3-D solids there are
multiple combination of n,, ny, n. that will
give the same energy.

2 2 10 108
2 10 2 108

10 2 2 108 1

» With a crystal with ~1020 atoms, it

becomes difficult to work out all the
possible combinations.

n=3
n=2
n=1
n=20



QUANTUI\/I FREE ELECTRON THEORY

Wave vectors and k space

e It is defined as the number of energy states per unit volume of

metal in an energy interval between E and E+dE.

Number of energy states between E and E + dE

N(E)dE = Volume of the metal

D(E)dE 0
Vv

e The energy for 3D solids

N(E)dE =

n?h? (n2 ni n? h? h2k?
E = +—=+ = E = kZ+ki+kZ)= (2)
2m, <a2 b2 cz> Zme( vtk + k) 2m,

ng
b l

N,

k, = ;

Where, k, = % k, = and k? = k2 + k2 + k2
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QUANTUM FREE ELECTRON THEORY

Number of States
> Cosider a 3D point grid with

3
> Volume — of single cube

—L_&{/b

Ky
. w T T
//§ / / intervals of A along ky, ky, k,
- A /b respectively.
&
S
\J
&
\J
&

-k, represents a state.
/ » The volume of entire solid with

T 2w 2m . 8m3

. . 2
dimensions —, —, — is —

e, Gt @' bfe T abe

111

volume of solids

> No. of states =

volume of single cube

1
112, 121, 211 3
3
221, 212, 122 3 ST g3 3
__ abc __ ©°T T _
. . > No. of states = T e X e = 8
abc
Total 8
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QUANTUM FREE ELECTRON THEORY
Density of States

No. of E states within one octant of sphere of radius, k

14
—g'3"

No. of E states within sphere of radius, k+dk

_Lz (k + dk)?
—g'3"

No. of E states within thin layer of sphere of radius, dk

D(E)dE—l * (k + dk)? LA e
—g' 3" g 3"

1
D(E)dE = gn(k3 + 3k?dk + 3kdk? + dk3 — k3)

mk*dk

D(E)AE = —,

(3)
From equ. (2)

p=RAk k=T and k= |PTeE
T Tm, B WEE= | The




QUANTUI\/I FREE ELECTRON THEORY

DenSiTy of States

_ | _ 2 s I
T ZmeE me Y rm2E2 |
= D(E)dE = E\/:ﬁdE _ d N

® N W

(3)



Applying the value of n and ndn in equ (1)

{BmLEE}UE gmL*

D(E)dE = E X

(ﬂmLE}m

1/2
ooy B dE

D(E)dE =

SR

e
D(E)dE = 4lhg x (8m)3/2 13EY/2 dE

V=13 =1

D(E)dE = ﬁ x (8m)*? EY2 dE

This energy states accommodate two electron based on Pauli’s exclusion principle
(one is spin up and one is spin down)

D(E)E =2 x — x (8m)zL3Ez dE

4h3

3 1
D(E)dE = zihﬁ" x (8m)z 13EZ dE



QUANTUM FREE ELECTRON THEORY

Distribution of Particles over energy

Maxwell - : Distinguishable particle;
Boltzmann LT K no restriction on
Statistics occupation of state
Fermi-Dirac g; Indistinguishable; spin
Statistics ni = Eik—T{:"F 1 multiple of 3 restriction

e

on occupation of states

Bose-Einstein g; Indistinguishable; spin
Statistics = TEEs multiple of integers; no

e kT —1

restriction on occupation



QUANTUM FREE ELECTRON THEORY

Distribution of Particles over energy

According to Pauli exclusion principles
One electron can occupy only one quantum state
One energy level accommodate only two electrons
corresponding to spin T and spin {

Thus filling in energy

levels,

* two electrons occupy
the lowest level,

 two more in the next
level, and

e so forth until all the :
electrons in me'ral Fig: Filling the energy level in metal




QUANTUM FREE ELECTRON THEORY

Fermi Energy
Fermi-Dirac function:

F(E) = (E—b}w Where, F(E) — Probability of occupation of a particular

e kKT +1  quantum state having energy E by an electron.

T=0K,F(E)=0 ifE>E; T=0K
T>oK

F(Ey=1 ifE<E, ¢ 1O

T > 0K; F(E) = % if E=E,

If F(E) = % _then

(E_EF) 1
— e kT = -
(E-EF) 0
—> e kT =1=c¢
— E — EF

Er — The energy level at which the probability of occupation is half.



QUANTUI\/I FREE ELECTRON THEORY

Density of States

e It is defined as the number of energy states per unit volume of

metal in an energy interval between E and E+dE.

Number of energy states between E and E + dE

N(E)dE = Volume of the metal

D(E)dE ()
|4

« The energy for 3D box

N(E)dE =

n?h? (n2 ni n? h? h2k?
E = +—+ = E = kZ +ki+kZ) = (2)
2m, <a2 b2 cz> Zme( vtk + k) 2m,

__ Tng _ Ty _ e
Where, k, =—"ky - k==

and k? = ki + k3 + kZ



QUANTUM FREE ELECTRON THEORY

Merits of QFE theory

Successfully explain

* electrical conductivity of metals

« Specific heat of metal

« Electron concentration in metals

* Only few electrons whose energies lie in the vicinity of E¢
contribute to conduction and only such free electrons called
conduction electrons

Demerits of QFE theory

Although semiconductors and insulators contain electrons, QFE
theory cannot explain

« electrical conductivity of semiconductors

* electrical conductivity of insulators

* Need development of Band theory solids




QUANTUM FREE ELECTRON THEORY

E
(T[zh2> 4 n=2
2m,a?
1 n=1
n=0

If crystal having 10%3 atoms

then

v"How many energy levels
are there?

v"How many energy states
are there?

Answers are very difficult!ll

12

/

111

- 211 121 112 ==

m
b2
3
1 1 6
2 1 6
1 2 6
4 / Non-degenerate
222 3

— 221 212 122 —s\-n=2

> Triply

degenerate

Non-degenerate

n=1

n=20




BAND THEORY

Origin of band gap

Positive ion

Figure: Variation of potential
energy of a conduction electron in
a periodic array of positive ions

k, =ksinf =

. -sin@ = —
asin@ a

K

v If the velocity of electron in
periodic varying potential is v,
then according to de Broglie

1 h h 2nh 2nm
“mv p hk k
v If 1 » a, then electron moves
freely through the crystal. If
A< a, then electron diffracts
by crystal same as the X-rays
which obeys Bragg's law

nA = 2asiné@

27‘[_2 .
n P a sin

nr

a sin 6



BAND THEORY
Origin of band gap

vV Ifk< |E |, electron moves freely through the crystal

vV If k= |—| or k =+- elecTron is diffracted at +— and reflected
back at _E

v The wavefunction of electrons in positive x-direction is given by
) ITx
ll)l = elkx = e a

v Whereas in negative x-direction
l/)2=e ka_e ”Ctlx
v' Since electron travels right and left due to Bragg reflection, a
resultant wave is a standing wave, which is given by

imTx mx

—_— X X
Yy =ea +e a =2cos—  and 1/)_2Focc0527
imx _inx X X
Y_=ea —e a =2isin— and P? «sin?—

a a
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- BAND THEORY

Origin of band gap

Probability density (p)

X X
P? o sin? — P? « cos?—

/ ’ / ’
Travelling

wave

a

Figure: Distribution of probability density, p in the lattice for %
and ¥Z, and for a travelling wave
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BAND THEORY

Kroning-Penney Model
This model describe the behaviors V)
of electrons in periodic potential — Vo [ —
The potential energy of electron is |; a
represented by rectangular wells :
of period a + b as shown in Figure. b 0 a
For0O<x<a, V=0 Figure: One-dimensional Kroning-

S X

Penne otential
For-b<x <0,V =V, v P

The Schrodinger equation in the two regions:
A I 0 foro<x <
7x2 2 Y =0 for x<a

d*y 2m
dx2+ v (E-Vy)y=0for0<x<a

If it is assumed that E <V, and let a* =

d*y 2 d 2
E+a Y=0 and ——-—p“Y =

2

E 2
Z; and B* =h—T(VO—E)



BAND THEORY

Kroning-Penney Model

v' According to Bloch theorem, the solution of SE in periodic
potential is given by
P = e (x)

where u(x) has the period of the crystal lattice with
u(x) = u(lx + a).
v' Differentiating the Bloch function twice with respect to x and

2
substituting for 27 give,

du, duy A,
ik —— — = (1)
72 + 2ik o + (a® —k“)u; =0
d*u du
2 4 2ik——=+ (B%+kDu, =0 (2)

dx? dx



BAND THEORY
Kroning-Penney Model

v" Solution of eq. (1) and (2) are given by

u, = Aet@kx 4 pe-ila+k) foro<x <a (3)

u, = CelB=)x L pe~i(B+K) for —ph < x < 0 (4)

where A, B, C, D are constants which must be determined from the

boundary conditions of continuous wavefunctions:

_ dw) _(dw
u1(0) = u,(0), <E>x=0 = <dx >x=0 (5)

s (@) = (=), (‘;i) _ (‘;i) ©
xX= xX=-b

The first two conditions are for continuous wavefunction while
latter two for continuous derivatives in the two regions.



BAND THEORY

Kroning-Penney Model
v" Applying conditions (5) and (6) in eq. (3) and (4) with simplification
gives
,32 _ aZ
2af (7)
v Eq. (7) can be simplified by assuming that b -0, V, » o, but
product bV, remain finite. Under this condition,

sinh Bb - Bb, coshfb - 1, (B? —a?) - f% and
Eq. (7) reduces to

sinh Bb - sinaa + cosh b - cos aa = cosk(a + b)

p*b

——sinaa + cos aa = cos ka

2a

sin aa
( ) + cosaa = coska (8)
aa
Zab Voab
where p =222 - I hoza = bV, >< —- = (Area of potential barrier) X hza



BAND THEORY

Kroning-Penney Model

v’ P is a measure of the area bV, of the potential barrier. Increasing
P has the physical meaning of binding a given electron more
strongly to a particular potential well.

bp (Sin “a) +cosaa ¥ RHS of eq. (8) lies in
aa —1<coska<1

v LHS of eq. (8) can be
solved graphically against
aa for arbitrary value of
P, say 2m.

Eq. (8) is satisfied only
for those values of aa
for which RHS lies
between +1 and —1.

Figure O1: Variation of LHS against aa



BAND THEORY
Kroning-Penney Model

v From Figure 01, the following conclusions can be drawn:

a) The energy spectrum of electrons in a crystal consists of a
number of allowed energy bands, such as AB, CD, - for cosaa lies
between +1, separated by forbidden regions, viz., BC, DE, -+

b) The values of 1s' term on LHS of eq. (8) for a given value of P
decrease as aa increases. LHS of eq. (8) approaches to a cosine
curve. The width of allowed bands increases with increasing values
of aa.

c) Effect of P on energy spectrum: if P =0, then LHS of eq. (8)
becomes cosaa and forbidden band disappears. It gives
continuous energy spectrum of a free electron.

For P =0, eq. (8) becomes
2mE " k?h?
hz 2m

cosaa =coska =a’2=k?* =



BAND THEORY

Kroning-Penney Model

— P = 105
P=5n
—_—P =21
— P =0
Line at +1
......... Line at _1
Line at O

Figure 02: Effect of P on LHS against aa

For P - o, b = oo, but constant
period, a + b leads a — 0, also
aa — 0 and hence we obtain

sinaa = 0 = sin nmr

wheren = +1,+2,---

, n2m?
aa =nn = a®=—;
a
2mE  n?m? p n2mw2h?
= = = =
h? a? 2ma?

It is similar to energy levels of
particles in a constant potential
box of atomic dimension.



BAND THEORY
Kroning-Penney Model

d) From eq. (8) and Figure 01, it follows that the energy
discontinuity occur when

ka =nn
nm
k = - wheren = +1,12, -

v' These values of k define the boundaries of the Brillouin zones.
The range of the allowed values of k between —g to % define the

first Brillouin zone. The second zone consists of two parts: from

21T

— 2" +0 -2 and Z to ZZ. The third zone extends from — 3= +o — &
a a a a a a

2 3
and £ +0 2=,
a a



	Properties of Solids
	States of Matter
	States of Matter
	States of Matter
	What do we know about metal?
	What do we know about metal?
	Electron theory of solids?
	Drude theory of metal
	Drude theory of metal
	Lorentz extension of Drude theory for metal
	Lorentz extension of Drude theory for metal
	Success of classical free electron theory
	Drawbacks of classical free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Slide Number 21
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Quantum free electron theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory
	Band Theory

