




Dr. Md. Saiful Islam





#### **Corrosion Products**

Corrosion product is any substance which is formed as a result of corrosion. Corrosion products known as rust for iron and steel are formed and gradually grown on the surface of common steel and low-alloyed steel when they are exposed to humid air at room temperature.





## **Corrosion Products of Fe**



| Corrosion Products                                                                      | Color                 | Remarks       |
|-----------------------------------------------------------------------------------------|-----------------------|---------------|
| Fe                                                                                      | Silvery-gray          |               |
| α-FeOOH                                                                                 | Yellow/dark brown/red | Geothite      |
| $\beta$ -FeOOH                                                                          | Yellow/dark brown/red | Akageneite    |
| γ-FeOOH                                                                                 | Yellow/dark brown/red | Lepidocrocite |
| $\delta$ -FeOOH                                                                         | Yellow/dark brown/red | Feroxyhite    |
| Fe(OH) <sub>2</sub>                                                                     | Yellow/Blue/green     |               |
| FeO                                                                                     | Black                 |               |
| $Fe_2O_3.H_2O \text{ or } Fe(OH)_3$                                                     | Red-brown rust        |               |
| Fe <sub>3</sub> O <sub>4</sub> .H <sub>2</sub> O or Fe <sub>2</sub> O <sub>3</sub> .FeO | Green/deep blue       |               |
| Fe <sub>3</sub> O <sub>4</sub>                                                          | Black                 | Magnetite     |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                                                | Red                   | Hematite      |
| $\gamma$ -Fe <sub>2</sub> O <sub>3</sub>                                                | Reddish-brown         | Maghemite     |





## **Corrosion Products of Zn**

| Corrosion Products                                                   | Color | Remarks       |
|----------------------------------------------------------------------|-------|---------------|
| Zn                                                                   |       |               |
| ZnO                                                                  | White | Zincite       |
| Zn(OH) <sub>2</sub>                                                  | White |               |
| ZnCO <sub>3</sub>                                                    | White | Smithsonite   |
| $Zn_5(CO_3)_2(OH)_6$                                                 | White | Hydrozincite  |
| 4Zn0.CO <sub>2</sub> .4H <sub>2</sub> O                              | White | Hydrated zinc |
| $Zn_4CO_3(OH)_6$ . $H_2O$                                            | White | Basic zinc    |
| $ZnCO_3.3Zn(OH)_2.H_2O$                                              | White | Basic zinc    |
| Zn <sub>5</sub> (OH) <sub>8</sub> Cl <sub>2</sub> . H <sub>2</sub> O | White | Simonkolleite |





## **Corrosion Products of Cu**

| <b>Corrosion Products</b> | Color                              | Remarks |
|---------------------------|------------------------------------|---------|
| CuO                       | Green/Black                        |         |
| Cu <sub>2</sub> O         | Red                                |         |
| CuCO <sub>3</sub>         | Green                              |         |
| Cu(OH) <sub>2</sub>       | Pale greenish blue or bluish green |         |
| CuOH                      | Yellow or orange-yellow            |         |







## **Corrosion Products of Al**

| Corrosion Products             | Color                      | Remarks |
|--------------------------------|----------------------------|---------|
| Al                             | Silver white               |         |
| Al <sub>2</sub> O <sub>3</sub> | Dull gray to powdery white |         |
| AI(OH) <sub>3</sub>            | White                      |         |
| $AI_2(SO_4)_3$                 | White                      |         |
| AICI <sub>3</sub>              | White                      |         |





## **Corrosion Products of Cr**

| Corrosion Products    | Color        | Remarks |
|-----------------------|--------------|---------|
| Cr                    | Silver gray  |         |
| $Cr_2O_3$             | Green        |         |
| $Cr_2(SO_4)_3.XH_2O$  | Green/Purple |         |
| CrCl <sub>3</sub>     | Blue/Green   |         |
| $[Cr((OH)_2)_6]^{3+}$ | Red-violet   |         |



#### **Weathering Steel**



Weathering steel, often referred to by the genericized trademark **COR-TEN** steel and sometimes written without the hyphen as **corten steel**, is a group of steel alloys which were developed to eliminate the need for painting, and form a stable rust-like appearance after several years' exposure to weather.







#### **Composition of Weathering Steel**

Weathering steels have a carbon content below 0.2 wt%. They are enriched with alloying elements such as AI, Cu, Ni, Cr, Si, P, and Mn, which collectively contribute to a total content ranging from 1.00 wt% to 5.00 wt%.

Weathering steel is a family of **low carbon alloy steels** that consists of a variety of grades. Some grades are proprietary, such as **COR-TEN A or COR-TEN B**. The Patinax weathering steels are another group of proprietary grades. All of these proprietary grades are similar to the ASTM classifications A 242 and A 588.





#### **Mechanism of Weathering Steel**

Weathering steel, when exposed outdoors for a few years, forms a protective layer resulting in reduction of the corrosion rate. The state of rusts is fundamental for understanding its mechanism.





# Thank you for kind attention

