
Department of Information and Communication Engineering (ICE)
University of Rajshahi, Rajshahi-6205, Bangladesh

ICE-2231
(Data Structure)

Lecture on

Chapter-4: Tree and Graphs

By

Dr. M. Golam Rashed
(golamrashed@ru.ac.bd)

1

ICE 2231

2

ICE 2231

3

➢Linear Data Structures
✓ Strings
✓Arrays
✓Linked Lists
✓Stacks, and
✓Queues

➢ Nonlinear Data Structures
✓ Tree,
✓ Graphs

ICE 2231

4

Tree Data Structure
•Tree structure is mainly used to represent data
containing a hierarchical relationship between
elements. For example….

• Records,
• Family tress, and
• Tables of contents.

• In this chapter, we investigate a special kind of tree,
called a binary tree

• It can be maintained in the computer easily

ICE 2231

5

• T is a finite set of elements , called Nodes, such that

➢ T is empty (called null tree or empty tree), or

➢ T contains a distinguished node R, called a root

of T, and the remaining nodes form an ordered

pair of disjoint binary trees T1, and T2

• Any node of T has 0, 1 , or 2 children.

Binary Tree

ICE 2231

6

Basic Binary Tree Concept

• If T does contain a Root R , then the two trees T1 and

T2 are called, respectively , the left and right sub-

trees of R.

• If T1 is nonempty, then its root is called the left

successor of R; similarly,

• If T2 is nonempty, then its root is called the right

successor of R;

ICE 2231

7

Binary Tree Illustration

• A Binary Tree T is frequently presented by mean of a
diagram

See Example 7.1 and 7.2 for understanding

ICE 2231

8

Tree Terminology

• Suppose N is a node in T with left successor S1 and

right successor S2.

• N is called the parent (or father) of S1 and S2.

• Analogously, S1 is called the left child (or son) of N,

and S2 is called the right child (or son) of N

• S1 and S2 are said to be siblings (or brothers)

• Two or more nodes with the same parents are called

siblings.

ICE 2231

9

Tree Terminology

• An ancestor is any node in the path from the

root to the node.

• A descendant is any node in the path below

the parent node; that is, all nodes in the

paths from a given node to a leaf are

descendants of that node.

ICE 2231

10

Tree Terminology

Sibling

Child
Parent

Descendant

Ancestor

ICE 2231

11

Tree Terminology
• A path is a sequence of nodes in which each node is

adjacent to the next node.

• The level or dept of a node is its distance from the root. The

root is at level 0, its children are at level 1, etc.

• The height of the tree is the level of the leaf in the longest

path from the root plus 1.

• A subtree is any connected structure below the root. The

first node in the subtree is known is the root of the

subtree.

ICE 2231

12

Complete Tree

•A tree is said to be complete if all its levels, except

possibly the last have the maximum number of

possible nodes, and

• if all the nodes at the last level appear as far left as

possible.

ICE 2231

13

Extended Binary Tree: 2-Tree
• A binary tree T is said to be a 2-tree or an extended binary

tree if each node N has either 0 or 2 children.

• In such a case, the nodes, with 2 children are called internal

nodes, and the node with 0 children are called external

node.

ICE 2231

14

Representing Binary Tree in Memory

• Let T be a binary tree.

•There are two ways of representing T in memory:

• First and usual was is called link representation of T

•The second way uses a single array, called the

sequential representation of T

•The main requirement of any representation of T is that

one should have direct access to the root R of T and, given

any node N of T, one should have direct access to the

children of N.

ICE 2231

15

Linked Representation of Binary Trees

ICE 2231

16

Sequential Representation of Binary Trees

Binary Tree Traversal Methods

• In a traversal of a binary tree, each element of

the binary tree is visited exactly once.

•During the visit of an element, all action

(display, evaluate the operator, etc.) with

respect to this element is taken.

ICE 2231

Binary Tree Traversal Methods
•There are three standard ways of traversing a binary tree T with Root R:

• Preorder

• Process the Root R

• Traverse the left subtree of R in preorder

• Traverse the right subtree of R in preorder

• Inorder

• Traverse the left subtree of R in preorder

• Process the root R

• Traverse the right subtree of R in inorder

• Postorder

• Traverse the left subtree of R in postorder

• Traverse the right subtree of R in postorder

• Process the root R

ICE 2231

Preorder Traversal

preOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 visit(ptr);

 preOrder(ptr->leftChild);

 preOrder(ptr->rightChild);

 }

}

Binary Tree Traversal Methods
ICE 2231

Preorder Example (Visit = print)

a

b c

a b c

ICE 2231

Preorder Example (Visit = print)

a

b c

d e
f

g h i j

a b d g h e i c f j

ICE 2231

Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ *+ab- cd+e f

ICE 2231

Inorder Traversal

inOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 inOrder(ptr->leftChild);

 visit(ptr);

 inOrder(ptr->rightChild);

 }

}

ICE 2231
ICE 2231

Inorder Example (Visit = print)

a

b c

b a c

ICE 2231

Inorder Example (Visit = print)

a

b c

d e
f

g h i j

g dhbei a f j c

ICE 2231

Postorder Traversal

postOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 postOrder(ptr->leftChild);

 postOrder(ptr->rightChild);

 visit(ptr);

 }

}

ICE 2231

Postorder Example (Visit = print)

a

b c

bc a

ICE 2231

Postorder Example (Visit = print)

a

b c

d e
f

g h i j

ghdi ebj f ca

ICE 2231

Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /

ICE 2231

Traversal Applications

a

b c

d e
f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.

ICE 2231

ICE 2231

31

• Go through the following related example:
• Example 7.5
• Example 7.6
• Example 7.7

Traversal Applications

ICE 2231

32

Binary Search Trees

•We consider a particular kind of a binary tree called a Binary Search

Tree (BST).

•The basic idea behind this data structure is to have such a storing

repository that provides the efficient way of data sorting, searching and

retrieving.

ICE 2231

33

Binary Search Trees

•In the following tree all nodes in the left subtree of 10 have keys < 10

while all nodes in the right subtree > 10.

•Because both the left and right subtrees of a BST are again search trees;

the above definition is recursively applied to all internal nodes:

• A BST is a binary tree where nodes are ordered in the following way:

• each node contains one key (also known as

data)

• the keys in the left sub-tree are less then the

key in its parent node, in short L < P;

• the keys in the right sub-tree are greater the

key in its parent node, in short P < R;

• duplicate keys are not allowed.

ICE 2231

34

Searching and Inserting in Binary Search Trees

• Suppose T is a BST and an ITEM of information is given.

• The searching and inserting will be given by a single search and

insertion algorithm which is quite simple.

• We start at the root and recursively go down the tree searching for a

location of ITEM in T, or inserts ITEM as new node in its

appropriate place T.

• If the element ITEM to be inserted is already in the tree, we are done

(we do not insert duplicates)

ICE 2231

35

Searching and Inserting in BST (Algorithm)

SearchingAndInsertingAlgorithm (T, ITEM, N)

(a) Compare ITEM with the root node N of T

i. If ITEM<N, proceed to the left child of N

ii.If ITEM>N, proceed to the right child of N

(b)Repeat step (a) until one of the following occurs:

i. We meet a node N such that ITEM=N. In this case the search is

Successful.

ii.We meet an empty subtree, which indicates that the search is

unsuccessful, and we insert ITEM in place of the empty

subtree.

ICE 2231

36

Exercise. Given a sequence of numbers:

Searching and Inserting in Binary Search Trees

11, 6, 8, 19, 4, 10, 5, 17, 43, 49, 31

Draw a binary search tree by inserting the above numbers from left to right.

Look at Example 7.14, 7.15

11

6 19

4 8

5
10

17 43

31 49

ICE 2231

HEAP; MAXHEAP, MINHEAP
• Suppose H is a complete binary tree with n elements.

•H is called a HEAP or a MAXHEAP, if each node of N of H has the

following property:

• The value at N is greater than or equal to the value at each of

the children of N,

• Accordingly, the value at N is greater than or equal to the

value at any of the children of N.

•MINHEAP: The value of N less than or equal to the value at any of

the children of N.

Path Lengths: Huffman’s
Algorithm

ICE 2231

Extended Binary Tree
• Extended binary tree or 2-tree is binary tree with either 0 or 2

children

• Leaves are external nodes and others are internal nodes

• NE = NI + 1

ICE 2231

Path Length

• External Path Length LE: Sum of all path lengths summed

over each path from the root R to an external node.

• Internal Path Length LI: Definition is same

• LE = 2+2+3+4+4+3+3=21

• LI = 0+1+1+2+3+2=9

• LE = LI + 2*n

n -> is the number of internal nodes

ICE 2231

• Suppose each external node is assigned a weight w. The

weighted path length is defined to be the sum of the

weighted path length:

 P = w1L1 + w2L2 + …….+ wnLn

•P = 2.2+3.2+11.3+7.4+5.4+6.2

 = 103 2 3

11

7 5

6

ICE 2231

Weighted Path Length

Minimum Path Length
• Weighted Path Length

 T1 T2 T3

• T1 is complete; T2 and T3 are similar

• P1 = 2.2+3.2+5.2+11.2 = 42

• P2 = 2.1+3.3+5.3+11.2 = 48

• P3 = 2.3+3.3+5.2+11.1 = 36

2 3 5 11 11

2

3 5

5

11

2 3

ICE 2231

• The quantities P1 and P3 indicate that the complete tree need not
give a minimum length P.

• The quantities P2 and P3 indicates that similar trees need not give
the same length.

General Problem of finding minimum-weighted path
length

• For a list of n weights w1, w2, ……, wn, we want to

find a minimum weighted path length tree. Here, wi

represents weights of external nodes.

• The tree may not be unique

• Huffman gave an algorithm to find such a tree

ICE 2231

Huffman’s Algorithm

• Algorithm: Suppose w1 and w2 are two minimum

weights among w1, w2, ……, wn

• Find a tree T’ which gives a solution for n-1 weights w1+ w2, w3,

……, wn

• Then in the tree T’ replace the external node as:

• The new 2-tree is the desired solution

• Apply this algorithm recursively to find the final tree

W1+w2

w1 w2

W1+w2 By the sub-tree

ICE 2231

Illustration of Huffman’s Algorithm

• Data Item: A B C D E F G H

• Weight: 22 5 11 19 2 11 25 5

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

ICE 2231

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12 22

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12

2231

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12 22

31 44
ICE 2231

Illustration of Huffman’s Algorithm

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12

2231

4456

22
A

5
B

11
C

19
D

2
E

11
F

25
G

5
H

7

12

2231

4456

100

Huffman Coding
• Huffman codes can be used to compress information

• Like WinZip – although WinZip doesn’t use the Huffman

algorithm

• JPEGs do use Huffman as part of their compression process

• The basic idea is that instead of storing each character in a file

as an 8-bit ASCII value, we will instead store the more

frequently occurring characters using fewer bits and less

frequently occurring characters using more bits

• On average this should decrease the filesize (usually ½)

ICE 2231

• As an example, lets take the string:
 “duke blue devils”

• We first to a frequency count of the characters:
• e:3, d:2, u:2, l:2, space:2, k:1, b:1, v:1, i:1, s:1

• Next we use a Greedy algorithm to build up a Huffman
Tree
• We start with nodes for each character

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding
ICE 2231

• We then pick the nodes with the smallest frequency and

combine them together to form a new node

• The selection of these nodes is the Greedy part

• The two selected nodes are removed from the set, but

replace by the combined node

• This continues until we have only 1 node left in the set

Huffman Coding
ICE 2231

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding
ICE 2231

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1

i,1 s,1

2

Huffman Coding
ICE 2231

e,3 d,2 u,2 l,2 sp,2 k,1

b,1 v,1 i,1 s,1

22

Huffman Coding
ICE 2231

e,3 d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

Huffman Coding
ICE 2231

e,3 d,2 u,2

l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

34

Huffman Coding
ICE 2231

e,3

d,2 u,2 l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

344

Huffman Coding
ICE 2231

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

Huffman Coding
ICE 2231

e,3

d,2 u,2

l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

4

4

57

Huffman Coding
ICE 2231

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

Huffman Coding
ICE 2231

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

Huffman Coding
ICE 2231

• Now we assign codes to the tree by placing a 0 on every left

branch and a 1 on every right branch

• A traversal of the tree from root to leaf give the Huffman

code for that particular leaf character

• Note that no code is the prefix of another code.

Huffman Coding
ICE 2231

e,3

d,2 u,2 l,2 sp,2

k,1i,1 s,1

2

b,1 v,1

2

3

44 5

7 9

16

0

10

0 0

0

0

0 0

0

1

1 1

1

1

1

1

e 00

d 010

u 011

l 10

sp 101

i 1100

s 1101

k 1110

b 11110

v 11111

1

Huffman Coding
ICE 2231

• These codes are then used to encode the string

• Thus, “duke blue devils” turns into:

• 010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100 1101

• When grouped into 8-bit bytes:

01001111 10001011 11101000 11001010 10001111 11100100

1101xxxx

• Thus it takes 7 bytes of space compared to 16 characters *

1 byte/char = 16 bytes uncompressed

Huffman Coding
ICE 2231

• Uncompressing works by reading in the file bit by bit

• Start at the root of the tree

• If a 0 is read, head left

• If a 1 is read, head right

• When a leaf is reached decode that character and start over again
at the root of the tree

• Thus, we need to save Huffman table information as a header in the
compressed file

• Doesn’t add a significant amount of size to the file for large files

(which are the ones you want to compress anyway)

• Or we could use a fixed universal set of codes/freqencies

Huffman Coding
ICE 2231

ICE 2231

Solved Problems on Tree:

7.1 , 7.2, 7.3, 7.7, 7.8, 7.14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Binary Tree Traversal Methods
	Slide 18: Binary Tree Traversal Methods
	Slide 19: Preorder Traversal
	Slide 20: Preorder Example (Visit = print)
	Slide 21: Preorder Example (Visit = print)
	Slide 22: Preorder Of Expression Tree
	Slide 23: Inorder Traversal
	Slide 24: Inorder Example (Visit = print)
	Slide 25: Inorder Example (Visit = print)
	Slide 26: Postorder Traversal
	Slide 27: Postorder Example (Visit = print)
	Slide 28: Postorder Example (Visit = print)
	Slide 29: Postorder Of Expression Tree
	Slide 30: Traversal Applications
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Path Lengths: Huffman’s Algorithm
	Slide 39: Extended Binary Tree
	Slide 40: Path Length
	Slide 41: Weighted Path Length
	Slide 42: Minimum Path Length
	Slide 43: General Problem of finding minimum-weighted path length
	Slide 44: Huffman’s Algorithm
	Slide 45: Illustration of Huffman’s Algorithm
	Slide 46: Illustration of Huffman’s Algorithm
	Slide 47: Huffman Coding
	Slide 48: Huffman Coding
	Slide 49
	Slide 50: Huffman Coding
	Slide 51: Huffman Coding
	Slide 52: Huffman Coding
	Slide 53: Huffman Coding
	Slide 54: Huffman Coding
	Slide 55: Huffman Coding
	Slide 56: Huffman Coding
	Slide 57: Huffman Coding
	Slide 58: Huffman Coding
	Slide 59: Huffman Coding
	Slide 60: Huffman Coding
	Slide 61: Huffman Coding
	Slide 62: Huffman Coding
	Slide 63: Huffman Coding
	Slide 64

