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Free Energy 
Spontaneity in terms of internal energy, enthalpy 
and entropy, Helmholtz and Gibbs energies, Gibbs-
Helmholtz equation, free energy and spontaneity, 
thermodynamic equations of state, Gibbs equations, 
Maxwell relations, dependence of state functions 
on state variables, calculations of changes in state 
functions.  
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Lecture 
01Fundamental Concepts

Initial 
Sate

Final 
State

𝑇𝑇1,𝑃𝑃1,𝑉𝑉1 𝑇𝑇2,𝑃𝑃2,𝑉𝑉2

Initial 
Sate

Final 
State

𝑇𝑇1,𝑃𝑃1,𝑉𝑉1 𝑇𝑇2,𝑃𝑃2,𝑉𝑉2

Driving force

Opposing force

Spontaneous Processes

• Processes occur when there exist 
driving force for a change of 
state between the parts of the 
system or between the system 
and the surrounding.

• If the driving force is finite, the 
process is irreversible.

• If the driving force is 
infinitesimal in magnitude, the 
process is reversible.

• Spontaneous process is one that 
occurs its own accords without 
external intervention.
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Fundamental Concepts

Examples of Spontaneous Processes
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Fundamental Concepts

Examples of Spontaneous Processes
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Fundamental Concepts

• Processes that cannot be undone by exactly reversing the process.
• All spontaneous processes are irreversible.
• All real processes are irreversible.

Irreversible processes
An irreversible process is one that cannot be reversed without leaving 
a net change in the system or its surroundings. 

 In other words, when a process is irreversible, the system 
cannot return to its original state without external 
intervention or by adding extra energy. 
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Fundamental Concepts

• In a reversible process, changes proceed in 
infinitesimally small steps, so that the system is 
infinitesimally close to equilibrium at every step.

• This is clearly an idealization and can never 
happen in a real system!

• Because of some unavoidable factors like 
friction, heat loss and finite process speeds

• The reversible conditions can be approximated in 
certain scenarios, such as 

− Slowly compressed or expanded gases
− Slow heat transfer
− Electrochemical reactions in batteries

Reversible process (Idealizations!)
A reversible process in thermodynamics is an idealized process that 
occurs in such a way that the system and its surroundings can be 
returned to their original states by reversing the process without leaving 
any lasting changes.
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Fundamental Concepts

Spontaneous/
Irreversible

Equilibrium/
Reversible

Sy
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Processes Coordinate

No change in 
properties over time?

?

Properties changes
• in reversible (idealize equilibrium) and irreversible 

(spontaneous) processes with time
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Fundamental Concepts
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Lecture 
01Spontaneity and Internal Energy (U)

• 1st law of thermodynamics
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑉𝑉

⟹ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

• 2nd law of thermodynamics
𝑑𝑑𝑑𝑑
𝑇𝑇
≤ 𝑑𝑑𝑑𝑑

⟹ 𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑

• Combing 1st and 2nd laws of 
thermodynamics

𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 ≤ −𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑇𝑇𝑑𝑑𝑑𝑑

• At constant V and S, 𝑑𝑑𝑉𝑉 = 0 
and 𝑑𝑑𝑑𝑑 = 0

𝑑𝑑𝑑𝑑𝑉𝑉,𝑆𝑆 ≤ 0

Interpretation of the criteria:

a) The decrease (negative change) in  U 
at constant V and S refers to the 
irreversible/spontaneous  processes

b) No change (𝑑𝑑𝑑𝑑 = 0) in U at constant V 
and S  indicates reversible process or 
the system at equilibrium.

Limitations:
a) Calculation of 𝑑𝑑𝑑𝑑 at constant V and S 

is quite difficult because the maintain 
of constant S is cumbersome.

b) The negative change in U (𝑑𝑑𝑑𝑑 < 0) 
representing exothermic processes 
may either be spontaneous or non-
spontaneous.

− Melting of ice is spontaneous     
but 𝑑𝑑𝑑𝑑 > 0.

Criteria in terms of U
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Lecture 
01Spontaneity and Enthalpy (H)

• 1st law of thermodynamics
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑝𝑝 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑝𝑝𝑉𝑉 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 + 𝑝𝑝𝑉𝑉 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑝𝑝

• 2nd law of thermodynamics
𝑑𝑑𝑑𝑑
𝑇𝑇 ≤ 𝑑𝑑𝑑𝑑 ⟹ 𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑

• Combing 1st and 2nd laws of 
thermodynamics

𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑝𝑝 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≤ 𝑉𝑉𝑑𝑑𝑝𝑝 + 𝑇𝑇𝑑𝑑𝑑𝑑

• At constant p and S, 𝑑𝑑𝑝𝑝 = 0 
and 𝑑𝑑𝑑𝑑 = 0

𝑑𝑑𝑑𝑑𝑝𝑝,𝑆𝑆 ≤ 0

Interpretation of the criteria:

a) The decrease (negative change) in  H 
at constant p and S refers to the 
irreversible/spontaneous  processes

b) No change (𝑑𝑑𝑑𝑑 = 0) in H at constant p 
and S  indicates reversible process or 
the system at equilibrium.

Limitations:
a) Calculation of 𝑑𝑑𝑑𝑑 at constant p and S 

is quite difficult because the maintain 
of constant S is cumbersome.

b) The negative change in H (𝑑𝑑𝑑𝑑 < 0) 
representing exothermic processes 
may either be spontaneous or non-
spontaneous.

− Melting of ice is spontaneous     
but 𝑑𝑑𝑑𝑑 > 0.

Criteria in terms of H
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Lecture 
01Spontaneity and Entropy (S)

• 1st law of thermodynamics
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑉𝑉
⟹ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉       (1)
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑝𝑝 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑 𝑝𝑝𝑉𝑉 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 + 𝑝𝑝𝑉𝑉 − 𝑉𝑉𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑝𝑝           (2)

• 2nd law of thermodynamics
𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑/𝑇𝑇                         (3)

• From eq. (1) & (3)
𝑑𝑑𝑑𝑑 ≥ (𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉)/𝑇𝑇

• At constant U & V, 𝑑𝑑𝑑𝑑 = 0, 𝑑𝑑𝑉𝑉 = 0
𝑑𝑑𝑑𝑑𝑈𝑈,𝑉𝑉 ≥ 0

• From eq. (2) & (3)
𝑑𝑑𝑑𝑑 ≥ (𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑝𝑝)/𝑇𝑇

• At constant H & p, 𝑑𝑑𝑑𝑑 = 0, 𝑑𝑑𝑝𝑝 = 0
𝑑𝑑𝑑𝑑𝐻𝐻,𝑝𝑝 ≥ 0

Interpretation of the criteria:

a) The increase (positive change) in  S 
at constant U & V or at constant H & 
p refers to the 
irreversible/spontaneous  processes

b) No change (𝑑𝑑𝑑𝑑 = 0) in S under these 
conditions  indicates reversible 
process or the system at equilibrium.

Limitations:
a) Predicting spontaneity based on 

entropy change (dS≥0) requires 
calculating entropy changes for both 
the system and its surroundings.

b) Calculating the entropy change of the 
surroundings can be challenging, as 
the changes are often very small and 
difficult to determine accurately.

Criteria in terms of S



Need new thermodynamic functions
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 The use of dU, dH or dS for the criteria of spontaneity or 
equilibrium encounters the following challenges:

(a) The use of (dU)S,V or (dH)S,P requires the condition of constant 
entropy which is not easy to maintain.

(b) The use of dSuniv > 0 requires the calculation of both dSsys and 
dSsurr. One feels bother directly about the surroundings while 
concentrating on investigation of systems.

 Hence we need new thermodynamic functions of system that meet 
the following requirements:

− Must be able to predict the processes of direction

− Automatically incorporate dH or dU and dS of system

− Account dS of both system and surrounding if required

 Two new thermodynamic functions are Gibbs energy or Gibbs free 
energy denoted by G and Helmholtz energy or work function 
denoted by F or A.



dU ≤ TdS + SdT – SdT + dw

dU ≤  d(TS) – SdT + dw

d(U – TS) ≤  – SdT + dw

d(U – TS)≤ – SdT - PdV
at constant T and V, dT=0, dV=0

d(U – TS) ≤  0

dU ≤ TdS + dw

Equality sign holds at material 
equilibrium

Definition of Helmholtz  free energy

A ≡  U - TS

Consider material equilibrium at constant T and V

dw = -P dV 
for P-V work 

only
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Using Clausius inequality 𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑
𝑇𝑇

  in the form 𝑇𝑇𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 in  
first law, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑, gives 𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑
 ⟹𝑑𝑑 ≥ Δ𝑑𝑑 − 𝑇𝑇ΔS    (1)
In eq 1 w is interpreted as maximum energy that can be 
obtained from the system as work which is done reversibly. 
Therefore, w for reversible processes is given by
 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑    (2)
From the definition of Helmholtz free energy
 𝐴𝐴 = 𝑑𝑑 − 𝑇𝑇𝑑𝑑 ⟹ Δ𝐴𝐴 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑 − 𝑑𝑑Δ𝑇𝑇
For isothermal changes, ΔT = 0
 Δ𝐴𝐴 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑    (3)
From eq 2 and 3 we obtain, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = Δ𝐴𝐴
The change in the Helmholtz energy is equal to the 
maximum work.

Significance of Helmholtz  free energy

15



Definition of Gibbs free energy

Consider material equilibrium for constant T & P

dU ≤ T dS + dw     with dw = − PdV

dU ≤ T dS + S dT – S dT - P dV - V dP + V dP

dU ≤  d(TS) – SdT – d(PV) + VdP

d(U + PV – TS) ≤  – SdT + VdP

d(H – TS)≤ – SdT + VdP

At constant T & P, dT = 0, dP = 0

d(H – TS) ≤  0

G ≡ H – TS ≡ U + PV – TS



𝐺𝐺 = 𝑑𝑑 + 𝑃𝑃𝑉𝑉 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

From 2nd law, 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

From first law, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑

𝑑𝑑𝐺𝐺 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

At constant T & P, 𝑑𝑑𝑇𝑇 = 0,𝑑𝑑𝑃𝑃 = 0

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑉𝑉 ⇒ Δ𝐺𝐺 = 𝑑𝑑 + 𝑃𝑃Δ𝑉𝑉

The mechanical work involving P-V work is defined as

 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑃𝑃Δ𝑉𝑉

w is splitted  as  𝑑𝑑 = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Significance of Gibbs  free energy
From the definition of G



Significance of Helmholtz  free energy
Δ𝐺𝐺 = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
Δ𝐺𝐺 = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

The mechanical work maintains the system’s volume 
only. It does not contribute to any thermodynamic 
processes. 

On the other hands, non-mechanical work contributes 
to the thermodynamic processes. So, it is called useful 
work or net work.

It turns out that G carries a greater significance that 
being simply a signpost of spontaneous change:

Δ𝐺𝐺 = 𝑑𝑑𝑛𝑛𝑚𝑚𝑛𝑛
The change in the Helmholtz energy is equal to the 

net work



Relation between ΔGsys and ΔSuniv
At Constant T and P

Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠  (1)
Heat exchange between system and surrounding is the 
same in magnitude but opposite in sign

𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = −qsur
At constant P, system's enthalpy change is given by the 
heat exchange between system and its surroundings

Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
⟹ Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇(𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠/T)
⟹ Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑇𝑇(𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢/T)
⟹ Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑇𝑇Δ𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢               (2)

From eqs. 1 and 2
Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑇𝑇Δ𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢 − 𝑇𝑇Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
⟹ Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑇𝑇(Δ𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢 + Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)

Using Δ𝑑𝑑𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢 = Δ𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢 + Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
⟹ Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑇𝑇Δ𝑑𝑑𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢      
⟹−Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇Δ𝑑𝑑𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢

−𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢

𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠

The decrease in the free energy of 
the system is equal to increase in the 
entropy of the universe multiplied by 
the kelvin temperature.



Spontaneity and Helmholtz Energies
From the definition of Helmholtz energy

𝐴𝐴 = 𝑑𝑑 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

𝑇𝑇𝑑𝑑𝑑𝑑 = −𝑑𝑑𝐴𝐴 + 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

From Cassius inequality and 1st law of thermodynamics

𝑑𝑑𝑑𝑑 ≥
𝑑𝑑𝑑𝑑
𝑇𝑇 ⟹ 𝑇𝑇𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 ⟹ 𝑇𝑇𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

Combining 

−𝑑𝑑𝐴𝐴 + 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 ≥ 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

−𝑑𝑑𝐴𝐴 ≥ 𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑝𝑝𝑑𝑑𝑉𝑉

𝑑𝑑𝐴𝐴 ≤ −𝑝𝑝𝑑𝑑𝑉𝑉 − 𝑑𝑑𝑑𝑑𝑇𝑇

At constant T & V, 𝑑𝑑𝑇𝑇 = 0, 𝑑𝑑𝑉𝑉 = 0

𝑑𝑑𝐴𝐴𝑇𝑇,𝑉𝑉 ≤ 0



Spontaneity and Gibbs Energies
From the definition of Gibbs energy

𝐺𝐺 = 𝑑𝑑 − 𝑇𝑇𝑑𝑑

𝐺𝐺 = 𝑑𝑑 + 𝑝𝑝𝑉𝑉 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑝𝑝 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

𝑇𝑇𝑑𝑑𝑑𝑑 = −𝑑𝑑𝐺𝐺 + 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑑𝑑𝑇𝑇

From Cassius inequality and 1st law of thermodynamics

𝑑𝑑𝑑𝑑 ≥
𝑑𝑑𝑑𝑑
𝑇𝑇 ⟹ 𝑇𝑇𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 ⟹ 𝑇𝑇𝑑𝑑𝑑𝑑 ≥ 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

Combining 

−𝑑𝑑𝐺𝐺 + 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉 + 𝑉𝑉𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑑𝑑𝑇𝑇 ≥ 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

𝑑𝑑𝐺𝐺 ≤ −𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑉𝑉𝑑𝑑𝑝𝑝

At constant T & p, 𝑑𝑑𝑇𝑇 = 0, 𝑑𝑑𝑝𝑝 = 0

𝑑𝑑𝐺𝐺𝑇𝑇,𝑝𝑝 ≤ 0



Relation among ΔG , ∆H and ΔS

• From the definition of G,

𝐴𝐴 = 𝑑𝑑 − 𝑇𝑇𝑑𝑑 

• For large or measurable change
Δ𝐴𝐴 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑 − 𝑑𝑑Δ𝑇𝑇

• For iso thermal processes, Δ𝑇𝑇 = 0
Δ𝐴𝐴 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑

• From the definition of G,

𝐺𝐺 = 𝑑𝑑 − 𝑇𝑇𝑑𝑑 

• For large or measurable change
Δ𝐺𝐺 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑 − 𝑑𝑑Δ𝑇𝑇

• For iso thermal processes, Δ𝑇𝑇 = 0
Δ𝐺𝐺 = Δ𝑑𝑑 − 𝑇𝑇Δ𝑑𝑑 Gibbs Free energy equation 

or simply Gibbs equation

Gibbs Free energy equation 
or simply Gibbs equation



• For a closed system (T & V constant), the state function 
U-TS, continually decrease during the spontaneous, 
irreversible process of chemical reaction and matter 
transport until material equilibrium is reached

• d(U-TS)=0     at equilibrium

• dA = 0 at constant T & V for closed system

Helmholtz energy & Equilibrium

23
Progress of Processes

A

∆A < 0 ∆A  = 0
Reversible/ Equilibrium

Irreversible/ 
Spontaneous

Constant



A spontaneous process at constant T and V  is 
accompanied by a decrease in the Helmholtz 
energy, A or F.

A spontaneous process at constant T and P is 
accompanied by a decrease in the Gibbs energy, G.

dA = 0 at equilibrium, const. T, V  

dG = 0 at equilibrium, const. T, P 

GIBSS & HELMHOLTZ ENERGIES



• ADVANTAGES OF USING ΔA AND ΔG OVER ΔS

1. Use of Δ𝑑𝑑 to predict the nature of a process requires the 
knowledge of both Δ𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 and Δ𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢. 

− But Δ𝐺𝐺 or Δ𝐴𝐴 of the system alone is sufficient to 
predict the direction of a process.

2. While using Δ𝑑𝑑 it is required that energy and volume are 
constant Δ𝑑𝑑𝑈𝑈,𝑉𝑉 > 0. 

− But it is not very convenient to maintain a constant 
energy condition in the laboratory. 

− On the other hand, while using ΔA or ΔG only the state 
variables (T, V, or T, P) are to be kept constant, which 
are easy to maintain in the laboratory. 

Therefore, the use of ΔA or ΔG is preferred over ΔS as a 
driving force to predict the direction of a process



• Advantages of using ΔG over ΔA

 When ΔG is used to predict the direction of a process 
it is required to maintain constant T and P as ΔGT,P < 0 
for a spontaneous process

 On the other hand, if ΔA is used to decide the 
direction of a process the T and V are to be kept 
constant as ΔAT,V < 0 for spontaneous process. 

 Since in the chemistry laboratory usually the 
experiments are performed at constant T and P, 
therefore, the use of ΔG as driving force is preferred 
over the use of ΔA which requires the condition of 
constant T and V.



Thermodynamic Relations for a System

6 Basic Equations:
• 𝒅𝒅𝒅𝒅 = 𝑻𝑻𝒅𝒅𝑻𝑻 − 𝑷𝑷𝒅𝒅𝑷𝑷 closed syst, rev, proc, P-V work only

• 𝑯𝑯 = 𝒅𝒅 + 𝑷𝑷𝑷𝑷
• 𝑨𝑨 = 𝒅𝒅 − 𝑻𝑻𝑻𝑻
• 𝑮𝑮 = 𝑯𝑯− 𝑻𝑻𝑻𝑻
• 𝑪𝑪𝑷𝑷 = 𝝏𝝏𝒅𝒅

𝝏𝝏𝑻𝑻 𝑷𝑷
        closed syst., in equilib., P-V work only

• 𝑪𝑪𝑷𝑷 = 𝝏𝝏𝑯𝑯
𝝏𝝏𝑻𝑻 𝑷𝑷

        closed syst., in equilib., P-V work only

The rates of change of U, H, and S with respect to T can 
be determined from the heat capacities CP and CV.
Heat Capacities (CP

 & CV) are key properties



dG = -SdT + VdP

dA = -SdT - PdV

dH = TdS + VdP

dU = TdS - PdV

The Gibbs Equations

closed syst., rev. 
proc., P-V work only

How to derive dH, dA and dG?



The Gibbs Equations

dH = d(U + PV)

dH = TdS + VdP

= dU + d(PV)

= dU + PdV + VdP

= (TdS - PdV) + PdV + VdP

H ≡ U + PV

dH = ?

dU = TdS - PdV



dA = d(U - TS)

dG = d(H - TS)

dG = -SdT + VdP

dA = -SdT - PdV

= dU - d(TS)
= dU - TdS - SdT
= (TdS - PdV) - TdS - SdT

= dH - d(TS)
= dH - TdS - SdT
= (TdS + VdP) - TdS - SdT

dA = ?

dU = TdS - PdV

dH = TdS+VdP

dG = ?

A ≡ U - TS

G ≡ H - TS



dV
V
UdS

S
UdU

SV







∂
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The Power of thermodynamics:

)( PdVTdSdU −=

Difficultly measured properties to be expressed in terms of easily 
measured properties.

The Gibbs equation dU= T dS – P dV implies that U is being considered a function 
of the variables S and V. From U= U (S,V) we have
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(dG = -SdT + VdP)



Derivatives & Differentials

x

y

x1 x2

y1 y2

∆x
∆y

Derivative: The rate of change 
of dependent variable, y wrt 
independent variable, x 

𝑓𝑓′ 𝑥𝑥 =
Δ𝑦𝑦
Δ𝑥𝑥

For infinitesimal changes

𝑓𝑓′ 𝑥𝑥 =
d𝑦𝑦
d𝑥𝑥

Differentials: The change of variables (x,y). The ∆x, ∆y are 
differentials of x and y, respectively. 
Relationship: 
 Δ𝑦𝑦 = 𝑓𝑓′ 𝑥𝑥 Δx  for large changes (differential)
 𝑑𝑑𝑦𝑦 = 𝑓𝑓′ 𝑥𝑥 𝑑𝑑𝑥𝑥  for infinitesimal changes (differential)



Exact differentials
Let z = f(x,y)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚 𝑠𝑠

= 𝑀𝑀

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠 𝑚𝑚

= 𝑁𝑁

 𝑑𝑑𝑧𝑧𝑚𝑚 = 𝑀𝑀𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑧𝑧𝑠𝑠 = 𝑁𝑁𝑑𝑑𝑦𝑦

 𝑑𝑑𝑧𝑧 = 𝑑𝑑𝑧𝑧𝑚𝑚 + 𝑑𝑑𝑧𝑧𝑠𝑠 = 𝑀𝑀𝑑𝑑𝑥𝑥 + 𝑁𝑁𝑑𝑑𝑦𝑦

𝑑𝑑𝑧𝑧 is said to be exact differential if
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

 𝑑𝑑
𝑑𝑑𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

= 𝑑𝑑
𝑑𝑑𝑚𝑚

(𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠

)

𝑑𝑑2𝜕𝜕
𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚

= 𝑑𝑑2𝜕𝜕
𝑑𝑑𝑚𝑚𝑑𝑑𝑠𝑠



The Euler Reciprocity  
Relations

If Z＝f(x，y)，and Z has continuous second partial 
derivatives, then

 𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚 𝑠𝑠

𝑑𝑑𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠 𝑚𝑚

𝑑𝑑𝑦𝑦

 𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑑𝑑𝑥𝑥 + 𝑁𝑁𝑑𝑑𝑦𝑦    𝑀𝑀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚 𝑠𝑠

    𝑁𝑁 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠 𝑚𝑚









∂
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State Function
Show that dqrev/T is a state function but dqrev is not.

From 1st law of thermodynamics
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑑𝑑𝑉𝑉

Since 𝑑𝑑 = 𝑑𝑑(𝑇𝑇,𝑉𝑉), then

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑇𝑇

𝑑𝑑𝑉𝑉 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑇𝑇

𝑑𝑑𝑉𝑉

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑑𝑑
𝜕𝜕𝑉𝑉 𝑇𝑇
=0

𝑑𝑑𝑉𝑉 +
𝑛𝑛𝑛𝑛𝑇𝑇
𝑉𝑉 𝑑𝑑𝑉𝑉
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𝑑𝑑𝑑𝑑𝑢𝑢𝑚𝑚𝑢𝑢 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 + (𝑛𝑛𝑛𝑛𝑇𝑇/𝑉𝑉)𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑀𝑀𝑑𝑑𝑇𝑇 + 𝑁𝑁𝑑𝑑𝑉𝑉
𝑀𝑀 = 𝐶𝐶𝑉𝑉 ,𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑇𝑇/𝑉𝑉
𝜕𝜕𝑀𝑀
𝜕𝜕𝑉𝑉 𝑇𝑇

=
𝜕𝜕𝐶𝐶𝑉𝑉
𝜕𝜕𝑉𝑉 𝑇𝑇

= 0

𝜕𝜕𝑁𝑁
𝜕𝜕𝑇𝑇 𝑉𝑉

= −
𝑛𝑛𝑛𝑛
𝑉𝑉

𝜕𝜕𝑀𝑀
𝜕𝜕𝑉𝑉 𝑇𝑇

≠
𝜕𝜕𝑁𝑁
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑑𝑑𝑢𝑢𝑚𝑚𝑢𝑢/𝑇𝑇 = (𝐶𝐶𝑉𝑉/𝑇𝑇)𝑑𝑑𝑇𝑇 + (𝑛𝑛𝑛𝑛/𝑉𝑉)𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑀𝑀𝑑𝑑𝑇𝑇 + 𝑁𝑁𝑑𝑑𝑉𝑉
𝑀𝑀 = 𝐶𝐶𝑉𝑉/𝑇𝑇,𝑁𝑁 = 𝑛𝑛𝑛𝑛/𝑉𝑉

𝜕𝜕𝑀𝑀
𝜕𝜕𝑉𝑉 𝑇𝑇

= 0

𝜕𝜕𝑁𝑁
𝜕𝜕𝑇𝑇 𝑉𝑉

= 0

𝜕𝜕𝑀𝑀
𝜕𝜕𝑉𝑉 𝑇𝑇

=
𝜕𝜕𝑁𝑁
𝜕𝜕𝑇𝑇 𝑉𝑉



The Gibbs equation (4.33) for dU is

dU＝TdS－PdV
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Applying Euler Reciprocity,
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dU = TdS - PdV

The Maxwell Relations 
(Application of Euler relation to Gibss equations)
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These are the Maxwell Relations

VT T
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∂
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∂
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The first two are little used.

The last two are extremely valuable.

The equations relate the isothermal pressure and volume variations of 
entropy to measurable properties.



Dependence of State Functions on 
T, P, and V

 We now find  the dependence of U, H, S and G on the 
variables of the system.

 The most common independent variables are T and P.
 We can relate the temperature and pressure variations 

of H, S, and G to the measurable Cp,α, and κ



Volume dependence of U
The Gibbs equation  gives dU＝TdS－PdV

Divide both sides by dV keeping T constant
𝜕𝜕𝑈𝑈
𝜕𝜕𝑉𝑉 𝑇𝑇

= 𝑇𝑇 𝜕𝜕𝑆𝑆
𝜕𝜕𝑉𝑉 𝑇𝑇

− 𝑃𝑃

From Maxwell Relations, 𝜕𝜕𝑆𝑆
𝜕𝜕𝑉𝑉 𝑇𝑇

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇 𝑉𝑉

𝜕𝜕𝑈𝑈
𝜕𝜕𝑉𝑉 𝑇𝑇

= 𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇 𝑉𝑉

− 𝑃𝑃

From Euler’s chain rule, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇 𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕 𝑇𝑇

𝜕𝜕𝑇𝑇
𝜕𝜕𝑉𝑉 𝜕𝜕

= −1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇 𝑉𝑉

= − �𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇 𝜕𝜕

𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕 𝑇𝑇

= −𝛼𝛼𝑉𝑉
−𝜅𝜅𝑉𝑉

= 𝛼𝛼
𝜅𝜅

𝜕𝜕𝑈𝑈
𝜕𝜕𝑉𝑉 𝑇𝑇

= 𝛼𝛼𝑇𝑇
𝜅𝜅
− 𝑃𝑃

𝛼𝛼 =
1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇 𝜕𝜕

𝜅𝜅 = −
1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃 𝑇𝑇



Pressure dependence of H
From Gibbs equations, dH＝TdS＋VdP
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𝛼𝛼 =
1
𝑉𝑉

𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇 𝜕𝜕

From Maxwell Relationship



Temperature dependence of S
From Gibbs Equations, 
𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑉𝑉
Divide both sides by dT 
keeping V constant

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

= 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

𝐶𝐶𝑉𝑉 = 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝐶𝐶𝑉𝑉
𝑇𝑇

From Gibbs Equations, 
𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑉𝑉𝑑𝑑𝑃𝑃
Divide both sides by dT 
keeping P constant

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

= 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

𝐶𝐶𝜕𝜕 = 𝑇𝑇
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

=
𝐶𝐶𝜕𝜕
𝑇𝑇



Pressure dependence of S
From Maxwell Relations

𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

= −
𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇 𝜕𝜕

= −𝛼𝛼𝑉𝑉

Temperature & Pressure dependence of G
The Gibbs equation for dG is

dG ＝ -SdT + VdP

dT＝0

S
T
G

P

−=






∂
∂

V
P
G

T

=






∂
∂

dP＝0



Joule-Thomson Coefficient
From definition, 𝜇𝜇𝐽𝐽𝑇𝑇 = 𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕 𝐻𝐻
 which links variables T, P, H

Applying Euler’s chain rule for these variables

𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃 𝐻𝐻

𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑 𝑇𝑇

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

= −1

𝜇𝜇𝐽𝐽𝑇𝑇 = − �
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕

𝜇𝜇𝐽𝐽𝑇𝑇 = − �
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

𝐶𝐶𝜕𝜕

𝜇𝜇𝐽𝐽𝑇𝑇 = − ⁄−𝑇𝑇𝑉𝑉𝛼𝛼 + 𝑉𝑉 𝐶𝐶𝜕𝜕
𝜇𝜇𝐽𝐽𝑇𝑇 = 𝑇𝑇𝛼𝛼 − 1 ⁄𝑉𝑉 𝐶𝐶𝜕𝜕

From pressure 
dependence of H

𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

= −𝑇𝑇𝑉𝑉𝛼𝛼 + 𝑉𝑉



Heat-Capacity Difference
(easily measured quantities)

PT
VP T

VP
V
UCC 







∂
∂









+







∂
∂

=−

PTP
T
PT

V
U

VT

−=−






∂
∂

=






∂
∂

κ
α

P
VP T

VTCC 






∂
∂







=−
κ
α

κ
α 2TVCC VP =−

V
T
V

T
VV

P

P

α

α

≡






∂
∂








∂
∂

≡ −1

From volume 
dependence of 

U

𝑃𝑃𝑉𝑉 = 𝑛𝑛𝑇𝑇

𝑃𝑃
𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇 𝜕𝜕

= 𝑛𝑛



κ
α 2TVCC VP =−

1. As T → 0, CP  → CV

Heat-Capacity Difference

2. CP  ≥ CV (since κ > 0)

3. CP = CV (if α = 0)



EXAMPLE 1

κ
α 2TVCC VP =−

κ
α 2

,,
m

mVmP
TVCC =−

÷ n



TV
U







∂
∂

Ideal gases 0=






∂
∂

TV
U

Solids  300 J/cm3 (25 oC, 1 atm)

Internal Pressure

Liquids  300 J/cm3 (25 oC, 1 atm)

PTP
T
PT

V
U

VT

−=−






∂
∂

=






∂
∂

κ
α

Strong intermolecular forces in solids and liquids.

Solids, Liquids, & Non-ideal Gases



Calculation of Changes in State Function

1. Calculation of ΔS
      Suppose  a closed system of constant 

composition goes from state (P1,T1) to state 
(P2,T2), the system’s entropy is a function of T 
and P dP

P
SdT

T
SdS

TP







∂
∂

+






∂
∂

=

VdPdT
T

CdS P α−=



Integration gives:

Since S is a state function, ΔS is independent of the path used to connect 
states 1 and 2. A convenient path (Figure 4.3) is first to hold P constant at 
P1 and change T from T1 to T2. Then T is held constant at T2, and P is 
changed from P1 to P2. 

For step (a), dP=0 and gives

For step (b), dT=0 and gives

1
2

1

PPconstdT
T

CS
T

T
P

a ==∆ ∫

2
2

1

TTconstdPVS
P

P
b =−=∆ ∫ α

dPVdT
T

CSSS P ∫∫ −=−=∆
2

1

2

1
12 α



EXAMPLE 2



ΔU can be easily found from ΔH using :

ΔU = ΔH – Δ (PV) 
Alternatively   we 
can write down 
the equation for 
ΔU similar to:

( ) dPTVVdTCH P ∫∫ −+=∆
2

1

2

1

α

2. Calculation of ΔH

dP
P
HdT

T
HdH

TP







∂
∂

+






∂
∂

=

dPVTVdTCP )( +−+= α



3. Calculation of ΔG 
For isothermal process:

Alternatively, ΔG for an isothermal process that does not involve 
an irreversible composition change can be found as:

𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝑇𝑇

= 𝑉𝑉

𝑑𝑑𝐺𝐺 = 𝑉𝑉𝑑𝑑𝑃𝑃

Δ𝐺𝐺 = �
𝜕𝜕1

𝜕𝜕2

𝑉𝑉𝑑𝑑𝑃𝑃

A special case:

TconstSTHG ∆−∆=∆

PandTconstatprocessrevG 0=∆
[Since                                        ] TqSqH /, =∆=∆
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