
Understanding Time

Complexity
Understanding
Time Complexity

• The complexity of an algorithm is the function which gives the running

time and/or space in terms of the input size.

• In order to compare algorithms, we must have some criteria to measure

the efficiency of a algorithm.

• Suppose M is an algorithm, and suppose n is the size of the input data.

• The TIME and SPACE used by the algorithm M are the two main

measures for the efficiency of M.

• The TIME is measured by counting the number of key operation-in

sorting and searching algorithms. (the # of comparison)

• The SPACE is measured by counting the maximum of memory needed

by the algorithm

Complexity of Algorithms

ICE 2231/ Introduction©️ Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

“IN Computer
Science, time
complexity
describes the
amount of time
that takes to run
an algorithm or
Code.”

How to
calculate

Time
Complexity ?

“Time complexity is
calculated by counting
the Number of
Operation , which
takes a fixed amount
of time to perform.”

Big O Notation

“Big O notation is
a mathematical
notation that
describes the
limiting behavior
of a function
when the
argument tends
towards a
particular value or
infinity.”

Common Time Complexity

•O(1) Constant Time complexity

•O(N) Linear Time Complexity

•O(N^2) Quadratic Time Complexity

•O(N log N) Logarithmic Time
Complexity

Constant Time Complexity-O(1)

#include <iostream>
 using namespace std;

 int main() {

int a,b;
 cin >> a >> b;
 //O(1+1)=O(1) constant operation.
 int sum = a+b;

 cout<< sum <<endl;
 return 0;

 }

➢Input (in single operation)
➢Output (in single operation)

Linear Time Complexity - O(N)

o While doing operation with
Single for or while loop.

#include<bits/stdc++.h>
using namespace std;
int main()
{
 int t;
 cin >> t;
 int n;
 cin >> n;
 int arr[n];
 for(int i=0;i<n;i++){
 cin >> arr[i];
 } // O(N) *here N is Number of
element
 sort(arr,arr+n);
 for(int i=0;i<n;i++){
 cout << i << " ";
 } // O(N) *here N is Number of
element
 cout << endl;
}

• Total Complexity(O(N))
• In 1 Sec 1e7 Or maximum 1e8

Iteration can be done.

Quadratic Time Complexity – O(N^2)

• “If Two nested loop used and
iterate through all the
elements. Then complexity is
O(n^2).”

• Explanation : iteration for the
inner loop : (n-1)*(n-
2)……*2*1.

• So the result is n*(n-1) which
is O(n^2).

#include<bits/stdc++.h>
using namespace std;
int main()
{
 int n;
 cin >> n;
 int arr[n];
 for(int i=0;i<n;i++) cin >> arr[i];
 //Bubble sort
 for(int i = 0; i < n; i++)
 {
 for(int j = 0; j < (n-i-1); j++) {
 if(arr[j] > arr[j+1]){
 swap(arr[j] , arr[j+1]);
 }
 } }
 for(auto u : arr){
 cout << u << " ";
 }
 cout << endl;
}

Logarithmic Time Complexity – O(log N)

Per Operation mid divides into
half Value. That means

n/2 + n/4 + n/8 + n/16 + ……..

= n (1/2 + 1/4 + 1/8 + ……..)

= log(n)) // log2(y) = x, 2^x
= y;
So, Time Complexity of
Binary search is
O(log(n))

int main()
{ // Binary Search
 int n , v[n]; cin >> n;
 for(int i=0; i<n; i++){
 cin >> v[i];
 }
 int lo=0,hi=n-1,mid,fnd;
 cin >> fnd;
 while(hi>=lo){
 mid=(hi+lo)/2;
 if(v[mid] == fnd) {
 cout << mid << endl;
 break;
 }
 if(v[mid] <= fnd){
 lo=mid+1; }
 else
 {
 hi = mid-1;
 } }}

Flowcharts

ICE 2231/ Introduction©️ Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE,

RU

	Slide 32
	Slide 33
	Slide 34
	Slide 35: How to calculate Time Complexity ?
	Slide 36: Big O Notation
	Slide 37: Common Time Complexity
	Slide 38: Constant Time Complexity-O(1)
	Slide 39: Linear Time Complexity - O(N)
	Slide 40: Quadratic Time Complexity – O(N^2)
	Slide 41: Logarithmic Time Complexity – O(log N)
	Slide 42

