ICE-2231 (Data Structure)

Lecture on Graphs

By Dr. M. Golam Rashed

(golamrashed@ru.ac.bd)

Department of Information and Communication Engineering (ICE) University of Rajshahi, Rajshahi-6205, Bangladesh

Trees and Graphs: Basic terminology, Binary trees, Binary tree representation, Tree traversal algorithms, Extended binary tree, Huffman codes/algorithm, Graphs, Graph representation, Shortest path algorithm and transitive closure, Traversing a graph.

What is Graph?

- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other.
- The set of edges describes relationships among the vertices

What is Graph?

- A graph **G** consists of two things:
 - A set V of elements called nodes (or points or vertices)
 - A set E of edges such that each edge e in E is identified with a unique (unorder) pair [u,v] of nodes in V, denoted by e= [u,v].
- Sometimes the parts of a graph is indicated by writing G=(V, E)
 - V(G): a finite, nonempty set of vertices
 - *E*(*G*): a set of edges (pairs of vertices)

Connected, Complete, Tree, Labeled Graph

- A graph G is Connected if and only if there is a simple path between any two nodes in G.
- A graph G is said to be Complete if every node u in G is adjacent to every other node v in G.
 - A complete graph with n nodes will have (n-1)/2 edges.
- A connected graph T without any circle is called a Tree graph or free tree or, simply, a tree.
- A graph G is said to be Labeled if its edges are assigned data,
 - In particular, G is said to be weighted if each edge e in G is assigned a nonnegative numerical value w(e) called the weight or length of e.

Assignement

В

D

Presentation on Example: 8.1

Undirected vs. Directed Graphs

- When the edges in a graph have no direction, the graph²²³¹ called *undirected*
- When the edges in a graph have a direction, the graph is called *directed* (or *digraph*)

Directed Graphs

- Suppose G is a directed graph with a directed edge e=(u,v).
 - E begins at u and ends at v
 - u is the origin or initial point of e, and v is the destination or terminal point of e
 - u is a predecessor of v, and v is a successor or neighbor of u.
 - u is adjacent to v, and v is adjacent to u.
- A directed graph G is said to be connected, or strongly connected, if for each pair u, v of nodes in G there is a path from u to v, and there is also a path from v to u.

Tree vs. Graph

• Trees are special cases of graphs!!

Graph Representation

- There are two standard ways of maintaining a graph G in the computer memory:
 - The Sequential Representation of G, is by means of its adjacency matrix, A
 - The Linked representation of G, is by means of linked lists of neighbors.

Graph Representation: Adjacency Matrix

- G is a simple directed graph with $v_1, v_2, ..., v_m$ vertices
- $A = (a_{ij})$ is the adjacency matrix of G where,

Example 8.3 X Y Z W

Graph Representation: Path Matrix

• G is simple directed graph with m nodes v_1 , v_2 , ..., v_m . Then the path matrix P = (p_{ii}) defined as

- Simple Path: Path from v_i to v_j and $v_i \neq v_j$
- Cycle: Path from v_i to v_j and $v_i = v_j$
- $p_{ij} = 1$ if and only if there is a nonzero number in ij entry of the matrix $B_m = A + A^2 + A^3 + + A^m$

Graph Representation: Path Matrix

Thus,

Transitive Closure

- The transitive closure of a graph G is defined to be the graph G'such that G' has the same node as G and there is an edge (v_i, v_j) in G' whenever there is a path from v_i to v_i in G.
- Given a directed graph, find out if a vertex j is reachable from another vertex i for all vertex pairs (i, j) in the given graph.
- Here reachable mean that there is a path from vertex i to j. The reachability matrix is called the transitive closure of a graph.
- For example, consider below graph

Transitive closure of above graphs is

1	1	1	1
1	1	1	1
1	1	1	1
0	0	0	1

Example 1

Let $A = \{1, 2, 3, 4\}$, and let $R = \{(1,2), (2,3), (3,4), (2,1)\}$. Find the transitive closure of R.

Transitive Closure

Let **R** be a relation on a set A. Let R^{∞} be the transitive closure of **R**.

•

- Three methods for finding
- a) Digraph Approach
- b) Adjacency Matrix method
- c) Warshall's Algorithm

Warshall's Algorithm for Path Matrix

- Let G be a directed graph with m nodes v1,v2, v3,....vm. Suppose we want to find the path matrix P of the graph G.
- Warshall's algorithm is much more efficient than calculating the powers of the adjacency matrix A.
- First we define m-square Boolean matrices P₀, P₁, P₂,... P_m as follows.
- Let $P_k[i,j]$ denote ij entry of the matrix P_k . Then

If there is a simple path from v_i to v_j which does not use any other nodes except possible $v_1, v_2, ..., v_k$

Solution

Let $A = \{1, 2, 3, 4\}$, and let $R = \{(1,2), (2,3), (3,4), (2,1)\}$. Find the transitive closure of R.

Warshall's Algorithm

Warshall's Algorithm for Path Matrix

- P₀[i,j] = 1 if there is an edge from v_i to v_i
- P₁[i,j] = 1 if there is a simple path from v_i to v_j which does not use any other nodes except possibly v₁.
- P₂[i,j] = 1 if there is a simple path from v_i to v_j which does not use any other nodes except possibly v₁, v₂.
- The element of P_k can be obtained as

Warshall's Algorithm for Path Matrix

- G: directed graph, A: adjacency matrix, M: Nodes
- 1. Repeat for I,J = 1,2,...,M

If A[I,J] == 0 then set P[I,J] = 0Else set P[I,J] = 1

- 2. Repeat steps 3 and 4 for K = 1,2,...,M
- 3. Repeat step 4 for I = 1,2,..., M
- 4. Repeat for J = 1,2,....,M
 Set P[I,J] = P[I,J] ∨ (P[I,K]∧P[K,J])

5. Exit

Shortest Path Algorithm

- Let G be a directed graph with m nodes, v_1, v_2, \dots, v_m .
- Suppose G is weighted, and w(e) is called the weight or length of the edge e.
- Then the weigth matrix $W = (w_{ij})$ is defined as:

• We want to find the shortest path matrix $Q = (q_{ij})$:

 q_{ii} = length of the shortest path from v_i to v_i

Shortest Path Algorithm

..... P_m), whose entries are:

 $Q_{k}[i.j] = MIN(Q_{k-1}[i,j], Q_{k-1}[i,k] + Q_{k-1}[k,j])$

- Q₀ is same as the weight matrix W where the 0 is replaced by the infinity (∞)
- The final matrix Q_m will be the desired matrix Q

Shortest Path Algorithm

- G: directed weighted graph, W: weight matrix, M: Nodes
- 1. Repeat for I,J = 1,2,....,M

If W[I,J] == 0 then set Q[I,J] = ∞ Else set Q[I,J] = W[I,J]

- 2. Repeat steps 3 and 4 for K = 1, 2, ..., M
 - 3. Repeat step 4 for I = 1,2,..., M
 - 4. Repeat for J = 1,2,....,M

Set Q[I,J] = MIN(Q[I,J], Q[I,K] + Q[K,J])

5. Exit

- •Consider the following weighted graph:
- •Assume $v_1 = R$, $v_2 = S$, $v_3 = T$, and $v_4 = U$
- •Then the weighted matrix W of G is as follows:

•Applying the modified Warshall's algorithm, we obtain the following matrices: (7, 5, m, m) = (PP, PS, -m, -m)

$$Q_{0} = \begin{pmatrix} 7 & 5 & \infty & \infty \\ 7 & \infty & \infty & 2 \\ \infty & 3 & \infty & \infty \\ 4 & \infty & 1 & \infty \end{pmatrix} \qquad \begin{pmatrix} RR & RS & - & - & - \\ SR & - & - & SU \\ - & TS & - & - \\ UR & - & UT & - \end{pmatrix}$$

$$Q_{1} = \begin{pmatrix} 7 & 5 & \infty & \infty \\ 7 & 12 & \infty & 2 \\ \infty & 3 & \infty & \infty \\ 4 & 9 & 1 & \infty \end{pmatrix} \qquad \begin{pmatrix} RR & RS & - & - \\ SR & SRS & - & SU \\ - & TS & - & - \\ UR & URS & UT & - \end{pmatrix}$$

 $Q_1[4, 2] = MIN(Q_0[4, 2], Q_0[4, 1] + Q_0[1, 2]) = MIN(\infty, 4 + 5) = 9$

•Applying the modified Warshall's algorithm, we obtain the following matrices $\begin{pmatrix} 7 & 5 & \infty \\ 7 & 1 & \infty \end{pmatrix} = \begin{pmatrix} RR & RS & - & - \end{pmatrix}$

$Q_{1} = \begin{pmatrix} 7 & 12 & \infty & 2 \\ \infty & 3 & \infty & \infty \\ 4 & 9 & 1 & \infty \end{pmatrix}^{*}$	SR 	SRS TS URS	UT	$\begin{pmatrix} -\\ s \upsilon \\ - \end{pmatrix}$
$Q_{2} = \begin{pmatrix} 7 & 5 & \textcircled{0} & 7 \\ 7 & 12 & \textcircled{0} & 2 \\ 10 & 3 & \textcircled{0} & 5 \\ 4 & 9 & 1 & 11 \end{pmatrix} $	/ RR SR TSR UR	RS SRS TS URS	 UT .	RSU SU TSU URS
$[1, 3] = MIN(Q_1[1, 3], Q_1[1, 2])$	$[2] + Q_1[$	2,3])=	= MIN(°	$\infty, 5 + \infty) = \infty$

•Applying the modified Warshall's algorithm, we obtain the following matrices: $\begin{pmatrix} 7 & 5 \otimes 7 \end{pmatrix}$

$$Q_{2} = \begin{pmatrix} 7 & 5 & \infty & 7 \\ 7 & 12 & \infty & 2 \\ 10 & 3 & \infty & 5 \\ 4 & 9 & 1 & 11 \end{pmatrix} \begin{pmatrix} RR & RS & - & RSU \\ SR & SRS & - & SU \\ TSR & TS & - & TSU \\ UR & URS & UT & URS \end{pmatrix}$$
$$Q_{3} = \begin{pmatrix} 7 & 5 & \infty & 7 \\ 7 & 12 & \infty & 2 \\ 10 & 3 & \infty & 5 \\ 4 & (4) & 1 & 6 \end{pmatrix} \begin{pmatrix} RR & RS & - & RSU \\ SR & SRS & - & SU \\ TSR & TS & - & TSU \\ UR & UTS & UT & UTSU \end{pmatrix}$$
$$\left(\begin{array}{c} RR & RS & - & RSU \\ SR & SRS & - & SU \\ TSR & TS & - & TSU \\ UR & UTS & UT & UTSU \end{pmatrix} \right)$$
$$\left(\begin{array}{c} 4, 2 \end{bmatrix} = MIN(Q_{2}[4, 2], Q_{2}[4, 3] + Q_{2}[3, 2]) = MIN(9, 3 + 1) = 4 \end{pmatrix}$$

•Applying the modified Warshall's algorithm, we obtain the following matrices: $\begin{pmatrix} 7 & 5 & \infty & 7 \\ 7 & 5 & \infty & 7 \end{pmatrix}$ $\begin{pmatrix} RR & RS & - & RSU \end{pmatrix}$

$Q_{3} = \begin{pmatrix} 7 & 12 & \infty & 2 \\ 10 & 3 & \infty & 5 \\ 4 & (4) & 1 & 6 \end{pmatrix}$	SR TSR UR	SRS TS UTS	 	RSU SU TSU
$Q_{4} = \begin{bmatrix} 7 & 5 & 8 & 7 \\ 5 & 7 & 5 & 8 & 7 \\ 7 & 11 & 3 & 2 \\ 9 & 3 & 6 & 5 \\ 4 & 4 & 1 & 6 \end{bmatrix}$	RR	RS	RSUT	RSU
	SR	SURS	SUT	SU
	TSUR	TS	TSUT	TSU
	UR	UTS	UT	UTSU

 $Q_4[3, 1] = MIN(Q_3[3, 1], Q_3[3, 4] + Q_3[4, 1]) = MIN(10, 5 + 4) = 9$

