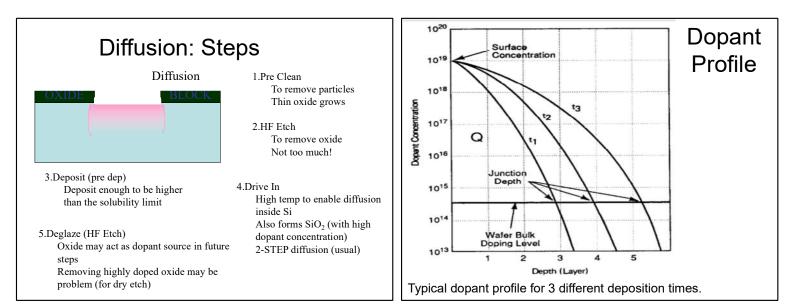
	Doping
Doping & Ion Implantation Cahpter-11 of Text	Doping is a process where a specific elements is introduced into intrinsic semiconductor materials to increase its conductivity. The doped material displays two unique properties that are the basis of solid-state electronics. The two properties are 1. Precise resistivity control through doping 2. Electron (<i>N-type</i>) and hole (<i>p-type</i>) conduction

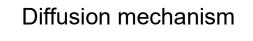
1

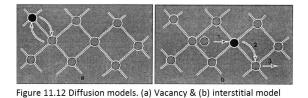
Junction

 A junction is the separation between a region that is rich in negative electrons (N-type region) and a region that is rich in holes (P-type region). The exact location of a junction is where the concentration of electrons equals the concentration of holes. The usual way to form junctions in the surface of semiconductor wafer is by

> » thermal diffusion » ion implantation

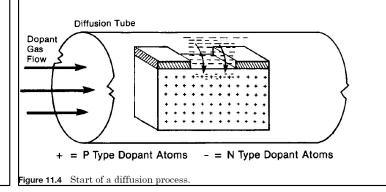

Diffusion


Two conditions are necessary for a diffusion to take place


- higher concentration
- sufficient energy

The goals of solid-state:

- 1. The creation of a specific number (concentration) of dopant atoms in the wafer surface
- 2. To create an N-P (or P-N) junction at a specific distance below the wafer surface
- 3. To create a specific distribution and concentration of dopant atoms in the wafer surface



Doped Region by Diffusion

After patterning a hole in the oxide layer, the wafer is exposed to dopant at high temp in a diffusion tube.

•			unts tivity		d level e
			<u></u>		4
gure 11.5	Cross se # N's	ection of s	wafer at co Net	nclusion	of diffusion.
gure 11.5	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	22.20		onclusion Layer	of diffusion.
	# N's	# P's	Net		of diffusion.
	# N's (-)	# P's (+)	Net (N - P)	Layer	of diffusion.
Layer 1	# N's (-) 12	# P's (+) 5 5	Net (N - P) 7	Layer N	of diffusion.
Layer 1 2 3 4	# N's (-) 12 10 8 5	# P's (+) 5 5 5 5 5	Net (N - P) 7 5	Layer N N	of diffusion.
Layer 1 2 3	# N's (-) 12 10 8	# P's (+) 5 5	Net (N - P) 7 5 3	Layer N N N	of diffusion.

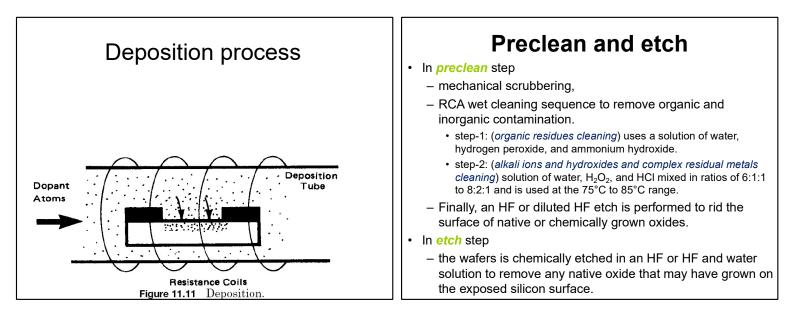
Diffusion Process Steps

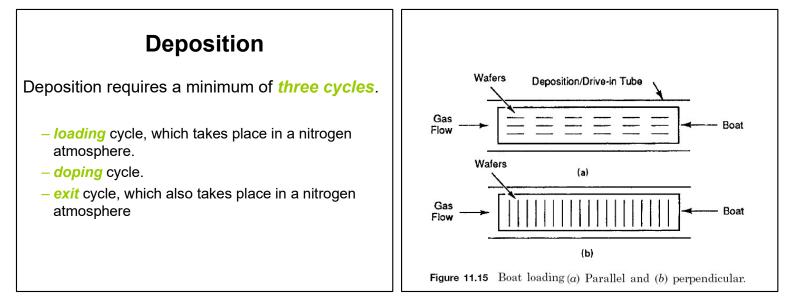
The use of solid-state *thermal diffusion* to create junctions in semiconductor wafers requires two steps.

- deposition, and
- drive-in oxidation.

Deposition

The first step of a diffusion process is called *deposition*; it is also called *predeposition*, *dep*, or *predep*.


A deposition process is controlled or limited by *two* factors


- Diffusivity, the rate (speed) of movement of the dopant through the particular wafer material
- maximum solid solubility, the max. concentration of a specific dopant that can be put into the wafer

Deposition steps

A deposition process requires four steps.

- 1. Preclean and etch
- 2. Tube deposition
- 3. Deglaze
- 4. Evaluation

Perpendicular Vs Parallel placement of wafers in diffusion tube

- Perpendicular (right-angle to the tube axis) placement is the highest packing density, but it can cause uniformity problems, because the wafers act as baffles to the gas flow.
- Parallel placement offers the advantage of more uniform doping, since the doping gas proceeds unimpeded through the wafer boat.

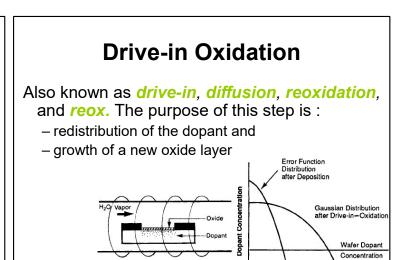
Deglaze

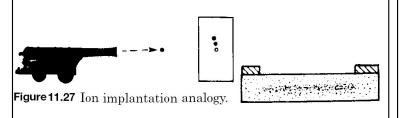
During the deposition cycle, the formed native oxide gets doped and later can act as an unwanted source of dopant during the drive-in-oxidation step.

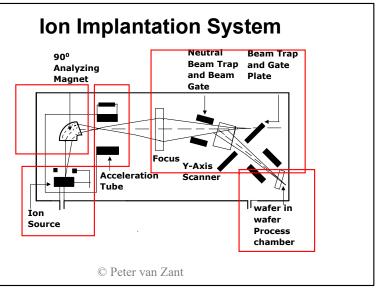
- Deposition created oxide can be difficult to etch, causing incomplete etch in a subsequent masking process.
- The term *deglaze* is used to cover the removal of any silicon oxide, diffusion (phosphorus and boron) glass, or nitride coating
 - The oxide is removed from the surface by immersion in a diluted HF solution, followed by a water rinse and a drying step.

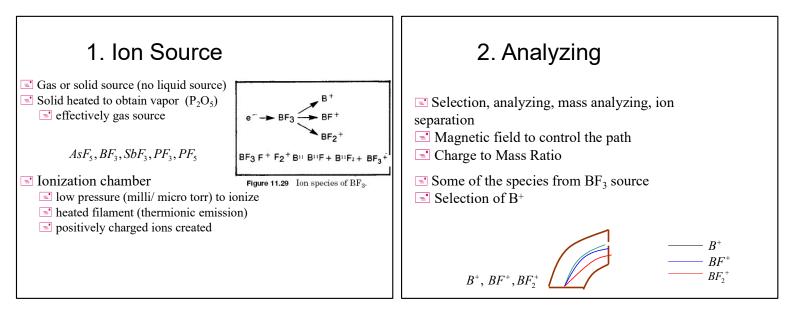
Evaluation

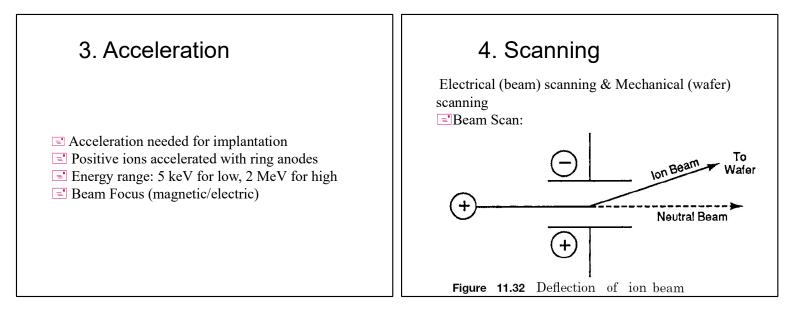
- · Sheet resistance
- C-V measurement to see the surface contaminations
- UV light to see the dirt




Figure 11.22 Drive-in oxidation. (a) Cross section of wafer and (b) dopant concentration in wafer.


Depth Into Wafer


Ion Implantation	Ion Implantation
 Thermal diffusion places a limit on the production of advanced circuits because of lateral diffusion, ultra thin junctions, poor doping control, surface contamination interference, and dislocation generation. Ion implantation overcomes these limits of diffusion and also adds additional benefits. 	 No side diffusion, ~ room temperature process, Dopant goes inside the silicon Controlled doping concentration profile (depth)



 Ion implantation is a physical process while Diffusion is a chemical process. The dopant atoms physically bombard the wafer, enter the surface, and come to rest below the surface

