Derivation of Kinetic Gas Equation

The kinetic gas equation may be derived by the following steps :

FIGURE 25.1
A molecule with its x-component of velocity equal to », moving perpendicular to one face of
a rectangular parallelepiped of lengths a, b, and c.

The rate of change of momentum due to collisions with the right-hand wall 1s




Derivation of Kinetic Gas Equation

The force that molecule-1 exerts on the right-hand wall 1s

The area of the wall is bc (see Figure 25.1) and so the pressure exerted on the wall is

Each of the other molecules exerts a similar pressure, and so the total pressure on
the right-hand wall is




Derivation of Kinetic Gas Equation

where N i1s the total number of molecules. The sum of the uj?x divided by N 1s the

average value of ui, and if we denote the average by (12), then we can write

If we introduce Equation 25.4 into Equation 25.3, then we obtain

PV = Nm(u?)

We arbitrarily chose to work with the x-direction, but we could just as well have
hosen the y- or z-direction. Because the x-, y-, and z-directions are equivalent, it must
be that




Derivation of Kinetic Gas Equation

Equation 25.6 is a statement of the fact that a homogeneous gas is isotropic; it has
the same properties in any direction. Furthermore, the total speed « of any molecule
satisfies

2 __ 2 2 2
U =u, +u, +u,

(u?) = (u3) + (u3) + (u3)

Equation 25.7 along with Equation 25.6 says that

(uy) = (u3) = (u;) = 3 ()
We substitute this result into Equation 25.5 to obtain

PV = iNm(u®)

Macroscopic Property Molecular Property (mu?2)

This is the fundamental equation of the kinetic molecular theory of gases




Derivation of Kinetic Gas Equation
The average translational (kinetic) energy of an i1deal gas is

Per molecule

Per mole (25.10)

EXAMPLE 25-1
Use Equation 25.10 to calculate the average translational energy of one mole of an

ideal gas at 25°C.

SOLUTION: Weuse R = 8.314 J-mol~!.K~! and obtain

(KE) = %(8.314 J-mol™'-K™1)(298 K) = 3.72 kJ-mol ™'




Derivation of Kinetic Gas Equation

The product N,m = M, the molar mass of the gas. Consequently, we can write

LM (u?) = RT (25.11)

We can use Equation 25.11 to estimate the average speed of a gas molecule at a
temperature 7. We first solve Equation 25.11 for («*) to obtain

_ 3RT

(u?) v (25.12)

The units of («*) are m*-s~2. To obtain a quantity that has units of m-s™', we take the

square root of (u?):
3RT\"*
(w*)'* = (—M—-) (25.13)

The quantity («*)'/? is the square root of the mean value of #* and is called the

root-mean-square speed. If we denote the root-mean-square speed by «___, then Equa-

tion 25.13 becomes
3RT\ '



Derivation of Kinetic Gas Equation

Calculate the root-mean-square speed of a nitrogen molecule at 25°C.

SOLUTION: We must use a value of R having the units such that u___ will have
units of m-s™". If we use the value R = 8.314 J-mol ' -K™' and be sure to express the
molar mass in units of kg-mol ™', then u___ will have units of m-s™". Therefore

H -
ms

(3 % 8.314 T-mol~!-K~! x 298 K)‘”
0.02802 kg-mol

7\ 12 Ko.m?.c-2 172
_ (2.65 % 10° —) _ (2.65 « 10° —g—“i—)

kg kg

—=515m-s~!




Diatomic Molecule Bouncinag Off a Container Wall
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By assumption, the molecule cannot gain or lose energy when it strikes the wall, and
we used that fact to show that the speed of the molecule stays constant, but if the
molecule can now gain rotational kinetic energy upon striking the wall, then energy

conservation requires that the kinetic energy that comes from its linear motion be
reduced.



Degrees of freedom (DF)

The minimum number of independent coordinates, which
can specify the configuration of the system completely.

For a single particle in plane two coordinates define its location, so it has
two degrees of freedom.

If two particles in space are constrained to maintain a constant distance
from each other, such as in the case of diatomic molecule, then the six
coordinate must satisfy a single constraint equation defined by the
distance formula. This reduce s the degree of Freedom of the system to
five, because the distance formula can be used to solve for the remaining
coordinate once the other five are specified.

Degrees of Freedom ( /) Average kinetc
- ] energy pet
Transiational | Rotational | Total | molecule <k'>

Molecule | Example

Monatomic | Mo 3 0 3 : kT




Law of equipartition of energy

The equipartition (or equal division) of energy theorem involves the
concept that, in thermal equilibrium, energy is shared equally
among all of its various possible forms (or degree of freedom).




Application of equipartition of energy

An important application of the equipartition theorem is to the specific heat
capacity of a crystalline solid. Each atom in such a solid can oscillate in
three independent directions, so the solid can be viewed as a system of
3N independent simple harmonic oscillators, where N denotes the number
of atoms in the lattice. Since each harmonic oscillator has average energy
kT, the average total energy of the solid is 3NKT, and its heat capacity is
3NK.




Law of equipartition of energy

If a molecule is free to move Iin space, it needs three coordinates to specify
its location, thus, it possesses three translational degrees of freedom.
Similarly, if it is constrained to move in a plane, it possesses two
translational degrees of freedom and if it is a straight line, it possesses
one translational degree of freedom. In the case of a triatomic molecule,
the degree of freedom is 6 [ 3 rotational, 3 translational and

' ). And the kinetic energy of the per molecule of the gas is given

6xN X >K,T=3X +NK,T = 3RT



https://byjus.com/physics/kinetic-energy/

Maxwell’s Law

While deriving Kinetic Gas Equation, it was assumed that all molecules in a gas have the same
velocity. But it is not so. When any two molecules collide, one molecule transfers kinetic energy

(15 mv2)to the other molecule

4

- e 2RT C2 de
2nRT

dN , = number of molecules having velocities between C and (C + dc)

2
dN ( M )3/2 -MC

N = total number of molecules
M = molecular mass

T = temperature on absolute scale (K)



How the molecular velocity depends on Temperature

»

Maxwell-Boltzmann speed distribution for nitrogen at four different temperatures
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The characteristics of the Maxwell’s plot:

() A very small fraction of molecules has either very low (close to zero) or very high
velocities.

(2) Most intermediate fractions of molecules have velocities close to an average velocity
represented by the peak of the curve. This velocity is called the most probable velocity. It
may be defined as the velocity possessed by the largest fraction of molecules
corresponding to the highest point on the Maxvellian curve.

At higher temperature, the whole curve shifts to the right (dotted curve at 600 K). This
shows that at higher temperature more molecules have higher velocities and fewer
molecules have lower velocities.




€en we consiaer a gas at increasing tcemperacure.

e The Maxwell-Boltzmann curve spreads and flattens out.

e The most probable speed increases (the peak shifts to the right).
e The fraction of fast-moving molecules increases.

e The fraction of slow-moving molecules decreases.

Maxwell-Boltzmann speed distribution for nitrogen at four different temperatures
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Observe that when the temperature goes up, the particles in a gas tend to move faster. As a result, the entire
distribution shifts to the right, toward higher speeds. When we raise the temperature, the most probable speed
increases (the highest point on the curve shifts to the right). In addition, the entire curve gets wider and lower:
we have a wider range of speeds, but we have fewer molecules at the most probable speed



Also, when we raise the temperature, the fraction of molecules moving at high speeds increases. For example, when we raise
the temperature from 25°C to 300°C, the fraction of molecules moving faster than 800 m/sec becomes larger.

At 300°C, the fraction of molecules
moving faster than 800 m/sec is
larger.

At 25°C, the fraction of molecules
moving faster than 800 m/sec is
small.

-]

o

=]

"
bl
=)
-
L¥]

o

(=]

-
=]
-
o
"

(-]
2
Fractlon per m/sec

Fraction per m/sec

. V 1
v 200 400 con aco 1000 1200 1400 1600 1800 2000

200 400 500 500 1000 1200 1400 1600 1800 20 o
peed (m/sec)
Speed (m/sec)

At 300°C, the fraction of molecules
moving slower than 800 m/sec is
smaller.

At 25°C, the fraction of molecules
moving slower than 800 m/sec is
large.
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Likewise, when we raise the temperature, the fraction of molecules moving at low speeds decreases. For example, when we
raise the temperature from 25°C to 300°C, the fraction of molecules moving slower than 800 m/sec becomes smaller.



How molecular velocity depends on molar mass

Xenon (133.3 g/mol)
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Observe that the gas with the lowest molar mass (helium) has the highest molecular
speeds, while the gas with the highest molar mass (xenon) has the lowest molecular
speeds. When we increase the molar mass, the most probable speed decreases (the
highest point on the curve shifts to the left). In addition, the entire curve gets narrower
and taller: we have a smaller range of speeds, but we have more molecules at the most
probable speed.




DIFFERENT KINDS OF VELOCITIES

In our study of kinetic theory we come across three different kinds of molecular velocities :
(I) the Average velocity (V)

(2) the Root Mean Square velocity (L)
(3) the Most Probable velocity (v, )

Average velocity

From Maxwell equation it has been established that the average velocity v is given by the
expression

8RT
™

y =




RMS (Root mean Square Velocity)

The value of the RMS of velocity u, at a given temperature can be calculated from the Kinetic
Gas Equation.

...Kinetic Equation

For one mole of gas
PV =RT
» 3RT
M

3RT
U=, —
M

By substituting the values of R, T and M, the value of u (RMS velocity) can be determined.

Therefore, u ...M 1s molar mass




Most Probable Velocity

Relation between average velocity and RMS velocity

We know that the average velocity, v, is given by the expression

8RT
19,74

_ [3RT
M

Vv =

)

v o_ 8RT>< / 3 /

) 1974 3RT 3n
= 09213

or y = ux0.9213
That is, Average Velocity = 0.9213 x RMS Velocity




Relation between most probable velocity and RMS velocity

The expression for the most probably velocity, Vo 1S
- 2RT

_ \/3TT
"IN
vﬂz\/ﬁx\/z=\/§:0.8165
1) M 3RT 3
or Vo = MX 0.8165
That s, Most Probable Velocity =0.8165 x RMS Velocity




Calculation of Molecular Velocities

The velocities of gas molecules are exceptionally high. Thus velocity of hydrogen molecule 1s
1,838 metres sec™'. While it may appear impossible to measure so high velocities, these can be easily
calculated from the Kinetic Gas equation. Several cases may arise according to the available data.

RMS velocity,

Average velocity,

Most Probable velocity,




Case 1. Calculation of Molecular Velocity when temperature alone is given

1
PV = gmNu2 (Kinetic Gas equation)

where N =N, (Avogadro’s number)
Thus we have,
M = m X N,=molecular mass of the gas

/3PV /3RT
u = (*.© PV=RT for 1 mole)

= 8.314 x 107 ergs deg~! mol!
= 0.8314 x 10% ergs deg™! mol™!

o \/3><0.8314x108 x T
M

— 1.58 x 10* x ,/1 cm sec .
M

where 7'1s Kelvin temperature and M the molar mass.




Case 2. Calculation of Molecular Velocity when temperature and pressure both are given.
In such cases we make use of the following relation based on Kinetic Gas equation.

f3PV
U=, —
M

We know that 1 mole of a gas at STP occupies a volume of 22400 ml (known as molar volume).
But before applying this relation the molar volume is reduced to the given conditions of temperature

and pressure.

alculate the RMS velocity of chlorine molecules at 12°C and 78 cm pressure.

SOLUTION
At STP: At given conditions :

V.= 22400 ml V,=?
I'=273K I,=12+273=285K
P, =76 cm P2=78 cm
. AV, _ BV,
Applying T = T,

=P1 " _ 76 X 22400 X 285 — 99785 ml

we have 2 T P, 273 % 78

3PV
we know that Uu=,——
M

P = hdg=78 x13.6 x 981 dynes cm™
V =22785ml; M=71

L \/3 X 78 X 13.6 x 981 x 22785
71
u = 31652 cm sec! or 316.52 m sec!




Case 3. Calculation of Molecular Velocity at STP
Here we use the relation

/3PV
U=, |—
M

P = 1atm=76x13.6 x981 dynes cm™>
V =22400ml
M = Molar mass of the gas

Calculate the average velocity of nitrogen molecule at STP.

SOLUTION
In this example we have,

P =1atm=76x13.6 x981 dynes cm™
V =22400ml
M =28
Substituting these values in the equation

/3PV
U=,—
M

~ \/3 X 76 X 13.6 x 981 x 22400

h =
we nave 78

= 49,330 cm sec™!
. Average velocity = 0.9213 x 49330 cm sec™!
= 45,447 cm sec!




Case 4. Calculation of Molecular Velocity when pressure and density are given

In this case we have
/ 3PV 3P
Uu=,—— o u=,|—
M D

where P is expressed in dynes cm™ and D in gm ml~!.

Oxygen at 1 atmosphere pressure and 0°C has a density of 1.4290 grams per
litre. Find the RMS velocity of oxygen molecules.

SOLUTION
We have P =1atm=76x13.6 x 981 dynes cm™
1.4290

-1
1000 8™l

D=14290gl! =
= 0.001429 gml!

) 3P
Applying “=\ND
3x76%X13.6 X981 1
t U=, |——  — = 46138 cm sec
we ge \" 0.001429




Case 5. Calculation of most probable velocity
In this case we have

Vo =1.29 %10 L
M

where T expressed in Kelvin and M to mass.

Calculate the most probable velocity of nitrogen molecules, N, at 15°C.

T=273+15=2838K

Vo =1.29 %10 ,/
M

=1.29 x 10* 288
28

e know that

= 4.137 x 10% cm sec!



. Calculate the root mean square velocity of CO, molecule at 1000°C.

SOLUTION
T'=273+1000=1273 K; M=44
Applying the equation

= 1.58 x 10* x ,/
u : Y;

1273

h =1.58x10*x \[——
we have u »

u =84985 cm sec! or 849.85 m sec’!




Calculate the most probable velocity of nitrogen molecules, N, at 15°C.

T =273+15=288K
We know that

Vo = 1.29 %10 ,/
M

=129 x10* 288
28

= 4.137 x 10% cm sec™!




Men free path

The mean distance travelled by a molecule between two successive collisions
is called the Mean Free Path

Collision

S

~— ~— Free path

M Figure 10.21
The mean free path illustrated.

The mean free path, A, is given by the expression

3
A = /
1 Pd

P = pressure of the gas
d = density of the gas
N = coefficient of viscosity of the gas




Effect of Temperature and Pressure on Mean Free Path

(a) Temperature
The 1deal gas equation for » moles of a gas is
PV =nRT
where 7 is the number of moles given by

_ Number of molecules N
Avogadro's Number N,
Substituting this in equation (7)) we get

PV = iRT

o

N _ PN,
v

RT

or

At constant pressure

No s
T

The mean free path is given by

A = Distance travelled by the molecule per second
Number of collisions per c.c.

v
V2 o WN
1
V2 16’ N
combining equations (i) and (iii), we get
Ao<T

Thus, the mean free path is directly proportional to the absolute temperature.




(b) Pressure

We know that the pressure of a gas at certain temperature is directly proportional to the number
of molecules per c.c. i.e.

P< N
and mean free path is given by

A=

216N
Combining these two equations, we get

1
Ao —
P

Thus, the mean free path of a gas is directly proportional to the pressure of a gas at constant
temperature.




At 0°C and 1 atmospheric pressure the molecular diameter of a gas is 4A.
Calculate the mean free path of its molecule.

SOLUTION. The mean free path 1s given by

A = 1
V2o’ N

where o1s the molecular diameter

and p is the no. of molecules per c.c.
Here o =4A=4x10%cm.

We know 22400 ml of a gas 0°C and 1 atm. pressure contains 6.02 x 10?* molecules.
= 6.02x10%

No. of molecules perc.c., N =

22400
= 2.689 x 10'° molecules
Substituting the values, we get

G = 1 82 19
1414%x3.14x(4%x107)" x2.689 %10
1

 1.414x3.14 % 16 X 2.689 X 10>
=0.524 x 105 cm




SOLVED PROBLEM 2. The root mean square velocity of hydrogen at STP 1s 1.83 x 10° cm sec™
and its mean free path is 1.78 x 10~ cm. Calculate the collision number at STP.

SOLUTION. Here root mean square velocity
= 1.831x10°cmsec™
We know average velocity y = 0.9213 x RMS velocity
= 0.9213 x 1.831 x 10° cm sec™!
= 1.6869 x 10° cm sec™

Average velocity

The mean free path = —
Collision Number

Average velocity

Collision Number =
Mean free path

~ 1.6869 x 10° cm sec™

1.78 x 10~ cm.
=9.4769 x 10° sec™!




