

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Local alignment

Local alignment methods find related regions within sequences - they can consist of a subset of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions 50-70 of sequence B.

This is a more flexible technique than *global alignment* and has the adv antage that *related regions* which appear in a different order in the two proteins (which is known as **domain shuffling**) can be identified as being related.

This is **not** possible with global alignment methods.

Similarity Matrix

	А	G	С	т
А	1	-1	-1	-1
G	-1	1	-1	-1
С	-1	-1	1	-1
т	-1	-1	-1	4

The Smith Waterman algorithm

The **Smith-Waterman algorithm** (1981) is for determining similar regions between two nucleotide or protein sequences.

Smith-Waterman is also a dynamic programming algorithm and improves on Needleman-Wunsch. As such, it has the desirable property that it is guaranteed to find the **optimal local alignment** with respect to the scoring system being used (which includes the substitution matrix and the gapscoring scheme).

However, the Smith-Waterman algorithm is **demanding of time and memory** resources: in order to align two sequences of lengthsm and n, O(mn) time and space are required.

As a result, it has largely been replaced in practical use by the **BLAST** algorithm; although not guaranteed to find optimal alignments, BLAST is much more efficient.

4

2

Smith-Waterman Algorithm

	Smith–Waterman algorithm	Needleman– Wunsch algorithm
Initialization	First row and first column are set to 0	First row and first column are subject to gap penalty
Scoring	Negative score is set to 0	Score can be negative
Traceback	Begin with the highest score, end when 0 is encountered	Begin with the cell at the lower right of the matrix, end at top left cell

The Smith-Waterman algorithm

- 1. Create a table of size (m+1)x(n+1) for sequences **s** and **t** of lengths *m* and *n*,
- 2. Fill table entries (1,1:m+1) and (1:n+1,1) with zeros.
- 3. Starting from the top left, compute each entry using the recursive relation:

$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + \sigma(\mathbf{s}_i, \mathbf{t}_j) \\ M_{i-1,j} + \sigma(\mathbf{s}_i, -) \\ M_{i,j-1} + \sigma(-, \mathbf{t}_j) \\ 0 \end{cases}$$

4. Perform the trace-back procedure from the maximum element in the table to the first zero element on the trace-back path.

3. Fill the scoring matrix using the equation below.

$$H_{ij} = \max egin{cases} H_{i-1,j-1} + s(a_i,b_j), \ \max_{k \geq 1} \{H_{i-k,j} - W_k\}, \ \max_{k \geq 1} \{H_{i,-k,j} - W_l\}, \ 0 \ (1 \leq i \leq n, 1 \leq j \leq m) \ 0 \end{cases}$$

where

7

 $\begin{array}{l} H_{i-1,j-1}+s(a_i,b_j) \text{ is the score of aligning } a_i \text{ and } b_j, \\ H_{i-k,j}-W_k \text{ is the score if } a_i \text{ is at the end of a gap of length } k, \\ H_{i,j-l}-W_l \text{ is the score if } b_j \text{ is at the end of a gap of length } l, \\ 0 \text{ means there is no similarity up to } a_i \text{ and } b_i. \end{array}$

Step 3: Computing the length of a LCS

UNIVERSITY OF MIAMI CSC317

Simplified Smith-Waterman algorithm

When linear gap penalty function is used A linear gap penalty has the same scores for opening and extending a gap:

Linear [edit]

A linear gap penalty has the same scores for opening and extending a gap:

 $W_k = k W_1$,

where W_1 is the cost of a single gap.

CSC317

11

9

Similarity Matrix

	Α	G	с	т
Α	1	-1	-1	-1
G	-1	1	-1	-1
С	-1	-1	1	-1
т	-1	-1	-1	1

-1 -1 -1 1

This substitution matrix can be described as: $s(a_i,b_j)=egin{cases}+1,&a_i=b_j\\-1,&a_i
eq b_j\end{cases}$

		Initia	alize	the	scori	ng n	natri	x	
		Т	G	Т	Т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0								
G	0								
т	0								
т	0								
G	0								
Α	0								
С	0								
т	0								
Α	0								
		ition x: nalty:	W		kW1	+3, -3,		$a_i = a_i \neq a_i$	bj bj

$$H_{ij} = \max egin{cases} H_{i-1,j-1} + s(a_i,b_j) \ H_{i-1,j} - W_1, \ H_{i,j-1} - W_1, \ 0 \ \end{pmatrix}$$

Dynamic	Programming
---------	-------------

[GAP	м	Ν	Α	L	S	D	R	т
	GAP	0	0	0	0	0	0	0	0	0
ľ	м	0	6	0	0	4	0	0	0	0
ľ	G	0	0	6	1	0	5	1	0	0
ſ	S	0	0	1	7	0	2	5	1	1
I	D	0	0	2	1	3	0	6	4	1
	R	0	0	0	0	0	3	0	12	3
ſ	т	0	0	0	1	0	1	3	0	15
I	т	0	0	0	1	0	1	1	2	3
I	Е	0	0	1	0	0	0	4	0	2
	т	0	0	0	2	0	1	0	3	3

SDRT

KATHOLIEKE UNMERSITEIT

SDRT

Substitution Score

Kirill Bessonov

	с	s	т	Р	A	G	N	D	Е	0	н	R	K	м	I	L	v	F	Y	И	
С	9																				С
ŝ	-1	4												0000				0000			3
r	-1	1	5																		r
P	-3	-1	-1	7																	P
P.	0	1	Q	-1	4																A
8	+3	0	-2	-2	Û	6															3
N	-3	1	Ö	-2	-2	0	6														Ν
D	-3	0	-1	-1	-2	-1	1	6 2													Þ
E	-4	0	-1	-1	-1	-2	0	2	5												E
5	-3	0	-1	-1	-1	-2	0	0	2	5											5
H	-3	-1	-2	-2	-2	-2	I	-1	ß	9	8										н
R	~3	-1	-1	-2	-1	~2	Ū.	-2	Ð	1	0	5									R
ĸ	-3	0	-1	-1	-1	-2	- 6	-1	1	1	30 E	2	5	0000	0000			00000	0000		K
м	-1	-1	- 1	-2	-1	~3	-2	-3	-2	0	-2	-1	~1	5	1	< · ·					м
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4)					П
ь	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	~2	-2	2	-2	4					L
v	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				٧
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
x	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		¥.
		-3	-2	-4	-3	-2		-4	- 3	-2	-2	-3	-3	-1		-2	-3	1	2	11	W.

Log odds score can be positive (identities, conservative replacements) and negative

 Bioinformatics
 GBI00002 - 1
 Biological Sequences

 Aligning locally using BLOSUM 62
 A
 A
 E
 K
 L
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

d d d s 2 4 d d d d KKLA RRIA Score: 10

slide 20

