
1

2

Introduction to Bioinformatics

LECTURE 3: SEQUENCE ALIGNMENT: sequence similarity

Causes for sequence (dis)similarity

mutation: a nucleotide at a certain location is replaced by

 another nucleotide (e.g.: ATA → AGA)

insertion: at a certain location one new nucleotide is

 inserted inbetween two existing nucleotides
 (e.g.: AA → AGA)

deletion: at a certain location one existing nucleotide

 is deleted (e.g.: ACTG → AC-G)

indel: an insertion or a deletion

3

Introduction to Bioinformatics

LECTURE 3: SEQUENCE ALIGNMENT

3.4 Sequence alignment: global and local

 Find the similarity between two (or more)

 DNA-sequences by finding a good

 alignment between them.

4

The biological problem of

sequence alignment

DNA-sequence-1

 tcctctgcctctgccatcat---caaccccaaagt

 |||| ||| ||||| ||||| ||||||||||||

 tcctgtgcatctgcaatcatgggcaaccccaaagt

DNA-sequence-2

Alignment

2

5

Sequence alignment - definition

Sequence alignment is an arrangement of two or more sequences,

highlighting their similarity.

The sequences are padded with gaps (dashes) so that wherev er possible,

columns contain identical characters f rom the sequences inv olv ed

tcctctgcctctgccatcat---caaccccaaagt

|||| ||| ||||| ||||| ||||||||||||

tcctgtgcatctgcaatcatgggcaaccccaaagt

6

Algorithms

Needleman-Wunsch

Pairwise global alignment only.

Smith-Waterman

Pairwise, local (or global) alignment.

BLAST

Pairwise heuristic local alignment

7

Pairwise alignment

Pairwise sequence alignment methods are concerned with f inding the best-

matching piecewise local or global alignments of protein (amino acid) or DNA

(nucleic acid) sequences.

Ty pically, the purpose of this is to f ind homologues (relativ es) of a gene or gene-

product in a database of known examples.

This inf ormation is usef ul f or answering a v ariety of biological questions:

1. The identif ication of sequences of unknown structure or f unction.

2. The study of molecular evolution.

8

Global alignment

A global alignment between two sequences is an alignment in which all the

characters in both sequences participate in the alignment.

Global alignments are usef ul mostly f or finding closely-related sequences.

As these sequences are also easily identif ied by local alignment methods global

alignment is now somewhat deprecated as a technique.

Further, there are sev eral complications to molecular ev olution (such as domain

shuffling) which prev ent these methods f rom being usef ul.

3

9

Global Alignment

Find the global best fit between two sequences

Example: the sequences s = VIVALASVEGAS and
t = VIVADAVIS align like:

A(s,t) =

V I V A L A S V E G A S

| | | | | | |

V I V A D A - V - - I S

indels

10

The Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm (1970, J Mol Biol.

48(3):443-53) performs a global alignment on two

sequences (s and t) and is applied to align protein or
nucleotide sequences.

The Needleman-Wunsch algorithm is an example of

dynamic programming, and is guaranteed to find the

alignment with the maximum score.

11

The Needleman-Wunsch algorithm

Of course this works for both DNA-sequences

as for protein-sequences.

12

Alignment scoring function

The cost of aligning two symbols xi and yj is the

scoring function σ(xi,yj)

4

14

The Needleman-Wunsch algorithm

1. Create a table of size (m+1)x(n+1) f or sequences s and t of lengths m and n,

2. Fill table entries (m:1) and (1:n) with the v alues:

3. Starting f rom the top lef t, compute each entry using the recursiv e relation:

4. Perf orm the trace-back procedure f rom he bottom-right corner





j

k

kj

i

k

ki MM
1

,1

1

1,),(,),(ts 































),(

),(

),(

max

1,

,1

1,1

,

jji

iji

jiji

ji

M

M

M

M

t

s

ts







15

Alignment cost

The cost of the entire alignment:

 



c

i

ii yxM
1

),(

16

Optimal global alignment

The optimal global alignment A* between two sequences s

and t is the alignment A(s,t) that maximizes the total

alignment score M(A) over all possible alignments.

A* = argmax M(A)

Finding the optimal alignment A* looks a combinatorial

optimization problem:
 i. generate all possible allignments

 ii. compute the score M

 iii. select the alignment A* with the maximum score M*

5

17

A simple scoring function

σ(-,a) = σ(a,-) = -1

σ(a,b) = -1 if a ≠ b

σ(a,b) = 1 if a = b

19

The substitution matrix

A more realistic scoring function is given by the

biologically inspired substitution matrix :

- A G C T

A 10 -1 -3 -4

G -1 7 -5 -3

C -3 -5 9 0

T -4 -3 0 8

Examples:

 * PAM (Point Accepted Mutation) (Margaret Dayhoff)

 * BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff)

20

Scoring function

The cost for aligning the two sequences s =

VIVALASVEGAS and t = VIVADAVIS :

A(s,t) =

is:

M(A) = 7 matches + 2 mismatches + 3 gaps

 = 7 – 2 – 3 = 2

V I V A L A S V E G A S

| | | | | | |

V I V A D A - V - - I S

6

21

The Needleman-Wunsch algorithm

For example, if the substitution matrix was

- A G C T

A 10 -1 -3 -4

G -1 7 -5 -3

C -3 -5 9 0

T -4 -3 0 8

with a gap penalty of -5, would hav e the f ollowing score...

then the alignment: AGACTAGTTAC

 CGA---GACGT

22

The Needleman-Wunsch algorithm

1. Create a table of size (m+1)x(n+1) f or sequences s and t of lengths m and n,

2. Fill table entries (m:1) and (1:n) with the v alues:

3. Starting f rom the top lef t, compute each entry using the recursiv e relation:

4. Perf orm the trace-back procedure f rom he bottom-right corner





j

k

kj

i

k

ki MM
1

,1

1

1,),(,),(ts 































),(

),(

),(

max

1,

,1

1,1

,

jji

iji

jiji

ji

M

M

M

M

t

s

ts







23

•The path from the top or left cell represents an

indel pairing

•, so take the score of the left and the top cell

• and add the score for indel to each of them.

•The diagonal path represents a

match/mismatch

•so take the score of the top-left diagonal cell

• and add the score for match if the

corresponding bases in the row and column

are matching or

•the score for mismatch if they do not.

24

7

25 26

• A diagonal arrow represents a match or

mismatch,

• so the letters of the column and the letter of

the row of the origin cell will align.

• A horizontal or vertical arrow represents an

indel.

• Horizontal arrows will align a gap ("-") to the

letter of the column (the "top" sequence),

• Vertical arrows will align a gap to the letter of

the row (the "side" sequence).

• If there are multiple arrows to choose from

• They represent a branching of the

alignments.

• If two or more branches all belong to paths from

the bottom right to the top left cell

• They are equally viable alignments

• In this case, note the paths as separate

alignment candidates.

8

29

U → CU → GCU → -GCU → T-GCU → AT-GCU → CAT-GCU → GCATG-CU

A → CA → ACA → TACA → TTACA → ATTACA → -ATTACA → G-ATTACA

9

A G C T

A 1 -1 -1 -1

G -1 1 -1 -1

C -1 -1 1 -1

T -1 -1 -1 4

Similarity Matrix

Needleman Wunsch Sequence Alignment
The pseudo-code f or the algorithm to compute the F matrix theref ore looks like this

(array and sequence indexes start at 0):

 d ← MismatchScore

for i=0 to length(B)-1

 F(i,0) <- d*i

for j =0 to length(A)-1

 F(0,j) <- d*j

for i=1 to length(B)

 for j = 1 to length(A) {

 Choice1 <- F(i-1,j -1) + S(B(i), A(j))

 Choice2 <- F(i-1, j) + d

 Choice3 <- F(i, j -1) + d

 F(i,j) <- max(Choice1, Choice2, Choice3)

 }

•Once the F matri x is computed, the bottom right hand corner of the matri x is the maxi mum

score for any alignment.

•To compute which alignment ac tually gi ves this scor e, you can start from the bottom right cell,

and compare the val ue with the thr ee possi ble sources(Choice1, Choice2, and C hoice3 above)

to see which it came from.

If Choice1, then A(j) and B(i) are aligned,

If Choice2, then B(i) is aligned with a gap, and

If Choice3, then A(j) is aligned with a gap.

Needleman Wunsch Sequence Alignment

AlignmentA <- "" ; AlignmentB <- "“;

i <- length(B); j <- length(A);

while (i > 0 AND j > 0) {

 Score <- F(i,j); ScoreDiag <- F(i - 1, j - 1);

 ScoreLeft <- F(i, j - 1); ScoreUp <- F(i - 1, j);

 if (Score == ScoreDiag + S(A(j), B(i))) {

 AlignmentA <- A(j) + AlignmentA; AlignmentB <- B(i) + AlignmentB;

 i <- i – 1; j <- j – 1; }

 else if (Score == ScoreLeft + d) {

 AlignmentA <- A(j) + AlignmentA; AlignmentB <- "-" + AlignmentB;

 j <- j - 1 }

 else if (Score == ScoreUp + d) {

 AlignmentA <- "-" + AlignmentA; AlignmentB <- B(i) + AlignmentB;

 i <- i - 1 }

}

while (j > 0) { AlignmentA <- A(j) + AlignmentA; AlignmentB <- "-" + AlignmentB; j <- j - 1 }

while (i > 0) { AlignmentA <- "-" + AlignmentA; AlignmentB <- B(i) + AlignmentB; i <- i - 1 }

Substitution Score

Substitution matrix (BLOSUM 50 matrix)

Log odds score can be positive (identities, conservative

replacements) and negative

10

Bioinformatics GBIO0002 -1 Biological Sequences

__
Kirill Bessonov slide 37

Aligning globally using BLOSUM 62

AAEEKKLAAA

AA--RRIA--

Score: -14

Other a l ignment options? Yes

 A A E E K K L A A A

 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80

A -8 4 -4 -12 -20 -28 -36 -44 -52 -60 -68

A -16 -4 8 0 -8 -16 -24 -32 -40 -48 -56

R -24 -12 0 8 0 -6 -14 -22 -30 -38 -46

R -32 -20 -8 0 8 2 -4 -12 -20 -28 -36

I -40 -28 -16 -8 0 5 -1 -2 -10 -18 -26

A -48 -36 -24 -16 -8 -1 4 -2 2 -6 -14

38

Local alignment

Local alignment methods f ind related regions within sequences - they can

consist of a subset of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions

50-70 of sequence B.

This is a more f lexible technique than global alignment and has the adv antage

that related regions which appear in a dif f erent order in the two proteins (which is

known as domain shuffling) can be identif ied as being related.

This is not possible with global alignment methods.

39

The Smith Waterman algorithm

The Smith-Waterman algorithm (1981) is for determining similar regions

between two nucleotide or protein sequences.

Smith-Waterman is also a dynamic programming algorithm and improves

on Needleman-Wunsch. As such, it has the desirable property that it is

guaranteed to find the optimal local alignment with respect to the scoring

system being used (which includes the substitution matrix and the gap-

scoring scheme).

However, the Smith-Waterman algorithm is demanding of time and

memory resources: in order to align two sequences of lengths m and n,

O(mn) time and space are required.

As a result, it has largely been replaced in practical use by the BLAST

algorithm; although not guaranteed to find optimal alignments, BLAST is

much more efficient.

Smith–Waterman Algorithm

11

Smith–Waterman

algorithm

Needleman–

Wunsch algorithm

Initialization
First row and f irst column

are set to 0

First row and f irst column

are subject to gap

penalty

Scoring
Negativ e score is set to

0
Score can be negativ e

Traceback

Begin with the highest

score, end when 0 is

encountered

Begin with the cell at the

lower right of the matrix,

end at top lef t cell

42

The Smith-Waterman algorithm

1. Create a table of size (m+1)x(n+1) f or sequences s and t of lengths m and n,

2. Fill table entries (1,1:m+1) and (1:n+1,1) with zeros.

3. Starting f rom the top lef t, compute each entry using the recursiv e relation:

4. Perf orm the trace-back procedure f rom the maximum element in the table to

the f irst zero element on the trace-back path.






































0

),(

),(

),(

max
1,

,1

1,1

,

jji

iji

jiji

ji
M

M

M

M
t

s

ts







12

13

CSC317 50

Step 3: Computing the length of a LCS

AB C BDAB

 BDCAB A
BCBA

Simplified Smith–Waterman algorithm

When linear gap penalty function is used

A linear gap penalty has the same scores for opening

and extending a gap:

CSC317 52

Step 4: Constructing a LCS (Backtracking)

AB C BDAB

 BDCAB A
BCBA

14

Simplified Smith–Waterman algorithm

When linear gap penalty function is used

A linear gap penalty has the same scores for opening

and extending a gap:

CSC317 54

Step 4: Constructing a LCS (Backtracking)

AB C BDAB

 BDCAB A
BCBA

Dynamic Programming

SDRT

SDRT

Bioinformatics GBIO0002 -1 Biological Sequences

__
Kirill Bessonov slide 56

Aligning locally using BLOSUM 62

KKLA

RRIA

Score: 10

 A A E E K K L A A A

 0 0 0 0 0 0 0 0 0 0 0

A 0 4 4 0 0 0 0 0 4 4 4

A 0 4 8 3 0 0 0 0 4 8 8

R 0 0 3 8 3 2 2 0 0 3 7

R 0 0 0 3 8 5 4 0 0 0 2

I 0 0 0 0 0 5 2 6 0 0 0

A 0 4 4 0 0 0 4 1 10 4 4

15

Algorithms

FastA

Needleman

Wunsch

(global)

Heuristic

approaches

Dynamic

programming

Pairwise Alignment

Blast Smith

Waterman

(local)
Database searches

Chapter 1 Chapter 1

