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Introduction to Bioinformatics 

LECTURE 3: SEQUENCE ALIGNMENT: sequence similarity 

 

Causes for sequence (dis)similarity 

 
mutation:  a nucleotide at a certain location is replaced by  

  another nucleotide (e.g.: ATA → AGA) 

 

insertion:  at a certain location one new nucleotide is  

  inserted inbetween two existing nucleotides  
  (e.g.: AA → AGA) 

 

deletion:  at a certain location one existing nucleotide  

  is deleted (e.g.: ACTG → AC-G) 

 
indel:   an insertion or a deletion 
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Introduction to Bioinformatics 

LECTURE 3: SEQUENCE ALIGNMENT 

 

3.4 Sequence alignment: global and local 

 
 Find the similarity between two (or more) 

 DNA-sequences by finding a good  

 alignment between them. 
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The biological problem of  

sequence alignment 

DNA-sequence-1 

 
 tcctctgcctctgccatcat---caaccccaaagt 

 |||| ||| ||||| |||||   |||||||||||| 

 tcctgtgcatctgcaatcatgggcaaccccaaagt 

 

DNA-sequence-2 
 

Alignment 
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Sequence alignment - definition 

Sequence alignment is an arrangement of  two or more sequences, 

highlighting their similarity.  

 

The sequences are padded with gaps (dashes) so that wherev er possible, 

columns contain identical characters f rom the sequences inv olv ed 

 

tcctctgcctctgccatcat---caaccccaaagt 

|||| ||| ||||| |||||   |||||||||||| 

tcctgtgcatctgcaatcatgggcaaccccaaagt 
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Algorithms 

Needleman-Wunsch 

Pairwise global alignment only. 

 
Smith-Waterman 

Pairwise, local (or global) alignment. 

 

BLAST 

Pairwise heuristic local alignment 
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Pairwise alignment 

Pairwise sequence alignment methods are concerned with f inding the best-

matching piecewise local or global alignments of  protein (amino acid) or DNA 

(nucleic acid) sequences. 

 

Ty pically, the purpose of  this is to f ind homologues (relativ es) of a gene or gene-

product in a database of  known examples.  

 

 

This inf ormation is usef ul f or answering a v ariety  of biological questions:  

 

1. The identif ication of  sequences of  unknown structure or f unction.  

 

2. The study  of  molecular evolution. 
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Global alignment 

A global alignment between two sequences is an alignment in which all the 

characters in both sequences participate in the alignment.  

 

Global alignments are usef ul mostly f or finding closely-related sequences.  

 

As these sequences are also easily  identif ied by  local alignment methods global 

alignment is now somewhat deprecated as a technique.  

 

Further, there are sev eral complications to molecular ev olution (such as domain 

shuffling) which prev ent these methods f rom being usef ul. 
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Global Alignment 

Find the global best fit between two sequences  

 

Example: the sequences  s = VIVALASVEGAS and  
t = VIVADAVIS align like: 

 

 

A(s,t) =  

V I V A L A S V E G A S 

| | | |   |   |       | 

V I V A D A - V - - I S 

 

indels 
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The Needleman-Wunsch algorithm 

The Needleman-Wunsch algorithm (1970, J Mol Biol. 

48(3):443-53) performs a global alignment on two 

sequences (s and t) and is applied to align protein or 
nucleotide sequences.  

 

The Needleman-Wunsch algorithm is an example of 

dynamic programming, and is guaranteed to find the 

alignment with the maximum score.  
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The Needleman-Wunsch algorithm 

Of course this works for both DNA-sequences 

as for protein-sequences. 

 

 

12 

Alignment scoring function 

The cost of aligning two symbols xi and yj  is the 

scoring function σ(xi,yj  ) 
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The Needleman-Wunsch algorithm 

1. Create a table of  size (m+1)x(n+1) f or sequences s and t of  lengths m and n, 

 

2. Fill table entries (m:1) and (1:n) with the v alues:  

 

 

 

 

 

3. Starting f rom the top lef t, compute each entry  using the recursiv e relation:  

 

 

 

 

 

 

 

 

4. Perf orm the trace-back procedure f rom he bottom-right corner 
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Alignment cost 

The cost of the entire alignment: 

 

 

 



c

i

ii yxM
1

),(

16 

Optimal global alignment 

The optimal global alignment A* between two sequences  s 

and t is the alignment A(s,t) that maximizes the total 

alignment score M(A) over all possible alignments. 
 

A* = argmax M(A)  

 

Finding the optimal alignment A* looks a combinatorial 

optimization problem:  
 i. generate all possible allignments  

 ii. compute the score M 

 iii. select the alignment A* with the maximum score M* 
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A simple scoring function 

σ(-,a) = σ(a,-) = -1  

 

σ(a,b) = -1 if a ≠ b 

 

σ(a,b) = 1 if a = b 

 

19 

The substitution matrix 

A more realistic scoring function is given by the 

biologically inspired substitution matrix : 

 

 
-   A   G   C   T  

A  10  -1  -3  -4  

G  -1   7  -5  -3  

C  -3  -5   9   0  

T  -4  -3   0   8  

 
Examples:  
 

 * PAM (Point Accepted Mutation) (Margaret Dayhoff) 

 * BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff) 
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Scoring function 

The cost for aligning the two sequences  s = 

VIVALASVEGAS and t = VIVADAVIS : 

 
 

A(s,t) =  

 

 

is:  
 

M(A) = 7 matches + 2 mismatches + 3 gaps  

 = 7                – 2                     – 3               = 2   

V I V A L A S V E G A S 

| | | |   |   |       | 

V I V A D A - V - - I S 
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The Needleman-Wunsch algorithm 

For example, if  the substitution matrix was 

 
-   A   G   C   T  

A  10  -1  -3  -4  

G  -1   7  -5  -3  

C  -3  -5   9   0  

T  -4  -3   0   8  

 

with a gap penalty of  -5, would hav e the f ollowing score... 

 

  

then the alignment:    AGACTAGTTAC 

            CGA---GACGT 
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The Needleman-Wunsch algorithm 

1. Create a table of  size (m+1)x(n+1) f or sequences s and t of  lengths m and n, 

 

2. Fill table entries (m:1) and (1:n) with the v alues:  

 

 

 

 

 

3. Starting f rom the top lef t, compute each entry  using the recursiv e relation:  

 

 

 

 

 

 

 

 

4. Perf orm the trace-back procedure f rom he bottom-right corner 
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•The path from the top or left cell represents an 

indel pairing 

•, so take the score of the left and the top cell 

• and add the score for indel to each of them. 

 

•The diagonal path represents a 

match/mismatch 

•so take the score of the top-left diagonal cell 

• and add the score for match if the 

corresponding bases in the row and column 

are matching or  

•the score for mismatch if they do not. 

24 
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• A diagonal arrow represents a match or 

mismatch,  

• so the letters of the column and the letter of 

the row of the origin cell will align. 

• A horizontal or vertical arrow represents an 

indel.  

• Horizontal arrows will align a gap ("-") to the 

letter of the column (the "top" sequence), 

• Vertical arrows will align a gap to the letter of 

the row (the "side" sequence). 

  

  

• If there are multiple arrows to choose from 

• They represent a branching of the 

alignments.  

• If two or more branches all belong to paths from 

the bottom right to the top left cell 

• They are equally viable alignments 

• In this case, note the paths as separate 

alignment candidates. 
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U → CU → GCU → -GCU → T-GCU → AT-GCU → CAT-GCU → GCATG-CU 

A → CA → ACA → TACA → TTACA → ATTACA → -ATTACA → G-ATTACA 



9 

A G C T 

A 1 -1 -1 -1 

G -1 1 -1 -1 

C -1 -1 1 -1 

T -1 -1 -1 4 

Similarity Matrix 

Needleman Wunsch Sequence Alignment 
The pseudo-code f or the algorithm to compute the F matrix theref ore looks like this 

(array  and sequence indexes start at 0): 

 d ← MismatchScore 

for i=0 to length(B)-1  

 F(i,0) <- d*i  

for j =0 to length(A)-1  

 F(0,j ) <- d*j   

for i=1 to length(B)  

 for j  = 1 to length(A) {  

  Choice1 <- F(i-1,j -1) + S(B(i), A(j ))  

  Choice2 <- F(i-1, j ) + d  

  Choice3 <- F(i, j -1) + d  

  F(i,j ) <- max(Choice1, Choice2, Choice3)  

 } 

•Once the F  matri x is computed, the bottom right hand corner of the matri x is  the maxi mum 

score for any alignment.  

•To compute which alignment ac tually gi ves  this  scor e,  you can start  from the bottom right  cell,  

and compare the val ue with the thr ee possi ble sources(Choice1, Choice2, and C hoice3 above)  

to see which it came from.  

If Choice1, then A(j) and B(i) are aligned,  

If Choice2, then B(i) is aligned with a gap, and  

If Choice3, then A(j) is aligned with a gap. 

Needleman Wunsch Sequence Alignment 
 

AlignmentA <- "" ;  AlignmentB <- "“;   

i <- length(B); j  <- length(A); 

  

while (i > 0 AND j  > 0) {  

 Score <- F(i,j );  ScoreDiag <- F(i - 1, j  - 1);  

 ScoreLeft <- F(i, j  - 1);  ScoreUp <- F(i - 1, j );   

 if (Score == ScoreDiag + S(A(j ), B(i))) {  

  AlignmentA <- A(j ) + AlignmentA; AlignmentB <- B(i) + AlignmentB; 

   i <- i – 1; j  <- j  – 1; }  

 else if (Score == ScoreLeft + d) {  

  AlignmentA <- A(j ) + AlignmentA; AlignmentB <- "-" + AlignmentB; 

  j  <- j  - 1 }  

 else if (Score == ScoreUp + d) {  

  AlignmentA <- "-" + AlignmentA; AlignmentB <- B(i) + AlignmentB;  

  i <- i - 1 }  

}  

while (j  > 0) { AlignmentA <- A(j ) + AlignmentA; AlignmentB <- "-" + AlignmentB; j  <- j  - 1 }  

while (i > 0) { AlignmentA <- "-" + AlignmentA; AlignmentB <- B(i) + AlignmentB; i <- i - 1 }  

Substitution Score 

Substitution matrix (BLOSUM 50 matrix) 

Log odds score can be positive (identities, conservative 

replacements) and negative 



10 

Bioinformatics                                  GBIO0002 -1                                   Biological Sequences 

____________________________________________________________________________________________________________________ 
Kirill Bessonov                                                                              slide 37 

Aligning globally using BLOSUM 62 

AAEEKKLAAA 

AA--RRIA-- 

Score: -14 

Other a l ignment options?  Yes 

    A A E E K K L A A A 

  0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 

A -8 4 -4 -12 -20 -28 -36 -44 -52 -60 -68 

A -16 -4 8 0 -8 -16 -24 -32 -40 -48 -56 

R -24 -12 0 8 0 -6 -14 -22 -30 -38 -46 

R -32 -20 -8 0 8 2 -4 -12 -20 -28 -36 

I -40 -28 -16 -8 0 5 -1 -2 -10 -18 -26 

A -48 -36 -24 -16 -8 -1 4 -2 2 -6 -14 
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Local alignment 

Local alignment methods f ind related regions within sequences - they  can 

consist of  a subset of  the characters within each sequence.  

 

For example, positions 20-40 of  sequence A might be aligned with positions  

50-70 of  sequence B. 

 

This is a more f lexible technique than global alignment and has the adv antage 

that related regions which appear in a dif f erent order in the two proteins (which is 

known as domain shuffling) can be identif ied as being related.  

 

This is not possible with global alignment methods. 
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The Smith Waterman algorithm 

The Smith-Waterman algorithm (1981) is for determining similar regions 

between two nucleotide or protein sequences.  

 

Smith-Waterman is also a dynamic programming algorithm and improves 

on Needleman-Wunsch. As such, it has the desirable property that it is 

guaranteed to find the optimal local alignment with respect to the scoring 

system being used (which includes the substitution matrix and the gap-

scoring scheme).  

 

However, the Smith-Waterman algorithm is demanding of time and 

memory resources: in order to align two sequences of lengths m and n, 

O(mn) time and space are required.  

 

As a result, it has largely been replaced in practical use by the BLAST 

algorithm; although not guaranteed to find optimal alignments, BLAST is 

much more efficient. 

 

 

Smith–Waterman Algorithm 
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Smith–Waterman 

algorithm 

 

Needleman–

Wunsch algorithm 

 

Initialization 
First row and f irst column 

are set to 0 

First row and f irst column 

are subject to gap 

penalty  

Scoring 
Negativ e score is set to 

0 
Score can be negativ e 

Traceback 

Begin with the highest 

score, end when 0 is 

encountered 

Begin with the cell at the 

lower right of  the matrix, 

end at top lef t cell 

42 

The Smith-Waterman algorithm 

1. Create a table of  size (m+1)x(n+1) f or sequences s and t of  lengths m and n, 

 

2. Fill table entries (1,1:m+1) and (1:n+1,1) with zeros.  

 

3. Starting f rom the top lef t, compute each entry  using the recursiv e relation:  

 

 

 

 

 

 

 

 

 

 

4. Perf orm the trace-back procedure f rom the maximum element in the table to 

the f irst zero element on the trace-back path. 
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CSC317 50 

Step 3: Computing the length of a LCS 
 

AB C BDAB 

 BDCAB A 
BCBA 

 

Simplified Smith–Waterman algorithm  

 
When linear gap penalty function is used 

A linear gap penalty has the same scores for opening 

and extending a gap: 

 

CSC317 52 

Step 4: Constructing a LCS (Backtracking) 
 

AB C BDAB 

 BDCAB A 
BCBA 
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Simplified Smith–Waterman algorithm  

 
When linear gap penalty function is used 

A linear gap penalty has the same scores for opening 

and extending a gap: 

 

CSC317 54 

Step 4: Constructing a LCS (Backtracking) 
 

AB C BDAB 

 BDCAB A 
BCBA 

  

 

Dynamic Programming 

SDRT 

SDRT 
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Aligning locally using BLOSUM 62 

KKLA 

RRIA 

Score: 10 

    A A E E K K L A A A 

  0 0 0 0 0 0 0 0 0 0 0 

A 0 4 4 0 0 0 0 0 4 4 4 

A 0 4 8 3 0 0 0 0 4 8 8 

R 0 0 3 8 3 2 2 0 0 3 7 

R 0 0 0 3 8 5 4 0 0 0 2 

I 0 0 0 0 0 5 2 6 0 0 0 

A 0 4 4 0 0 0 4 1 10 4 4 
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Algorithms 

FastA 

Needleman 

Wunsch 

(global) 

Heuristic 

approaches 

Dynamic 

programming 

Pairwise Alignment 

Blast Smith 

Waterman 

(local) 
Database searches 

Chapter 1 Chapter 1 


