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The Smith Waterman algorithm

The Smith-Waterman algorithm (1981) is for determiningsimilarregions
between two nucleotide or protein sequences.

Smith-Waterman isalso a dynamic programming algorithm and improves
on Needleman-Wunsch. As such, ithasthe desirable property thatitis
guaranteed to find the optimal local alignment with respect to the scoring
system being used (which includesthe substitution matrix and the gap-
scoring scheme).

However, the Smith-Waterman algorithm isdemanding of time and
memory resources: in orderto align two sequences of lengthsm and n,
O(mn) time and space are required.

As aresult, ithas largely been replaced in practical use by the BLAST
algorithm; although not guaranteed to find optimal alignments, BLAST is
much more efficient. S

Local alignment

Local alignment methods find related regions within sequences - they can
consist of asubset of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions
50-70 of sequence B.

This is a more flexible technique than global alignment and has the adv antage
that related regions which appear in a different order in the two proteins (which is
known as domain shuffling) can be identified as being related.

This is not possible with global alignment methods.

Smith-Waterman Algorithm
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The Smith-Waterman algorithm

1. Create a table of size (m+1)x(n+1) for sequences s and t of lengths m and n,
2. Filltable entries (1,1:m+1) and (1:n+1,1) with zeros.

3. Starting from the top left, compute each entry using the recursiv e relation:
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4. Perform the trace-back procedure from the maximum element in the table to
the first zero element on the trace-back path.
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Simplified Smith—Waterman algorithm
when linear gap penalty function is
used
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Step 3: Computing the length of a LCS
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Step 4: Constructing a LCS (Backtracking)

Simplified Smith—-Waterman algorithm ;
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where W1 is the cost of a single gap.
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Step 4: Constructing a LCS (Backtracking)
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Log odds scorecan be positive (identities, conservative
replacements)and negative
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