

- Line size and spacing:
 - metal1: Minimum width= 3λ , Minimum Spacing= 3λ
 - metal2: Minimum width= 3λ , Minimum Spacing= 4λ
 - poly: Minimum width= 2λ , Minimum Spacing= 2λ
 - ndiff/pdiff: Minimum width= 3λ, Minimum
 Spacing=3λ, minimum ndiff/pdiff seperation=10λ

December 20, 2024

- wells: minimum width=10λ, min distance form well edge to source/drain=5λ
- Transistors:
 - Min width=3λ

Modern VLSI Design 44: Interfer gth=2λ 204424 Digital Design Automation

Copyright © 2009 Prentice Hall PTR

SCMOS Design Rule Summary

- Contacts (Vias)
 - Cut size: exactly $2\lambda X 2\lambda$
 - Cut separation: minimum 2λ
 - Overlap: min 1λ in all directions
 - Magic approach: Symbolic contact layer min. size $4\lambda X 4\lambda$
 - Contacts cannot <u>stack</u> (i.e., metal2/metal1/poly)
- Other rules
 - cut to poly must be 3λ from other poly
 - cut to diff must be 3λ from other diff
 - metal2/metal1 contact cannot be directly over poly
 - negative features must be at least 2λ in size
- CMP Density rules (AMI/HP subm): 15% Poly, 30% Metal Modern VLSI Design 4e: Chapter 2

Typical parameters for 180 nm process.					
p-type transconductance	k'p	$-30 \mu A/V^2$	poly resistivity	R _{poly}	8Ω/□
n-type threshold voltage	V _{tn}	0.5V	metal 1-substrate plate capacitance	C _{metal1,plate}	36 <i>a</i> F/um ²
p-type threshold voltage	V _{tp}	-0.5V	metal 1-substrate fringe capacitance	C _{metal1,fringe}	54 <i>a</i> F/µm
n-diffusion bottomwall capacitance	C _{ndiff,bot}	940 <i>a</i> F/µm ²	metal 2-substrate capacitance	C _{metal2,plate}	36 <i>a</i> F/um ²
n-diffusion sidewall capacitance	C _{ndiff,side}	200 <i>a</i> F/µm	metal 2-substrate fringe capacitance	Cmetal2.fringe	51 <i>a</i> F/µm
p-diffusion bottomwall capacitance	C _{pdiff,bot}	1000 <i>a</i> F/µm ²	metal 3-substrate capacitance	C _{metal3,plate}	$37aF/um^2$
p-diffusion sidewall capacitance	C _{pdiff,side}	200 <i>a</i> F/µm	metal 3-substrate fringe capacitance	Cmetal3.fringe	54 <i>a</i> F/µm
n-type source/drain resistivity	R _{ndiff}	7Ω/□	metal 1 resistivity	R _{metal1}	0.08Ω/□
p-type source/drain resistivity	R _{pdiff}	7Ω/□	metal 2 resistivity	R _{matal2}	0.08Ω/□
poly-substrate plate capacitance	C _{poly,plate}	63 <i>a</i> F/µm ²	metal 3 resistivity	R _{metal3}	0.03Ω/□
poly-substrate fringe capacitance	C _{poly,fringe}	63 <i>a</i> F/μm	metal current limit	I _{m,max}	lmA/µm
			· · ·	_	

• What will be the metal wire capacitance?

Channel length modulation length parameter

- λ describes small dependence of drain current on V_{ds} in saturation.
- Factor is measured empirically.
- New drain current equation:

- I_d = 0.5k' (W/L)(V_{gs} - $V_t)$ ²(l - λ $V_{ds})$

 Equation has a discontinuity between linear and saturation regions---small enough to be ignored.

Leakage and subthreshold current

- A variety of leakage currents draw current away from the main logic path.
- The subthreshold current is one particularly important type of leakage current.

Types of leakage current

- Weak inversion current (a.k.a. subthreshold current).
- Reverse-biased pn junctions.
- Drain-induced barrier lowering.
- Gate-induced drain leakage;
- Punchthrough currents.
- Gate oxide tunneling.
- Hot carriers.