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• The complexity of an algorithm is the function which gives the running 

time and/or space in terms of the input size.

• In order to compare algorithms, we must have some criteria to measure 

the efficiency of a algorithm.

• Suppose M is an algorithm, and suppose n is the size of the input data.

• The TIME and SPACE used by the algorithm M are the two main 

measures for the efficiency of M.

• The TIME is measured by counting the number of key operation-in 

sorting and searching algorithms. (the # of comparison)

• The SPACE is measured by counting the maximum of memory needed 

by the algorithm

Complexity of Algorithms
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“IN Computer 
Science, time 
complexity 
describes the 
amount of time 
that takes to run 
an algorithm or 
Code.”



How to 
calculate 

Time 
Complexity ? 

“Time complexity is 
calculated by counting  
the Number of 
Operation , which 
takes a fixed amount 
of time to perform.”



Big O Notation

“Big O notation is 
a mathematical 
notation that 
describes the 
limiting behavior 
of a function 
when the 
argument tends 
towards a 
particular value or 
infinity.”



Common Time Complexity

•O(1) Constant Time complexity

•O(N) Linear Time Complexity

•O(N^2) Quadratic Time Complexity

•O(N log N)  Logarithmic Time 
Complexity



Constant Time Complexity-O(1)

#include <iostream>
     using namespace std;

      int main() {
      

int a,b;
      cin >> a >> b; 
       //O(1+1)=O(1) constant operation.
      int sum = a+b;

   cout<< sum <<endl;
   return 0;

      }
  

➢Input ( in single operation)
➢Output (in single operation)



Linear Time Complexity - O(N)

o While doing operation with 
Single for or while loop. 

#include<bits/stdc++.h>
using namespace std;
int main()
{
  int t;
  cin >> t;
     int n;
   cin >> n;
   int arr[n]; 
   for(int i=0;i<n;i++){
    cin >> arr[i];
   }      // O(N) *here N is Number of 
element
   sort(arr,arr+n);
   for(int i=0;i<n;i++){
    cout << i << " ";
   }     // O(N) *here N is Number of 
element
   cout << endl;
}

• Total Complexity( O(N) )
• In 1 Sec 1e7 Or maximum 1e8 

Iteration can be done.



Quadratic Time Complexity – O(N^2)

• “If Two nested loop used and 
iterate through all the 
elements. Then complexity  is 
O(n^2).”

• Explanation : iteration for the 
inner loop : (n-1)*(n-
2)……*2*1.

• So the result is n*(n-1) which 
is O(n^2).

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    cin >> n;
    int arr[n];
    for(int i=0;i<n;i++) cin >> arr[i];
    //Bubble sort 
    for( int i = 0; i < n; i++ )
  {
        for(int j = 0; j < (n-i-1); j++) {
            if(arr[j] > arr[j+1]){
                swap( arr[j] , arr[j+1] );
            }
        }    }
    for(auto u : arr){
        cout << u << " ";
    }
    cout << endl;
}



Logarithmic Time Complexity – O(log N)

Per Operation mid divides into 
half Value. That means 

n/2 + n/4 + n/8 + n/16  + ……..

= n (1/2 + 1/4 + 1/8 + …….. )

= log(n))  // log2(y) = x,  2^x 
= y;
So, Time Complexity of 
Binary search is 
O(log(n))

int main()
{  // Binary Search 
    int n , v[n]; cin >> n;
    for(int i=0; i<n; i++){
    cin >> v[i];
    }
    int lo=0,hi=n-1,mid,fnd;
    cin >> fnd;
    while(hi>=lo){
        mid=(hi+lo)/2;
        if(v[mid] == fnd) {
            cout << mid << endl;
            break;
        }
        if(v[mid] <= fnd){
        lo=mid+1;        }
        else
        {
            hi = mid-1;
        }    }}



Flowcharts
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