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WHAT DO WE KNOW ABOUT METAL?
 The metallic state is favored by element; more than 2/3 are metals.
 Metal atoms consist of ionic core surrounded by a small number of 

more loosely bound valence electrons.
 Metals form crystal structure with relatively large number of 

neighbor atoms (hcp ⟶ 12, fcc ⟶ 12, bcc ⟶ 8, but ionic & covalent 
crystals have neighbor atom 4-6). Large coordination number & 
small valence electron indicate that valence electrons in atoms are 
occupying space between the ionic cores uniformly.

 Evenly spreading of valence electrons between the ionic cores 
suggests that metal atom binds together by undirectional bonds. On 
the other hand, ionic and covalent solids bind together by 
directional bonds.

 A Lot of empty space in metal (Li-Li interatomic distance 3Å, ionic 
radius is 0.5 Å) implies that there are large volume available for the 
valence electrons to move around it. 

 Large volume accounts the stability of metal as valence electrons 
spread out rather confine to small regions and hence reduce zero 
point energy.
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WHAT DO WE KNOW ABOUT METAL?

Nucleus
Core electrons
Valence electrons

Nucleus
Core electrons
Valence electrons

Ion

Single 
isolated atom

Solid metal

−𝑒𝑒(𝑍𝑍𝑐𝑐 − 𝑍𝑍) −𝑒𝑒(𝑍𝑍𝑐𝑐 − 𝑍𝑍)

−𝑒𝑒(𝑍𝑍𝑐𝑐 − 𝑍𝑍)

−𝑒𝑒(𝑍𝑍𝑐𝑐 − 𝑍𝑍)

−𝑒𝑒𝑍𝑍

+𝑒𝑒𝑍𝑍𝑐𝑐

𝑍𝑍 ⟶ No. of valence electrons
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ELECTRON THEORY OF SOLIDS?
 The electron theory of solids aims to explain the structures 

and properties of solids through their electronic structure. 
 The electron theory of solids has been developed in three 

main stages. 
 (I) The classical free electron theory: Drude and Lorentz 

developed this theory in 1900. According to this theory, the 
metals containing free electrons obey the laws of classical 
mechanics. 

 (II) The Quantum free electron theory: Sommerfeld 
developed this theory during 1928. According to this theory, 
the free electrons obey quantum laws. 

 (III) The Zone theory: Bloch stated this theory in 1928. 
According to this theory, the free electrons move in a 
periodic field provided by the lattice. This theory is also 
called “Band theory of solids”.
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DRUDE THEORY OF METAL
Assumptions of Drude theory
 In an atom electrons revolve around the nucleus 

and a metal is composed of such atoms. 
 The valence electrons of atoms are free to move 

about the whole volume of the metals like the 
molecules of a perfect gas in a container. The 
collection of valence electrons from all the atoms 
in a given piece of metal forms electrons gas. It is 
free to move throughout the volume of the metal 

 These free electrons move in random directions 
and collide with either positive ions fixed to the 
lattice or other free electrons. All the collisions 
are elastic i.e., there is no loss of energy. 
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DRUDE THEORY OF METAL

 The movements of free electrons obey the laws 
of the classical kinetic theory of gases. 

 The electron velocities in a metal obey the 
classical Maxwell – Boltzmann distribution of 
velocities.  

 The electrons move in a completely uniform 
potential field due to ions fixed in the lattice.  

 When an electric field is applied to the metal, the 
free electrons are accelerated in the direction 
opposite to the direction of applied electric field.
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LORENTZ EXTENSION OF DRUDE THEORY FOR METAL

Lorentz modified the oversimplified Drude model 
and constructed his theory called Drude-Lorentz 
electron theory on the basis of following points: 
 The assumptions related to move electrons with 

the same thermal velocity is abandoned.  
 The presence of an electric field or thermal 

gradient perturbs the classical Maxwell-
Boltzmann velocity distribution. Both of these 
disturbs the equilibrium velocity distribution and 
distort its symmetry.

 The Boltzmann transport equation is used to 
describe the transport of charge and kinetic 
energy of electrons by a statistical distribution 
of mobile electrons constituting the electron gas.
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LORENTZ EXTENSION OF DRUDE THEORY FOR METAL

Based on these assumptions, Lorentz derived the 
equation for conductivity of metals 

𝜎𝜎𝐿𝐿 =
8

3𝜋𝜋
𝑛𝑛𝑒𝑒2Λ
3𝑚𝑚𝑚𝑚𝑚𝑚

While Drude derived as 

𝜎𝜎𝐷𝐷 =
𝑛𝑛𝑒𝑒2Λ
3𝑚𝑚𝑚𝑚𝑚𝑚

The relation between them is as follows:

𝜎𝜎𝐷𝐷 =
8

3𝜋𝜋
𝜎𝜎𝐿𝐿 = 1.09𝜎𝜎𝐿𝐿
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SUCCESS OF CLASSICAL FREE ELECTRON THEORY

 (1). It verifies Ohm’s law. 

 (2). It explains the electrical and thermal 
conductivities of metals. 

 (3). It derives Wiedemann – Franz law. (i.e., 
the relation between electrical conductivity 
and thermal conductivity) 

 (4). It explains optical properties of metals.
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DRAWBACKS OF CLASSICAL FREE ELECTRON THEORY

 The phenomena such a photoelectric effect, Compton effect and 
the black body radiation couldn’t be explained by classical free 
electron theory. 

 According to the classical free electron theory the value of 
specific heat of metals is given by 4.5R, where R is the Universal 
gas constant whereas the experimental value is nearly equal to 
3R. Also according to this theory the value of electronic specific 
heat is equal to 3/2R while the actual value is about 0.01R only.

 Electrical conductivity of semiconductor or insulators couldn’t be 
explained using this model.  

 Though K/σT is a constant (Wiedemann – Franz Law) according to 
the Classical free electron theory, it is not a constant at low 
temperature. 

 Ferromagnetism couldn’t be explained by this theory. The 
theoretical value of paramagnetic susceptibility is greater than 
the experimental value. 
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QUANTUM FREE ELECTRON THEORY

In 1928, Arnold Sommerfeld modified classical free electron 
theory using Plank’s Quantum mechanical principles and Pauli 
Exclusion Principle.

Assumptions: 

 The energy values of conduction electrons are quantized 
with various allowed energy levels.

 The distribution of electrons in these allowed energy level 
takes place as per Pauli exclusion principle.

 The free electrons travel in a constant potential inside the 
metal but confined their stay within the metal. (CFE) 

 The attractive force between free electrons and lattice 
ions; and repulsive force between free electrons themselves 
are ignored. (CFE)
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QUANTUM FREE ELECTRON THEORY

𝑥𝑥 = 0 𝑥𝑥 = 𝐿𝐿

Schrodinger Equation:

ℏ2

2𝑚𝑚𝑒𝑒

𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

= 𝐸𝐸 − 𝑉𝑉 𝜓𝜓 ⟹
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

=
2𝑚𝑚𝑒𝑒𝐸𝐸
ℏ2

𝜓𝜓

𝑉𝑉 = 0 𝑉𝑉 = ∞

For one-dimensional box:

𝐸𝐸 = 𝑛𝑛2𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒𝑎𝑎2
            𝜓𝜓 = 2

𝑎𝑎
sin 𝑛𝑛𝜋𝜋

𝑎𝑎
𝑥𝑥

For three-dimensional box:   

𝐸𝐸 =
𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒

𝑛𝑛𝑎𝑎2

𝑎𝑎2 +
𝑛𝑛𝑏𝑏2

𝑏𝑏2 +
𝑛𝑛𝑐𝑐2

𝑐𝑐2

𝜓𝜓 =
8
𝑎𝑎𝑏𝑏𝑐𝑐 sin

𝑛𝑛𝑎𝑎𝜋𝜋
𝑎𝑎 𝑥𝑥 sin

𝑛𝑛𝑏𝑏𝜋𝜋
𝑏𝑏 𝑦𝑦 sin

𝑛𝑛𝑐𝑐𝜋𝜋
𝑐𝑐 𝑧𝑧

Electrons travels inside 
box freely, and hence V 
is zero. Electron is not 
allowed outside the box, 
so the V is ∞ outside 
the box.
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QUANTUM FREE ELECTRON THEORY
Energy levels:
 For one-dimensional solids, each n value 

produces a single energy level.
  However, for 3-D solids there are 

multiple combination of 𝑛𝑛𝑎𝑎 ,𝑛𝑛𝑏𝑏 ,𝑛𝑛𝑐𝑐 that will 
give the same energy. 

 With a crystal with ~1020 atoms, it 
becomes difficult to work out all the 
possible combinations.

𝑛𝑛 = 0

𝑛𝑛 = 1

𝑛𝑛 = 2

𝑛𝑛 = 3

1

4

9

𝐸𝐸
𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒𝑎𝑎2
𝒏𝒏𝒂𝒂
𝒂𝒂

𝒏𝒏𝒃𝒃
𝒃𝒃

𝒏𝒏𝒄𝒄
𝒄𝒄

𝒏𝒏𝒂𝒂𝟐𝟐

𝒂𝒂𝟐𝟐 +
𝒏𝒏𝒃𝒃𝟐𝟐

𝒃𝒃𝟐𝟐 +
𝒏𝒏𝒄𝒄𝟐𝟐

𝒄𝒄𝟐𝟐
6 6 6 108

2 2 10 108

2 10 2 108

10 2 2 108
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QUANTUM FREE ELECTRON THEORY

Wave vectors and k space

• It is defined as the number of energy states per unit volume of 

metal in an energy interval between E and E+dE. 

 𝑁𝑁 𝐸𝐸 𝑑𝑑𝐸𝐸 =
Number of energy states between E and E + dE

Volume of the metal

 𝑁𝑁 𝐸𝐸 𝑑𝑑𝐸𝐸 =
𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸

𝑉𝑉
• The energy for 3D solids

 𝐸𝐸 =
𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒

𝑛𝑛𝑎𝑎2

𝑎𝑎2
+
𝑛𝑛𝑏𝑏2

𝑏𝑏2
+
𝑛𝑛𝑐𝑐2

𝑐𝑐2
 ⟹ 𝐸𝐸 =

ℏ2

2𝑚𝑚𝑒𝑒
𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑦𝑦2 + 𝑚𝑚𝑧𝑧2 =

ℏ2𝑚𝑚2

2𝑚𝑚𝑒𝑒

                Where, 𝑚𝑚𝑥𝑥 = 𝜋𝜋𝑛𝑛𝑎𝑎
𝑎𝑎

, 𝑚𝑚𝑦𝑦 = 𝜋𝜋𝑛𝑛𝑏𝑏
𝑏𝑏

, 𝑚𝑚𝑧𝑧 = 𝜋𝜋𝑛𝑛𝑐𝑐
𝑐𝑐

   and 𝑚𝑚2 = 𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑦𝑦2 + 𝑚𝑚𝑧𝑧2

(1)

(2)
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QUANTUM FREE ELECTRON THEORY
Number of States

 Cosider a 3D point grid with 

intervals of 𝜋𝜋
𝑎𝑎
, 𝜋𝜋
𝑏𝑏
, 𝜋𝜋
𝑐𝑐
 along 𝑚𝑚𝑥𝑥, 𝑚𝑚𝑦𝑦, 𝑚𝑚𝑧𝑧 

respectively. 

 Volume 𝜋𝜋
3

𝑎𝑎𝑏𝑏𝑐𝑐
 of single cube 

represents a state.
 The volume of entire solid with 

dimensions 2𝜋𝜋
𝑎𝑎

, 2𝜋𝜋
𝑏𝑏

, 2𝜋𝜋
𝑐𝑐

 is 8𝜋𝜋
3

𝑎𝑎𝑏𝑏𝑐𝑐
.

 No. of states = volume of solids
volume of single cube

 No. of states =
8𝜋𝜋3

𝑎𝑎𝑏𝑏𝑐𝑐
𝜋𝜋3
𝑎𝑎𝑏𝑏𝑐𝑐

= 8𝜋𝜋3

𝑎𝑎𝑏𝑏𝑐𝑐
× 𝜋𝜋3

𝑎𝑎𝑏𝑏𝑐𝑐
= 8

𝑚𝑚𝑥𝑥

𝑚𝑚𝑦𝑦

𝑚𝑚𝑧𝑧

𝜋𝜋/𝑏𝑏

𝜋𝜋/
𝑐𝑐

𝜋𝜋/𝑏𝑏

𝜋𝜋/𝑏𝑏

𝜋𝜋/
𝑐𝑐

𝜋𝜋/𝑏𝑏

Combination No. of states
111 1

112, 121, 211 3
221, 212, 122 3

222 1
Total 8



19

QUANTUM FREE ELECTRON THEORY
Density of States
No. of E states within one octant of sphere of radius, k

 =
1
8
⋅

4
3
𝜋𝜋𝑚𝑚3

No. of E states within sphere of radius, k+dk

 =
1
8
⋅

4
3
𝜋𝜋 𝑚𝑚 + 𝑑𝑑𝑚𝑚 3

No. of E states within thin layer of sphere of radius, dk 

𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸 =
1
8 ⋅

4
3𝜋𝜋 𝑚𝑚 + 𝑑𝑑𝑚𝑚 3 −

1
8 ⋅

4
3𝜋𝜋𝑚𝑚

3

𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸 =
1
6𝜋𝜋 𝑚𝑚3 + 3𝑚𝑚2𝑑𝑑𝑚𝑚 + 3𝑚𝑚𝑑𝑑𝑚𝑚2 + 𝑑𝑑𝑚𝑚3 − 𝑚𝑚3

𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸 =
𝜋𝜋𝑚𝑚2𝑑𝑑𝑚𝑚

2
From equ. (2) 

𝑑𝑑𝐸𝐸 =
ℏ2𝑚𝑚𝑑𝑑𝑚𝑚
𝑚𝑚𝑒𝑒

 𝑚𝑚𝑑𝑑𝑚𝑚 =
𝑚𝑚𝑒𝑒
ℏ2 𝑑𝑑𝐸𝐸 and 𝑚𝑚 =

2𝑚𝑚𝑒𝑒𝐸𝐸
ℏ2

(3)
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QUANTUM FREE ELECTRON THEORY
Density of States

𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸 =
𝜋𝜋
2
𝑚𝑚 𝑚𝑚𝑑𝑑𝑚𝑚 =

𝜋𝜋
2

2𝑚𝑚𝑒𝑒𝐸𝐸
ℏ2

𝑚𝑚𝑒𝑒
ℏ2 𝑑𝑑𝐸𝐸

⇒ 𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸 =
𝜋𝜋
2

2𝑚𝑚𝑒𝑒𝐸𝐸
ℏ2

𝑚𝑚𝑒𝑒
ℏ2 𝑑𝑑𝐸𝐸 =

2𝜋𝜋𝑚𝑚𝑒𝑒

3
2𝐸𝐸

1
2

ℏ3 𝑑𝑑𝐸𝐸

(3)
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QUANTUM FREE ELECTRON THEORY

Distribution of Particles over energy

Maxwell-
Boltzmann 
Statistics

𝒏𝒏𝒊𝒊 =
𝒈𝒈𝒊𝒊

𝒆𝒆
𝑬𝑬𝒊𝒊−𝑬𝑬𝑭𝑭
𝒌𝒌𝒌𝒌

Distinguishable particle; 
no restriction on 
occupation of state

Fermi-Dirac 
Statistics 𝒏𝒏𝒊𝒊 =

𝒈𝒈𝒊𝒊

𝒆𝒆
𝑬𝑬𝒊𝒊−𝑬𝑬𝑭𝑭
𝒌𝒌𝒌𝒌 + 𝟏𝟏

Indistinguishable; spin 
multiple of ½; restriction 
on occupation of states

Bose-Einstein 
Statistics 𝒏𝒏𝒊𝒊 =

𝒈𝒈𝒊𝒊

𝒆𝒆
𝑬𝑬𝒊𝒊−𝑬𝑬𝑭𝑭
𝒌𝒌𝒌𝒌 − 𝟏𝟏

Indistinguishable; spin 
multiple of integers; no 
restriction on occupation
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QUANTUM FREE ELECTRON THEORY

Distribution of Particles over energy

According to Pauli exclusion principles
 One electron can occupy only one quantum state

 One energy level accommodate only two electrons 
corresponding to spin ↑ and spin ↓

𝐸𝐸0

𝐸𝐸1

𝐸𝐸2

𝐸𝐸3

𝐸𝐸4

Thus filling in energy 
levels, 
• two electrons occupy 

the lowest level, 
• two more in the next 

level, and 
• so forth until all the 

electrons in metal Fig: Filling the energy level in metal
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QUANTUM FREE ELECTRON THEORY

Fermi Energy
Fermi-Dirac function:
       𝐹𝐹 𝐸𝐸 = 1

𝑒𝑒
(𝐸𝐸−𝐸𝐸𝐹𝐹)
𝑘𝑘𝑘𝑘  +1

0.0

0.5

1.0
T = 0 K
T > 0 K
T = ∞

F(E)

EEF

• If 𝐹𝐹 𝐸𝐸 = 1
2
 , then

1
2
𝑒𝑒

(𝐸𝐸−𝐸𝐸𝐹𝐹)
𝑘𝑘𝑘𝑘  = 1

2

 ⟹ 𝑒𝑒
(𝐸𝐸−𝐸𝐸𝐹𝐹)
𝑘𝑘𝑘𝑘  = 1 = 𝑒𝑒0

 ⟹𝐸𝐸 = 𝐸𝐸𝐹𝐹
• 𝐸𝐸𝐹𝐹 → The energy level at which the probability of occupation is half.

• 𝑚𝑚 = 0 K; 𝐹𝐹 𝐸𝐸 = 0    if E>EF

                    𝐹𝐹 𝐸𝐸 = 1     if E<EF

• 𝑚𝑚 > 0 K; 𝐹𝐹 𝐸𝐸 = 1
2
     if E=EF

Where, 𝐹𝐹(𝐸𝐸) → Probability of occupation of a particular 
quantum state having energy 𝐸𝐸 by an electron.
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QUANTUM FREE ELECTRON THEORY

Density of States

• It is defined as the number of energy states per unit volume of 

metal in an energy interval between E and E+dE. 

 𝑁𝑁 𝐸𝐸 𝑑𝑑𝐸𝐸 =
Number of energy states between E and E + dE

Volume of the metal

 𝑁𝑁 𝐸𝐸 𝑑𝑑𝐸𝐸 =
𝐷𝐷 𝐸𝐸 𝑑𝑑𝐸𝐸

𝑉𝑉
• The energy for 3D box

 𝐸𝐸 =
𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒

𝑛𝑛𝑎𝑎2

𝑎𝑎2
+
𝑛𝑛𝑏𝑏2

𝑏𝑏2
+
𝑛𝑛𝑐𝑐2

𝑐𝑐2
 ⟹ 𝐸𝐸 =

ℏ2

2𝑚𝑚𝑒𝑒
𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑦𝑦2 + 𝑚𝑚𝑧𝑧2 =

ℏ2𝑚𝑚2

2𝑚𝑚𝑒𝑒

                Where, 𝑚𝑚𝑥𝑥 = 𝜋𝜋𝑛𝑛𝑎𝑎
𝑥𝑥

, 𝑚𝑚𝑦𝑦 = 𝜋𝜋𝑛𝑛𝑏𝑏
𝑦𝑦

, 𝑚𝑚𝑧𝑧 = 𝜋𝜋𝑛𝑛𝑐𝑐
𝑧𝑧

   and 𝑚𝑚2 = 𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑦𝑦2 + 𝑚𝑚𝑧𝑧2

(1)

(2)
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QUANTUM FREE ELECTRON THEORY

Merits of QFE theory
Successfully explain 
• electrical conductivity of metals
• Specific heat of metal
• Electron concentration in metals
• Only few electrons whose energies lie in the vicinity of EF 

contribute to conduction and only such free electrons called 
conduction electrons

Demerits of QFE theory
Although semiconductors and insulators contain electrons, QFE 
theory cannot explain
• electrical conductivity of semiconductors
• electrical conductivity of insulators
• Need development of Band theory solids
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QUANTUM FREE ELECTRON THEORY

𝑛𝑛 = 0
𝑛𝑛 = 1

𝑛𝑛 = 2

𝑛𝑛 = 3

1

4

9

𝐸𝐸
𝜋𝜋2ℏ2

2𝑚𝑚𝑒𝑒𝑎𝑎2

𝑛𝑛 = 0
𝑛𝑛 = 1

𝑛𝑛 = 2

111

211 121 112

221 212 122
𝐸𝐸

3

6

9

22212

Triply 
degenerate

Non-degenerate

Non-degenerate

𝒏𝒏𝒂𝒂
𝒂𝒂

𝒏𝒏𝒃𝒃
𝒃𝒃

𝒏𝒏𝒄𝒄
𝒄𝒄

𝒏𝒏𝒂𝒂𝟐𝟐

𝒂𝒂𝟐𝟐 +
𝒏𝒏𝒃𝒃𝟐𝟐

𝒃𝒃𝟐𝟐 +
𝒏𝒏𝒄𝒄𝟐𝟐

𝒄𝒄𝟐𝟐
1 1 1 3

2 1 1 6

1 2 1 6

1 1 2 6

If crystal having 1023 atoms 
then
How many energy levels 

are there?
How many energy states 

are there?
Answers are very difficult!!!
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BAND THEORY
Origin of band gap

• • • •
𝑎𝑎

Positive ion
0

U

Figure: Variation of potential 
energy of a conduction electron in 
a periodic array of positive ions 

 If the velocity of electron in 
periodic varying potential is 𝑣𝑣 , 
then according to de Broglie 

𝜆𝜆 =
ℎ
𝑚𝑚𝑣𝑣

=
ℎ
𝑝𝑝

=
2𝜋𝜋ℏ
ℏ𝑚𝑚

=
2𝜋𝜋
𝑚𝑚

 If 𝜆𝜆 >> 𝑎𝑎, then electron moves 
freely through the crystal. If 
𝜆𝜆 ≤ 𝑎𝑎 , then electron diffracts 
by crystal same as the X-rays 
which obeys Bragg’s law

𝑛𝑛𝜆𝜆 = 2𝑎𝑎 sin𝜃𝜃

𝑛𝑛 ⋅
2𝜋𝜋
𝑚𝑚

= 2𝑎𝑎 sin𝜃𝜃

    𝑚𝑚 = 𝑛𝑛𝜋𝜋
𝑎𝑎 sin 𝜃𝜃

𝑚𝑚𝑥𝑥 = 𝑚𝑚 sin𝜃𝜃 =
𝑛𝑛𝜋𝜋

𝑎𝑎 sin𝜃𝜃 ⋅ sin𝜃𝜃 =
𝑛𝑛𝜋𝜋
𝑎𝑎

•        •        •        •

•        •        •        •

•        •        •        •
𝑚𝑚𝑥𝑥

𝜃𝜃

𝜃𝜃
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 If 𝑚𝑚 < | 𝜋𝜋
𝑎𝑎

|, electron moves freely through the crystal

 If 𝑚𝑚 = | 𝜋𝜋
𝑎𝑎

| or 𝑚𝑚 = ± 𝜋𝜋
𝑎𝑎
, electron is diffracted at + 𝜋𝜋

𝑎𝑎
  and reflected 

back at −𝜋𝜋
𝑎𝑎

 The wavefunction of electrons in positive x-direction is given by 

𝜓𝜓1 = 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥 = 𝑒𝑒
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

 Whereas in negative x-direction

𝜓𝜓2 = 𝑒𝑒−𝑖𝑖𝑘𝑘𝑥𝑥 = 𝑒𝑒−
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

 Since electron travels right and left due to Bragg reflection, a 
resultant wave is a standing wave, which is given by

 𝜓𝜓+ = 𝑒𝑒
𝑖𝑖𝜋𝜋𝑖𝑖
𝑎𝑎 + 𝑒𝑒−

𝑖𝑖𝜋𝜋𝑖𝑖
𝑎𝑎 = 2 cos 𝜋𝜋𝑥𝑥

𝑎𝑎
 and 𝜓𝜓+2 ∝ cos2 𝜋𝜋𝑥𝑥

𝑎𝑎

𝜓𝜓− = 𝑒𝑒
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎 − 𝑒𝑒−

𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎 = 2 isin

𝜋𝜋𝑥𝑥
𝑎𝑎

 and 𝜓𝜓−2 ∝ sin2
𝜋𝜋𝑥𝑥
𝑎𝑎



30

BAND THEORY
Origin of band gap

• • • •

𝑎𝑎

•

𝝍𝝍+
𝟐𝟐 ∝ 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐

𝝅𝝅𝝅𝝅
𝒂𝒂

𝝍𝝍−
𝟐𝟐 ∝ 𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐

𝝅𝝅𝝅𝝅
𝒂𝒂

 

Probability density (𝜌𝜌)

Travelling 
wave

Figure: Distribution of probability density, 𝜌𝜌 in the lattice for 𝜓𝜓+2  
and 𝜓𝜓−2, and for a travelling wave
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 This model describe the behaviors 
of electrons in periodic potential

 The potential energy of electron is 
represented by rectangular wells 
of period 𝑎𝑎 + 𝑏𝑏 as shown in Figure.

 For 0 < 𝑥𝑥 < 𝑎𝑎, 𝑉𝑉 = 0
 For −𝑏𝑏 < 𝑥𝑥 < 0, 𝑉𝑉 = 𝑉𝑉0

𝑏𝑏 𝑂𝑂 𝑎𝑎

𝑉𝑉0

𝑉𝑉(𝑥𝑥)

𝑎𝑎𝑏𝑏

Figure: One-dimensional Kroning-
Penney potential

 The Schrodinger equation in the two regions:
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+
2𝑚𝑚𝐸𝐸
ℏ2

𝜓𝜓 = 0 for 0 < 𝑥𝑥 < 𝑎𝑎
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+
2𝑚𝑚
ℏ2

𝐸𝐸 − 𝑉𝑉0 𝜓𝜓 = 0 for 0 < 𝑥𝑥 < 𝑎𝑎

 If it is assumed that 𝐸𝐸 < 𝑉𝑉0 and let 𝛼𝛼2 = 2𝑚𝑚𝐸𝐸
ℏ2

 and 𝛽𝛽2 = 2𝑚𝑚
ℏ2

𝑉𝑉0 − 𝐸𝐸
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+ 𝛼𝛼2𝜓𝜓 = 0 and 
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

− 𝛽𝛽2𝜓𝜓 = 0
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 According to Bloch theorem, the solution of SE in periodic 
potential is given by

𝜓𝜓 = 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥𝑢𝑢(𝑥𝑥)

 where 𝑢𝑢 𝑥𝑥  has the period of the crystal lattice with

 𝑢𝑢 𝑥𝑥 = 𝑢𝑢(𝑥𝑥 + 𝑎𝑎).

 Differentiating the Bloch function twice with respect to 𝑥𝑥 and 

substituting for 𝑑𝑑
2𝜓𝜓
𝑑𝑑𝑥𝑥2

 give,

𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑥𝑥2

+ 2𝑖𝑖𝑚𝑚
𝑑𝑑𝑢𝑢1
𝑑𝑑𝑥𝑥

+ 𝛼𝛼2 − 𝑚𝑚2 𝑢𝑢1 = 0

𝑑𝑑2𝑢𝑢2
𝑑𝑑𝑥𝑥2

+ 2𝑖𝑖𝑚𝑚
𝑑𝑑𝑢𝑢2
𝑑𝑑𝑥𝑥

+ 𝛽𝛽2 + 𝑚𝑚2 𝑢𝑢2 = 0

(1)

(2)
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 Solution of eq. (1) and (2) are given by

𝑢𝑢1 = 𝐴𝐴𝑒𝑒𝑖𝑖 𝛼𝛼−𝑘𝑘 𝑥𝑥 + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝛼𝛼+𝑘𝑘) for 0 < 𝑥𝑥 < 𝑎𝑎

𝑢𝑢2 = 𝐶𝐶𝑒𝑒𝑖𝑖 𝛽𝛽−𝑘𝑘 𝑥𝑥 + 𝐷𝐷𝑒𝑒−𝑖𝑖(𝛽𝛽+𝑘𝑘) for − 𝑏𝑏 < 𝑥𝑥 < 0

where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 are constants which must be determined from the 
boundary conditions of continuous wavefunctions:

𝑢𝑢1 0 = 𝑢𝑢2 0 ,  
𝑑𝑑𝑢𝑢1
𝑑𝑑𝑥𝑥 𝑥𝑥=0

=
𝑑𝑑𝑢𝑢2
𝑑𝑑𝑥𝑥 𝑥𝑥=0

𝑢𝑢1 𝑎𝑎 = 𝑢𝑢2 −𝑏𝑏 ,  
𝑑𝑑𝑢𝑢1
𝑑𝑑𝑥𝑥 𝑥𝑥=𝑎𝑎

=
𝑑𝑑𝑢𝑢2
𝑑𝑑𝑥𝑥 𝑥𝑥=−𝑏𝑏

The first two conditions are for continuous wavefunction while 
latter two for continuous derivatives in the two regions.

(3)

(4)

(5)

(6)
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 Applying conditions (5) and (6) in eq. (3) and (4) with simplification 

gives
𝛽𝛽2 − 𝛼𝛼2

2𝛼𝛼𝛽𝛽
sinh𝛽𝛽𝑏𝑏 ⋅ sin𝛼𝛼𝑎𝑎 + cosh𝛽𝛽𝑏𝑏 ⋅ cos𝛼𝛼𝑎𝑎 = cos𝑚𝑚(𝑎𝑎 + 𝑏𝑏)

 Eq. (7) can be simplified by assuming that 𝑏𝑏 → 0,  𝑉𝑉0 → ∞ , but 
product 𝑏𝑏𝑉𝑉0 remain finite. Under this condition,

sinh𝛽𝛽𝑏𝑏 → 𝛽𝛽𝑏𝑏 ,  cosh𝛽𝛽𝑏𝑏 → 1, 𝛽𝛽2 − 𝛼𝛼2 → 𝛽𝛽2 and 

 Eq. (7) reduces to 

𝛽𝛽2𝑏𝑏
2𝛼𝛼

sin𝛼𝛼𝑎𝑎 + cos𝛼𝛼𝑎𝑎 = cos𝑚𝑚𝑎𝑎

𝑃𝑃
sin𝛼𝛼𝑎𝑎
𝛼𝛼𝑎𝑎

+ cos𝛼𝛼𝑎𝑎 = cos 𝑚𝑚𝑎𝑎

     where 𝑃𝑃 = 𝛽𝛽2𝑎𝑎𝑏𝑏
2

= 𝑚𝑚𝑉𝑉0𝑎𝑎𝑏𝑏
ℏ2

= 𝑏𝑏𝑉𝑉0 × 𝑚𝑚𝑎𝑎
ℏ2

= (Area of potential barrier) × 𝑚𝑚𝑎𝑎
ℏ2

(7)

(8)
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 𝑃𝑃 is a measure of the area 𝑏𝑏𝑉𝑉0 of the potential barrier. Increasing 

𝑃𝑃  has the physical meaning of binding a given electron more 
strongly to a particular potential well.

�1

+1

𝛼𝛼𝑎𝑎

𝑃𝑃
sin𝛼𝛼𝑎𝑎
𝛼𝛼𝑎𝑎

+ cos𝛼𝛼𝑎𝑎

𝐴𝐴
𝐵𝐵 𝐶𝐶

𝐷𝐷 𝐸𝐸
𝐹𝐹

 RHS of eq. (8) lies in 
− 1 ≤ cos 𝑚𝑚𝑎𝑎 ≤ 1

 LHS of eq. (8) can be 
solved graphically against 
𝛼𝛼𝑎𝑎 for arbitrary value of 
𝑃𝑃, say 2𝜋𝜋.

 Eq. (8) is satisfied only 
for those values of 𝛼𝛼𝑎𝑎 
for which RHS lies 
between +1 and −1.

Figure 01: Variation of LHS against 𝛼𝛼𝑎𝑎
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 From Figure 01, the following conclusions can be drawn:

a) The energy spectrum of electrons in a crystal consists of a 
number of allowed energy bands, such as 𝐴𝐴𝐵𝐵, 𝐶𝐶𝐷𝐷,⋯ for cos𝛼𝛼𝑎𝑎 lies 
between ±1, separated by forbidden regions, viz., 𝐵𝐵𝐶𝐶, 𝐷𝐷𝐸𝐸,⋯

b) The values of 1st term on LHS of eq. (8) for a given value of 𝑃𝑃 
decrease as 𝛼𝛼𝑎𝑎 increases. LHS of eq. (8) approaches to a cosine 
curve. The width of allowed bands increases with increasing values 
of 𝛼𝛼𝑎𝑎.

c) Effect of 𝑷𝑷 on energy spectrum: if 𝑃𝑃 = 0, then LHS of eq. (8) 
becomes cos𝛼𝛼𝑎𝑎  and forbidden band disappears. It gives 
continuous energy spectrum of a free electron.

 For 𝑃𝑃 = 0, eq. (8) becomes

cos𝛼𝛼𝑎𝑎 = cos𝑚𝑚𝑎𝑎  ⇒ 𝛼𝛼2 = 𝑚𝑚2  ⇒
2𝑚𝑚𝐸𝐸
ℏ2

= 𝑚𝑚2  ⇒ 𝐸𝐸 =
𝑚𝑚2ℏ2

2𝑚𝑚
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For 𝑃𝑃 → ∞, 𝑏𝑏 → ∞, but constant 
period, 𝑎𝑎 + 𝑏𝑏 leads 𝑎𝑎 → 0, also 
𝛼𝛼𝑎𝑎 → 0 and hence we obtain

 sin𝛼𝛼𝑎𝑎 = 0 = sin n𝜋𝜋

where 𝑛𝑛 = ±1, ±2,⋯

 𝛼𝛼𝑎𝑎 = 𝑛𝑛𝜋𝜋 ⇒ 𝛼𝛼2 =
𝑛𝑛2𝜋𝜋2

𝑎𝑎2

 ⇒
2𝑚𝑚𝐸𝐸
ℏ2

=
𝑛𝑛2𝜋𝜋2

𝑎𝑎2
 ⇒ 𝐸𝐸 =

𝑛𝑛2𝜋𝜋2ℏ2

2𝑚𝑚𝑎𝑎2

It is similar to energy levels of 
particles in a constant potential 
box of atomic dimension.-10 -8 -6 -4 -2 0 2 4 6 8 10

-5

0

5

10

15

20

25

30  P = 10π
 P = 5π
 P = 2π
 P = 0
 Line at +1
 Line at -1
 Line at 0

Figure 02: Effect of 𝑃𝑃 on LHS against 𝛼𝛼𝑎𝑎
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d) From eq. (8) and Figure 01, it follows that the energy 

discontinuity occur when

𝑚𝑚𝑎𝑎 = 𝑛𝑛𝜋𝜋 

𝑚𝑚 =
𝑛𝑛𝜋𝜋
𝑎𝑎

 𝑤𝑤ℎ𝑒𝑒𝑤𝑤𝑒𝑒 𝑛𝑛 = ±1, ±2,⋯

 These values of 𝑚𝑚 define the boundaries of the Brillouin zones. 

The range of the allowed values of 𝑚𝑚 between −𝜋𝜋
𝑎𝑎
 to 𝜋𝜋

𝑎𝑎
 define the 

first Brillouin zone. The second zone consists of two parts: from 

− 2𝜋𝜋
𝑎𝑎

 to −𝜋𝜋
𝑎𝑎
   and 𝜋𝜋

𝑎𝑎
 to 2𝜋𝜋

𝑎𝑎
. The third zone extends from −3𝜋𝜋

𝑎𝑎
 to −2𝜋𝜋

𝑎𝑎
   

and 2𝜋𝜋
𝑎𝑎

 to 3𝜋𝜋
𝑎𝑎

.
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