

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Local alignment

Local alignment methods find related regions *within* sequences - they can consist of a **subset** of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions 50-70 of sequence B.

This is a more flexible technique than *global alignment* and has the adv antage that *related regions* which appear in a different order in the two proteins (which is known as **domain shuffling**) can be identified as being related.

2

This is **not** possible with global alignment methods.

The Smith Waterman algorithm

The **Smith-Waterman algorithm** (1981) is for determining similar regions between two nucleotide or protein sequences.

Smith-Waterman is also a dynamic programming algorithm and improves on Needleman-Wunsch. As such, it has the desirable property that it is guaranteed to find the **optimal local alignment** with respect to the scoring system being used (which includes the substitution matrix and the gapscoring scheme).

However, the Smith-Waterman algorithm is **demanding of time and memory** resources: in order to align two sequences of lengthsm and n, O(mn) time and space are required.

As a result, it has largely been replaced in practical use by the **BLAST** algorithm; although not guaranteed to find optimal alignments, BLAST is much more efficient. Smith-Waterman Algorithm

	Smith–Waterman algorithm	Needleman– Wunsch algorithm					
Initialization	First row and first column are set to 0	First row and first column are subject to gap penalty					
Scoring	Negative score is set to 0	Score can be negative					
Traceback	Begin with the highest score, end when 0 is encountered	Begin with the cell at the lower right of the matrix, end at top left cell					

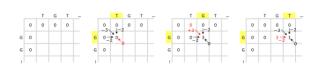
The Smith-Waterman algorithm

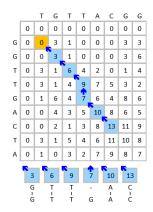
- 1. Create a table of size (m+1)x(n+1) for sequences **s** and **t** of lengths m and n,
- 2. Fill table entries (1,1:m+1) and (1:n+1,1) with zeros.
- 3. Starting from the top left, compute each entry using the recursive relation:

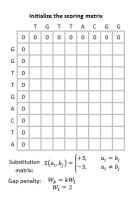
$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + \sigma(\mathbf{s}_i, \mathbf{t}_j) \\ M_{i-1,j} + \sigma(\mathbf{s}_i, -) \\ M_{i,j-1} + \sigma(-, \mathbf{t}_j) \\ 0 \end{cases}$$

4. Perform the trace-back procedure from the maximum element in the table to the first zero element on the trace-back path.

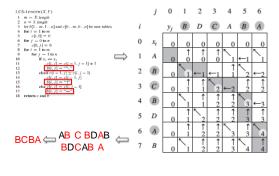
6


Similarity Matrix


This substitution matrix can be described as: $s(a_i,b_j)=egin{cases}+1,&a_i=b_j\\-1,&a_i
eq b_j\end{cases}$



$$H_{ij} = \max egin{cases} H_{i-1,j-1} + s(a_i,b_j), \ H_{i-1,j} - W_1, \ H_{i,j-1} - W_1, \ 0 \end{cases}$$



		т	G	т	т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	•1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
т	0	3	1	6	4	2	€0	1	4
т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	•4	8	6
Α	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
т	0	3	1	5	4	6	11	10	8
Α	0	1	0	3	2	7	9	8	7

Step 3: Computing the length of a LCS

UNIVERSITY OF MIAMI CSC317

13

3. Fill the scoring matrix using the equation below.
$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + s(a_i,b_j), \\ \max_{k\geq 1} \{H_{i-k,j} - W_k\}, \\ \max_{l\geq 1} \{H_{i,j-l} - W_l\}, \\ 0 \end{cases} \quad (1 \leq i \leq n, 1 \leq j \leq m)$$
where
$$H_{i-1,j-1} + s(a_i,b_j) \text{ is the score of aligning } a_i \text{ and } b_j.$$

 $\begin{array}{l} H_{i-1,j-1}+s(a_i,b_j) \text{ is the score of aligning } a_i \text{ and } b_j, \\ H_{i-k,j}-W_k \text{ is the score if } a_i \text{ is at the end of a gap of length } k, \\ H_{i,j-l}-W_l \text{ is the score if } b_j \text{ is at the end of a gap of length } l, \\ 0 \text{ means there is no similarity up to } a_i \text{ and } b_i. \end{array}$

Simplified Smith-Waterman algorithm

When linear gap penalty function is used A linear gap penalty has the same scores for opening and extending a gap:

Linear [edit]

A linear gap penalty has the same scores for opening and extending a gap:

$W_k = k W_1$,

where W_1 is the cost of a single gap.

i R D C y, 0 xi 0 BDCAB A 1 A 0 2 **B** 3 C 0 4 B

j 0 1 2 3 4 5 6

Step 4: Constructing a LCS (Backtracking)

A B A

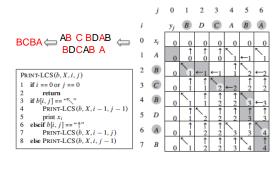
0

16

UNIVERSITY OF MIAMI CSC317

Step 4: Constructing a LCS (Backtracking)

Simplified Smith-Waterman algorithm


When linear gap penalty function is used A linear gap penalty has the same scores for opening and extending a gap:

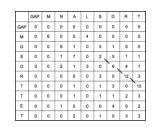
Linear [edit]

A linear gap penalty has the same scores for opening and extending a gap:

$$W_k = kW_1$$

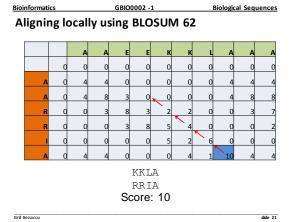
where W_1 is the cost of a single gap.

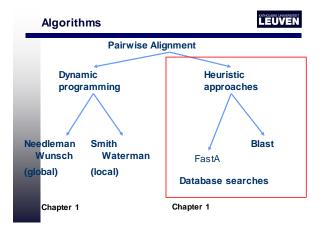
UNIVERSITY OF MIAMI


I

CSC317

18


Dynamic Programming



SDRT SDRT

s	ub	ost	itu	tic	n	m	atr	ix	(B	BLC	os	UN	1 (50	ma	atr	ix)				
Ē	с	s	T	P	h	G	N		(-		_	R				T.	- 1	F	v	N	
с	9	Ť								Ĩ			,							Â	С
ŝ	-1	4										1111									S
r	-1	1																			T
F	-3	- 1	-1	7																	P
	_ ~		+2	-2	0	6															G
N	-3	1	Ō	-2	-2	0	б														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5												E
5	-3	0	-1	-1	-1	-2	0	0	2	5											Q
H R	-3		-2	-2	-4	-2		-1	0 0	0	8										Ľ.
г. К	20	1	24	٠,	21	2	ň	Ĩ	ň	Ť		5	5								Ç,
м	~1	-1	-1	-2	-1	~3	-2	~3	-2	0	-2	-1	~1	5	~						м
Ι	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	(4)					I
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	÷	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	- 2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	-,		E.
и	22	124	-4	-3	14	23	14	-4	14	22	- 2	14	14	1.1	1	1	12	1	5	11	w
	С	S	T	P	A	G	N	n	E	0	н	R	K	M	т	T.	v	F	Y	W	

