
1

2

Local alignment

Local alignment methods f ind related regions within sequences - they can

consist of a subset of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions

50-70 of sequence B.

This is a more f lexible technique than global alignment and has the adv antage

that related regions which appear in a dif f erent order in the two proteins (which is

known as domain shuffling) can be identif ied as being related.

This is not possible with global alignment methods.

A G C T

A 1 -1 -1 -1

G -1 1 -1 -1

C -1 -1 1 -1

T -1 -1 -1 4

Similarity Matrix

4

The Smith Waterman algorithm

The Smith-Waterman algorithm (1981) is for determining similar regions

between two nucleotide or protein sequences.

Smith-Waterman is also a dynamic programming algorithm and improves

on Needleman-Wunsch. As such, it has the desirable property that it is

guaranteed to find the optimal local alignment with respect to the scoring

system being used (which includes the substitution matrix and the gap-

scoring scheme).

However, the Smith-Waterman algorithm is demanding of time and

memory resources: in order to align two sequences of lengths m and n,

O(mn) time and space are required.

As a result, it has largely been replaced in practical use by the BLAST

algorithm; although not guaranteed to find optimal alignments, BLAST is

much more efficient.

2

Smith–Waterman Algorithm

Smith–Waterman

algorithm

Needleman–

Wunsch algorithm

Initialization
First row and f irst column

are set to 0

First row and f irst column

are subject to gap

penalty

Scoring
Negativ e score is set to

0
Score can be negativ e

Traceback

Begin with the highest

score, end when 0 is

encountered

Begin with the cell at the

lower right of the matrix,

end at top lef t cell

7

The Smith-Waterman algorithm

1. Create a table of size (m+1)x(n+1) f or sequences s and t of lengths m and n,

2. Fill table entries (1,1:m+1) and (1:n+1,1) with zeros.

3. Starting f rom the top lef t, compute each entry using the recursiv e relation:

4. Perf orm the trace-back procedure f rom the maximum element in the table to

the f irst zero element on the trace-back path.






































0

),(

),(

),(

max
1,

,1

1,1

,

jji

iji

jiji

ji
M

M

M

M
t

s

ts







3

CSC317 9

Step 3: Computing the length of a LCS

AB C BDAB

 BDCAB A
BCBA

Simplified Smith–Waterman algorithm

When linear gap penalty function is used

A linear gap penalty has the same scores for opening

and extending a gap:

CSC317 11

Step 4: Constructing a LCS (Backtracking)

AB C BDAB

 BDCAB A
BCBA

4

5

Dynamic Programming

SDRT

SDRT

Substitution Score

Substitution matrix (BLOSUM 50 matrix)

Log odds score can be positive (identities, conservative

replacements) and negative

Bioinformatics GBIO0002 -1 Biological Sequences

__
Kirill Bessonov slide 20

Aligning locally using BLOSUM 62

KKLA

RRIA

Score: 10

 A A E E K K L A A A

 0 0 0 0 0 0 0 0 0 0 0

A 0 4 4 0 0 0 0 0 4 4 4

A 0 4 8 3 0 0 0 0 4 8 8

R 0 0 3 8 3 2 2 0 0 3 7

R 0 0 0 3 8 5 4 0 0 0 2

I 0 0 0 0 0 5 2 6 0 0 0

A 0 4 4 0 0 0 4 1 10 4 4

6

Algorithms

FastA

Needleman

Wunsch

(global)

Heuristic

approaches

Dynamic

programming

Pairwise Alignment

Blast Smith

Waterman

(local)
Database searches

Chapter 1 Chapter 1

