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➢Linear Data Structures
✓ Strings
✓Arrays
✓Linked Lists
✓Stacks, and
✓Queues

➢ Nonlinear Data Structures
✓ Tree,
✓ Graphs
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Tree Data Structure
•Tree structure is mainly used to represent data 
containing a hierarchical relationship between 
elements. For example….

• Records,
• Family tress, and
• Tables of contents.

• In this chapter, we investigate a special kind of tree, 
called a binary tree 

• It can be maintained in the computer easily
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• T is a finite set of elements , called Nodes, such that

➢ T is empty (called null tree or empty tree), or

➢ T contains a distinguished node R, called a root 

of T, and the remaining nodes form an ordered 

pair of disjoint binary trees T1, and T2

• Any node of T has 0, 1 , or 2 children. 

Binary Tree
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Basic Binary Tree Concept

• If T does contain a Root R , then the two trees T1 and 

T2 are called, respectively , the left and right sub-

trees of R.

• If T1 is nonempty, then its root is called the left 

successor of R; similarly,

• If T2 is nonempty, then its root is called the right 

successor of R;
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Binary Tree Illustration

• A Binary Tree T is frequently presented by mean of a 
diagram

See Example 7.1 and 7.2 for understanding
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Tree Terminology

• Suppose N is a node in T with left successor S1 and 

right  successor S2.

• N is called the parent (or father) of S1 and S2. 

• Analogously, S1 is called the left child (or son) of N, 

and S2 is called the right child (or son) of N

• S1 and S2 are said to be siblings (or brothers)

• Two or more nodes with the same parents are called 

siblings.
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Tree Terminology

• An ancestor is any node in the path from the 

root to the node.

• A descendant is any node in the path below 

the parent node; that is, all nodes in the 

paths from a given node to a leaf are 

descendants of that node.
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Tree Terminology

Sibling

Child
Parent

Descendant 

Ancestor 
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Tree Terminology
• A path is a sequence of nodes in which each node is 

adjacent to the next node.

• The level or dept of a node is its distance from the root. The 

root is at level 0, its children are at level 1, etc.

• The height of the tree is the level of the leaf in the longest 

path from the root plus 1. 

• A subtree is any connected structure below the root. The 

first node in the subtree is known is the root of the 

subtree.
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Complete Tree

•A tree is said to be complete if all its levels, except 

possibly the last have the maximum number of 

possible nodes, and 

• if all the nodes at the last level appear as far left as 

possible.
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Extended Binary Tree: 2-Tree
• A binary tree T is said to be a 2-tree or an extended binary 

tree if each node N has either 0 or 2 children.

• In such a case, the nodes, with 2 children are called internal 

nodes, and the node with 0 children are called external 

node.
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Representing Binary Tree in Memory 

• Let T be a binary tree.

•There are two ways of representing T in memory:

• First and usual was is called link representation of T

•The second way uses a single array, called the 

sequential representation of T

•The main requirement of any representation of T is that 

one should have direct access to the root R of T and, given 

any node N of T, one should have direct access to the 

children of N.
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Linked Representation of Binary Trees
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Sequential Representation of Binary Trees



Binary Tree Traversal Methods

• In a traversal of a binary tree, each element of 

the binary tree is visited exactly once.

•During the visit of an element, all action 

(display, evaluate the operator, etc.) with 

respect to this element is taken.

ICE 2231



Binary Tree Traversal Methods
•There are three standard ways of traversing a binary tree T with Root R:

• Preorder

• Process the Root R

• Traverse the left subtree of R in preorder

• Traverse the right subtree of R in preorder

• Inorder

• Traverse the left subtree of R in preorder

• Process the root R

• Traverse the right subtree of R in inorder

• Postorder

• Traverse the left subtree of R in postorder

• Traverse the right subtree of R in postorder

• Process the root R

ICE 2231



Preorder Traversal

preOrder(treePointer ptr)

{

   if (ptr != NULL)

   {

      visit(ptr); 

      preOrder(ptr->leftChild);   

      preOrder(ptr->rightChild);

   }

}

Binary Tree Traversal Methods
ICE 2231



Preorder Example (Visit = print)

a

b c

a b c
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Preorder Example (Visit = print)

a

b c

d e
f

g h i j

a b d g h e i c f j
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Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ *+ab- cd+e f

ICE 2231



Inorder Traversal

inOrder(treePointer ptr)

{

   if (ptr != NULL)

   {

      inOrder(ptr->leftChild);   

      visit(ptr); 

      inOrder(ptr->rightChild);

   }

}

ICE 2231
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Inorder Example (Visit = print)

a

b c

b a c
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Inorder Example (Visit = print)

a

b c

d e
f

g h i j

g dhbei a f j c
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Postorder Traversal

postOrder(treePointer ptr)

{

   if (ptr != NULL)

   {

      postOrder(ptr->leftChild);   

      postOrder(ptr->rightChild);

      visit(ptr);

   }

}
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Postorder Example (Visit = print)

a

b c

bc a
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Postorder Example (Visit = print)

a

b c

d e
f

g h i j

ghdi ebj f ca
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Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /
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Traversal Applications

a

b c

d e
f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.

ICE 2231
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• Go through the following related example:
• Example 7.5
• Example 7.6
• Example 7.7

Traversal Applications
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Binary Search Trees

•We consider a particular kind of a binary tree called a Binary Search 

Tree (BST). 

•The basic idea behind this data structure is to have such a storing 

repository that provides the efficient way of data sorting, searching and 

retrieving.
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Binary Search Trees

•In the following tree all nodes in the left subtree of 10 have keys < 10 

while all nodes in the right subtree > 10. 

•Because both the left and right subtrees of a BST are again search trees; 

the above definition is recursively applied to all internal nodes:

• A BST is a binary tree where nodes are ordered in the following way:

• each node contains one key (also known as 

data)

• the keys in the left sub-tree are less then the 

key in its parent node, in short L < P;

• the keys in the right sub-tree are greater the 

key in its parent node, in short P < R;

• duplicate keys are not allowed.
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Searching and Inserting in Binary Search Trees

• Suppose T is a BST and an ITEM of information is given.

• The searching and inserting will be given by a single search and 

insertion algorithm which is quite simple. 

• We start at the root and recursively go down the tree searching for a 

location  of ITEM in T, or inserts ITEM as new node in its 

appropriate place T.

• If the element ITEM to be inserted is already in the tree, we are done 

(we do not insert duplicates)
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Searching and Inserting in BST (Algorithm )

SearchingAndInsertingAlgorithm (T, ITEM, N)

(a) Compare ITEM with the root node N of  T

i. If ITEM<N, proceed to the left child of N

ii.If ITEM>N, proceed to the right child of N

(b)Repeat step (a) until one of the following occurs:

i. We meet a node N such that ITEM=N. In this case the search is 

Successful.

ii.We meet an empty subtree, which indicates that the search is 

unsuccessful, and we  insert ITEM in place of the empty 

subtree. 
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Exercise. Given a sequence of numbers:

Searching and Inserting in Binary Search Trees

11, 6, 8, 19, 4, 10, 5, 17, 43, 49, 31

Draw a binary search tree by inserting the above numbers from left to right.

Look at Example 7.14, 7.15

11

6 19

4 8

5
10

17 43

31 49
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HEAP; MAXHEAP, MINHEAP
• Suppose H is a complete binary tree with n elements.

•H is called a HEAP or a MAXHEAP, if each node of N of H has the 

following property:

• The value at N is greater than or equal to the value at each of 

the children of N, 

• Accordingly, the value at N is greater than or equal to the 

value at any of the children of N.

•MINHEAP: The value of N less than or equal to the value at any of 

the children of N. 



Path Lengths: Huffman’s 
Algorithm
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Extended Binary Tree
• Extended binary tree or 2-tree is binary tree with either 0 or 2 

children

• Leaves are external nodes and others are internal nodes

• NE = NI + 1

ICE 2231



Path Length

• External Path Length LE: Sum of all path lengths summed 

over each path from the root R to an external node.

• Internal Path Length LI: Definition is same

• LE = 2+2+3+4+4+3+3=21

• LI = 0+1+1+2+3+2=9

• LE = LI + 2*n

n -> is the number of internal nodes

ICE 2231



• Suppose each external node is assigned a weight w. The 

weighted path length is defined to be the sum of the 

weighted path length:

       P =  w1L1 + w2L2 + …….+ wnLn

•P = 2.2+3.2+11.3+7.4+5.4+6.2

  = 103 2 3

11

7 5

6

ICE 2231

Weighted Path Length



Minimum Path Length
• Weighted Path Length

    T1                                 T2                             T3

• T1 is complete; T2 and T3 are similar

• P1 = 2.2+3.2+5.2+11.2  = 42

• P2 = 2.1+3.3+5.3+11.2 = 48

• P3 = 2.3+3.3+5.2+11.1 = 36

2 3 5 11 11

2

3 5

5

11

2 3

ICE 2231

• The quantities P1 and P3 indicate that the complete tree need not 
give a minimum length P.

• The quantities P2 and P3 indicates that similar trees need not give 
the same length.



General Problem of finding minimum-weighted path 
length

• For a list of n weights w1, w2, ……, wn, we want to 

find a minimum weighted path length tree. Here, wi 

represents weights of external nodes.

• The tree may not be unique

• Huffman gave an algorithm to find such a tree

ICE 2231



Huffman’s Algorithm

• Algorithm: Suppose w1 and w2 are two minimum 

weights among w1, w2, ……, wn

• Find a tree T’ which gives a solution for n-1 weights w1+ w2, w3, 

……, wn

• Then in the tree T’ replace the external node as:

•  The new 2-tree is the desired solution

• Apply this algorithm recursively to find the final tree

W1+w2

w1 w2

W1+w2 By the sub-tree

ICE 2231



Illustration of Huffman’s Algorithm

• Data Item:    A B C D E F G H

• Weight:    22 5 11 19 2 11 25 5
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Illustration of Huffman’s Algorithm
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Huffman Coding
• Huffman codes can be used to compress information

• Like WinZip – although WinZip doesn’t use the Huffman 

algorithm

• JPEGs do use Huffman as part of their compression process

• The basic idea is that instead of storing each character in a file 

as an 8-bit ASCII value, we will instead store the more 

frequently occurring characters using fewer bits and less 

frequently occurring characters using more bits

• On average this should decrease the filesize (usually ½)

ICE 2231



• As an example, lets take the string:
  “duke blue devils”

• We first to a frequency count of the characters:
• e:3, d:2, u:2, l:2, space:2, k:1, b:1, v:1, i:1, s:1

• Next we use a Greedy algorithm to build up a Huffman 
Tree
• We start with nodes for each character   

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding
ICE 2231



• We then pick the nodes with the smallest frequency and 

combine them together to form a new node

• The selection of these nodes is the Greedy part

• The two selected nodes are removed from the set, but 

replace by the combined node

• This continues until we have only 1 node left in the set

Huffman Coding
ICE 2231



e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding
ICE 2231



e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1

i,1 s,1

2

Huffman Coding
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e,3 d,2 u,2 l,2 sp,2 k,1

b,1 v,1 i,1 s,1

22

Huffman Coding
ICE 2231



e,3 d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

Huffman Coding
ICE 2231



e,3 d,2 u,2

l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

34

Huffman Coding
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e,3

d,2 u,2 l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

344

Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

Huffman Coding
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e,3

d,2 u,2

l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

4

4

57

Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

Huffman Coding
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e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

Huffman Coding
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• Now we assign codes to the tree by placing a 0 on every left 

branch and a 1 on every right branch

• A traversal of the tree from root to leaf give the Huffman 

code for that particular leaf character

• Note that no code is the prefix of another code.

Huffman Coding
ICE 2231



e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

0

10

0 0

0

0

0 0

0

1

1 1

1

1

1

1

e 00

d 010

u 011

l 10

sp 101

i 1100

s 1101

k 1110

b 11110

v 11111

1

Huffman Coding
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• These codes are then used to encode the string

• Thus, “duke blue devils” turns into:

• 010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100 1101

• When grouped into 8-bit bytes:

01001111  10001011  11101000  11001010  10001111  11100100   

1101xxxx

• Thus it takes 7 bytes of space compared to 16 characters * 

1 byte/char = 16 bytes uncompressed

Huffman Coding
ICE 2231



• Uncompressing works by reading in the file bit by bit

• Start at the root of the tree

• If a 0 is read, head left

• If a 1 is read, head right

• When a leaf is reached decode that character and start over again 
at the root of the tree

• Thus, we need to save Huffman table information as a header in the 
compressed file

• Doesn’t add a significant amount of size to the file for large files 

(which are the ones you want to compress anyway)

• Or we could use a fixed universal set of codes/freqencies

Huffman Coding
ICE 2231
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Solved Problems on Tree:

7.1 , 7.2, 7.3, 7.7, 7.8, 7.14
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