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UNIT I  
Introduction to Machine Learning 

1. Introduction 

1.1 What Is Machine Learning?  
Machine learning is programming computers to optimize a performance criterion using example 

data or past experience. We have a model defined up to some parameters, and learning is the 
execution of a computer program to optimize the parameters of the model using the training data or 
past experience. The model may be predictive to make predictions in the future, or descriptive to gain 
knowledge from data, or both. 
Arthur Samuel, an early American leader in the field of computer gaming and artificial intelligence, 

no universally accepted definition for machine learning. Different authors define the term differently. 

Definition of learning 
Definition 

A computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P, if its performance at tasks T, as measured by P, improves with experience E. 

 
Examples 

i) Handwriting recognition learning problem 
 

 
ritten words with given classifications 

ii) A robot driving learning problem 
 

 
 experience: A sequence of images and steering commands recorded while  

  observing a human driver 
iii) A chess learning problem 

 
 

ce games against itself 
Definition 

A computer program which learns from experience is called a machine learning program or 
simply a learning program. Such a program is sometimes also referred to as a learner. 

1.2 Components of Learning 

Basic components of learning process 
The learning process, whether by a human or a machine, can be divided into four components, 

namely, data storage, abstraction, generalization and evaluation. Figure 1.1 illustrates the 
variouscomponents and the steps involved in the learning process. 
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1. Data storage 

Facilities for storing and retrieving huge amounts of data are an important component of the 
learning process. Humans and computers alike utilize data storage as a foundation for advanced 
reasoning. 

data is stored in the brain and data is retrieved using electrochemical    signals. 

data and use cables and other technology to retrieve data. 

2. Abstraction 
The second component of the learning process is known as abstraction. 

Abstraction is the process of extracting knowledge about stored data. This involves creating general 
concepts about the data as a whole. The creation of knowledge involves application of known models 
and creation of new models. 
The process of fitting a model to a dataset is known as training. When the model has been trained, the 
data is transformed into an abstract form that summarizes the original information. 

3. Generalization 
The third component of the learning process is known as generalisation. 

The term generalization describes the process of turning the knowledge about stored data into a form 
that can be utilized for future action. These actions are to be carried out on tasks that are similar, but 
not identical, to those what have been seen before. In generalization, the goal is to discover those 
properties of the data that will be most relevant to future tasks. 

4. Evaluation 
Evaluation is the last component of the learning process. 

It is the process of giving feedback to the user to measure the utility of the learned knowledge. This 
feedback is then utilised to effect improvements in the whole learning process 

Applications of machine learning 
Application of machine learning methods to large databases is called data mining. In data 

mining, a large volume of data is processed to construct a simple model with valuable use, for example, 
having 
high predictive accuracy. 

The following is a list of some of the typical applications of machine learning. 
1. In retail business, machine learning is used to study consumer behaviour. 
2. In finance, banks analyze their past data to build models to use in credit applications, fraud 

detection, and the stock market. 
3. In manufacturing, learning models are used for optimization, control, and troubleshooting. 
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4. In medicine, learning programs are used for medical diagnosis. 
5. In telecommunications, call patterns are analyzed for network optimization and maximizing the 

quality of service. 
6. In science, large amounts of data in physics, astronomy, and biology can only be analyzed fast 

enough by computers. The World Wide Web is huge; it is constantly growing and searching for 
relevant information cannot be done manually. 

7. In artificial intelligence, it is used to teach a system to learn and adapt to changes so that the 
system designer need not foresee and provide solutions for all possible situations.  

8. It is used to find solutions to many problems in vision, speech recognition, and robotics.  
9. Machine learning methods are applied in the design of computer-controlled vehicles to steer 

correctly when driving on a variety of roads. 
10. Machine learning methods have been used to develop programmes for playing games such as 

chess, backgammon and Go. 

1.3 Learning Models 
Machine learning is concerned with using the right features to build the right models that 

achieve the right tasks.  The basic idea of Learning models has divided into three categories. 
For a given problem, the collection of all possible outcomes represents the sample space or instance 
space. 

 Using a Logical expression. (Logical models) 
 Using the Geometry of the instance space. (Geometric models)  
 Using Probability to classify the instance space. (Probabilistic models) 
 Grouping and Grading 

1.3.1  Logical models 
Logical models use a logical expression to divide the instance space into segments and hence 

construct grouping models. A logical expression is an expression that returns a Boolean value, i.e., a 
True or False outcome. Once the data is grouped using a logical expression, the data is divided into 
homogeneous groupings for the problem we are trying to solve.  
problem, all the instances in the group belong to one class. 

There are mainly two kinds of logical models: Tree models and Rule models. 

Rule models consist of a collection of implications or IF-THEN rules. For tree- -
-

follow the same reasoning. 

Logical models and Concept learning 
To understand logical models further, we need to understand the idea of Concept Learning. 

Concept Learning involves learning logical expressions or concepts from examples. The idea of Concept 
Learning fits in well with the idea of Machine learning, i.e., inferring a general function from specific 
training examples. Concept learning forms the basis of both tree-based and rule-based models.  More 
formally, Concept Learning involves acquiring the definition of a general category from a given set of 
positive and negative training examples of the category. A Formal Definition for Concept Learning is 
The inferring of a Boolean-  In 

concept learning, we only l
satisfy that description as negative. 
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The following example explains this idea in more detail. 

 

A Concept Learning 
some example days. Each data is described by six attributes. The task is to learn to predict the value of 
Enjoy Sport for an arbitrary day based on the values of its attribute values. The problem can be 
represented by a series of hypotheses. Each hypothesis is described by a conjunction of constraints on 
the attributes. The training data represents a set of positive and negative examples of the target 
function. In the example above, each hypothesis is a vector of six constraints, specifying the values of 
the six attributes   Sky, AirTemp, Humidity, Wind, Water, and Forecast. The training phase involves 
learning the set of days (as a conjunction of attributes) for which Enjoy Sport = yes. 

Thus, the problem can be formulated as: 

 Given instances X  which represent a set of all possible days, each described by the attributes: 
o Sky  (values: Sunny, Cloudy, Rainy), 
o AirTemp  (values: Warm, Cold), 
o Humidity  (values: Normal, High), 
o Wind  (values: Strong, Weak), 
o Water  (values: Warm, Cold), 
o Forecast  (values: Same, Change). 

Try to identify a function that can predict the target variable Enjoy Sport as yes/no, i.e., 1 or 0. 

1.3.2 Geometric models 
In the previous section, we have seen that with logical models, such as decision trees, a logical 

expression is used to partition the instance space. Two instances are similar when they end up in the 
same logical segment. In this section, we consider models that define similarity by considering the 
geometry of the instance space.  In Geometric models, features could be described as points in two 
dimensions (x- and y-axis) or a three-dimensional space (x, y, and z). Even when features are not 
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intrinsically geometric, they could be modelled in a geometric manner (for example, temperature as a 
function of time can be modelled in two axes). In geometric models, there are two ways we could 
impose similarity. 

 We could use geometric concepts like lines or planes to segment (classify) the instance space. 
These are called Linear models. 

 Alternatively, we can use the geometric notion of distance to represent similarity. In this case, if 
two points are close together, they have similar values for features and thus can be classed as 
similar. We call such models as Distance-based models. 

Linear models 
Linear models are relatively simple. In this case, the function is represented as a linear 

combination of its inputs. Thus, if x1 and x2 are two scalars or vectors of the same dimension 
and a and b are arbitrary scalars, then ax1 + bx2 represents a linear combination of x1 and x2. In the 
simplest case where f(x) represents a straight line, we have an equation of the form f (x) 
= mx + c where c represents the intercept and m represents the slope. 

 
Linear models are parametric  form with a small number of numeric 
parameters that need to be learned from data. For example, in f (x) = mx + c, m and c are the 
parameters that we are trying to learn from the data. This technique is different from tree or rule 
models, where the structure of the model (e.g., which features to use in the tree, and where) is not 

xed in advance. 

Linear models are stable, i.e., small variations in the training data have only a limited impact on the 
learned model. In contrast, tree models tend to vary more with the training data, as the choice of a 
different split at the root of the tree typically means that the rest of the tree is different as well.  As a 
result of having relatively few parameters, Linear models have low variance and high bias. This implies 
that Linear models are less likely to overfit the training data than some other models. However, they 
are more likely to underfit. For example, if we want to learn the boundaries between countries based 
on labelled data, then linear models are not likely to give a good approximation. 

Distance-based models 
Distance-based models are the second class of Geometric models. Like Linear models, distance-

based models are based on the geometry of data. As the name implies, distance-based models work on 
the concept of distance.  In the context of Machine learning, the concept of distance is not based on 
merely the physical distance between two points. Instead, we could think of the distance between two 
points considering the mode of transport between two points. Travelling between two cities by plane 
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covers less distance physically than by train because a plane is unrestricted. Similarly, in chess, the 
concept of distance depends on the piece used  for example, a Bishop can move diagonally.   Thus, 
depending on the entity and the mode of travel, the concept of distance can be experienced differently. 
The distance metrics commonly used are Euclidean, Minkowski, Manhattan, and Mahalanobis. 

 
Distance is applied through the concept of neighbours and exemplars. Neighbours are points in 
proximity with respect to the distance measure expressed through exemplars. Exemplars are 
either centroids  a centre of mass according to a chosen distance metric or medoids 
the most centrally located data point. The most commonly used centroid is the arithmetic mean, which 
minimises squared Euclidean distance to all other points. 

Notes: 
 The centroid represents the geometric centre of a plane figure, i.e., the arithmetic mean 

position of all the points in the figure from the centroid point. This definition extends to any 
object in n-dimensional space: its centroid is the mean position of all the points. 

 Medoids are similar in concept to means or centroids. Medoids are most commonly used on 
data when a mean or centroid cannot be defined. They are used in contexts where the centroid 
is not representative of the dataset, such as in image data. 

Examples of distance-based models include the nearest-neighbour models, which use the training data 
as exemplars  for example, in classification. The K-means clustering algorithm also uses exemplars to 
create clusters of similar data points. 

1.3.3 Probabilistic models 
The third family of machine learning algorithms is the probabilistic models. We have seen 

before that the k-nearest neighbour algorithm uses the idea of distance (e.g., Euclidian distance) to 
classify entities, and logical models use a logical expression to partition the instance space. In this 
section, we see how the probabilistic models use the idea of probability to classify new entities. 

Probabilistic models see features and target variables as random variables. The process of modelling 
represents and manipulates the level of uncertainty with respect to these variables. There are two 
types of probabilistic models: Predictive and Generative. Predictive probability models use the idea of 
a conditional probability distribution P (Y |X) from which Y can be predicted from X.  Generative models 
estimate the joint distribution P (Y, X).  Once we know the joint distribution for the generative models, 
we can derive any conditional or marginal distribution involving the same variables. Thus, the 
generative model is capable of creating new data points and their labels, knowing the joint probability 
distribution. The joint distribution looks for a relationship between two variables. Once this relationship 
is inferred, it is possible to infer new data points. 
Naïve Bayes is an example of a probabilistic classifier. 

We can do this using the Bayes rule defined as 
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The Naïve Bayes algorithm is based on the idea of Conditional Probability.  Conditional probability is 
based on finding the probability that something will happen, given that something else has already 
happened. The task of the algorithm then is to look at the evidence and to determine the likelihood of a 
specific class and assign a label accordingly to each entity. 

Some broad categories of models: 
Geometric models Probabilistic models Logical models 
E.g. K-nearest neighbors, linear 
regression, support vector 

 

Naïve Bayes, Gaussian process 
regression, conditional random 

 

 

1.3.4 Grouping and Grading 

Grading vs grouping is an orthogonal categorization to geometric-probabilistic-logical-compositional.  

 Grouping models break the instance space up into groups or segments and in each segment 
apply a very simple method (such as majority class). 

o E.g. decision tree, KNN. 

 Grading models form one global model over the instance space. 

o E.g. Linear classifiers  Neural networks 

1.4 Designing a Learning System 

For any learning system, we must be knowing the three elements  T (Task), P (Performance 
Measure), and E (Training Experience). At a high level, the process of learning system looks as below. 

 

The learning process starts with task T, performance measure P and training experience E and objective 
are to find an unknown target function. The target function is an exact knowledge to be learned from the 
training experience and its unknown. For example, in a case of credit approval, the learning system will 
have customer application records as experience and task would be to classify whether the given 
customer application is eligible for a loan. So in this case, the training examples can be represented as 
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(x1,y1)(x2,y2)..(xn,yn) where X represents customer application details and y represents the status of 
credit approval. 

With these details, what is that exact knowledge to be learned from the training experience? 

So the target function to be learned in 
This function represents the exact knowledge defining the relationship between input variable X and 
output variable y.  

Design of a learning system 

Just now we looked into the learning process and also understood the goal of the learning. When we 
want to design a learning system that follows the learning process, we need to consider a few design 
choices. The design choices will be to decide the following key components: 

1. Type of training experience 
2. Choosing the Target Function 
3. Choosing a representation for the Target Function 
4. Choosing an approximation algorithm for the Target Function 
5. The final Design 

We will look into the game - checkers learning problem and apply the above design choices. For a 
checkers learning problem, the three elements will be, 

1. Task T: To play checkers 
2. Performance measure P: Total percent of the game won in the tournament. 
3. Training experience E: A set of games played against itself 

1.4.1 Type of training experience 
During the design of the checker's learning system, the type of training experience available for a 

learning system will have a significant effect on the success or failure of the learning. 

1. Direct or Indirect training experience  In the case of direct training experience, an individual board 
states and correct move for each board state are given. 
In case of indirect training experience, the move sequences for a game and the final result (win, loss 
or draw) are given for a number of games. How to assign credit or blame to individual moves is the 
credit assignment problem. 

2. Teacher or Not  Supervised  The training experience will be labeled, which means, all the board 
states will be labeled with the correct move. So the learning takes place in the presence of a 
supervisor or a teacher. 
Unsupervised  The training experience will be unlabeled, which means, all the board states will not 
have the moves. So the learner generates random games and plays against itself with no supervision 
or teacher involvement. 
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Semi-supervised  Learner generates game states and asks the teacher for help in finding the 
correct move if the board state is confusing. 

3. Is the training experience good  Do the training examples represent the distribution of examples 
over which the final system performance will be measured? Performance is best when training 
examples and test examples are from the same/a similar distribution. 

The checker player learns by playing against oneself. Its experience is indirect. It may not encounter 
moves that are common in human expert play. Once the proper training experience is available, the next 
design step will be choosing the Target Function. 

1.4.2 Choosing the Target Function 
When you are playing the checkers game, at any moment of time, you make a decision on 

choosing the best move from different possibilities. You think and apply the learning that you have 
gained from the experience. Here the learning is, for a specific board, you move a checker such that your 
board state tends towards the winning situation. Now the same learning has to be defined in terms of 
the target function. 

 
Here there are 2 considerations  direct and indirect experience. 

 During the direct experience, the checkers learning system, it needs only to learn how to choose 
the best move among some large search space. We need to find a target function that will help 
us choose the best move among alternatives. Let us call this function ChooseMove and use the 
notation  to indicate that this function accepts as input any board from the 
set of legal board states B and produces as output some move from the set of legal moves M. 

 When there is an indirect experience, it becomes difficult to learn such function. How about 
assigning a real score to the board state.  

So the function be  indicating that this accepts as input any board from the set of legal board 
states B and produces an output a real score. This function assigns the higher scores to better board 
states. 

 

If the system can successfully learn such a target function V, then it can easily use it to select the best 
move from any board position. 
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Let us therefore define the target value V(b) for an arbitrary board state b in B, as follows: 
1. if b is a final board state that is won, then V(b) = 100 
2. if b is a final board state that is lost, then V(b) = -100 
3. if b is a final board state that is drawn, then V(b) = 0 

be achieved starting from b and playing optimally until the end of the game. 

The (4) is a recursive definition and to determine the value of V(b) for a particular board state, it 
performs the search ahead for the optimal line of play, all the way to the end of the game. So this 
definition is not efficiently computable by our checkers playing program, we say that it is a 
nonoperational definition. 

The goal of learning, in this case, is to discover an operational description of V ; that is, a description 
that can be used by the checkers-playing program to evaluate states and select moves within realistic 
time bounds. 
It may be very difficult in general to learn such an operational form of V perfectly. We expect learning 
algorithms to acquire only some approximation to the target function ^V. 

1.4.3 Choosing a representation for the Target Function 
Now that we have specified the ideal target function V, we must choose a representation that 

the learning program will use to describe the function ^V that it will learn. As with earlier design 
choices, we again have many options. We could, for example, allow the program to represent using a 
large table with a distinct entry specifying the value for each distinct board state. Or we could allow it to 
represent using a collection of rules that match against features of the board state, or a quadratic 
polynomial function of predefined board features, or an artificial 
neural network. In general, this choice of representation involves a crucial tradeoff. On one hand, we 
wish to pick a very expressive representation to allow representing as close an approximation as 
possible to the ideal target function V.  

 
On the other hand, the more expressive the representation, the more training data the program 

will require in order to choose among the alternative hypotheses it can represent. To keep the 
discussion brief, let us choose a simple representation:  
for any given board state, the function ^V will be calculated as a linear combination of the following 
board features: 
 x1(b)  number of black pieces on board b 
 x2(b)  number of red pieces on b 
 x3(b)  number of black kings on b 
 x4(b)  number of red kings on b 
 x5(b)  number of red pieces threat  
 x6(b)  number of black pieces threatened by red 

^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · x5(b) + w6 · x6(b) 

Where w0 through w6 are numerical coefficients or weights to be obtained by a learning algorithm.  
Weights w1 to w6 will determine the relative importance of different board features. 
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Specification of the Machine Learning Problem at this time  Till now we worked on choosing the type 
of training experience, choosing the target function and its representation. The checkers learning task 
can be summarized as below. 
 Task T : Play Checkers 
 Performance Measure : % of games won in world tournament 
 Training Experience E : opportunity to play against itself 
 Target Functi  
 Target Function Representation : ^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · 

x5(b) + w6 · x6(b) 
The first three items above correspond to the specification of the learning task,whereas the final two 
items constitute design choices for the implementation of the learning program. 

1.4.4 Choosing an approximation algorithm for the Target Function 
Generating training data  
To train our learning program, we need a set of training data, each describing a specific board state b and 
the training value V_train (b) for b. Each training example is an ordered pair <b,V_train(b)> 
For example, a training example may be <(x1 = 3, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0), +100">. This is an 
example where black has won the game since x2 = 0 or red has no remaining pieces. However, such clean 
values of V_train (b) can be obtained only for board value b that are clear win, loss or draw. 
In above case, assigning a training value V_train(b) for the specific boards b that are clean win, loss or 
draw is direct as they are direct training experience. But in the case of indirect training experience, 
assigning a training value V_train(b) for the intermediate boards is difficult. In such case, the training 
values are updated using temporal difference learning. Temporal difference (TD) learning is a concept 
central to reinforcement learning, in which learning happens through the iterative correction of your 
estimated returns towards a more accurate target return. 

of V_train(b) for any intermediate board state b as below :  
 

Adjusting the weights 
Now its time to define the learning algorithm for choosing the weights and best fit the set of 

training examples. One common approach is to define the best hypothesis as that which minimizes the 
squared error E between the training values and the values predicted by the hypothesis ^V. 

 
 

The learning algorithm should incrementally refine weights as more training examples become available 
and it needs to be robust to errors in training data Least Mean Square (LMS) training rule is the one 
training algorithm that will adjust weights a small amount in the direction that reduces the error. 

The LMS algorithm is defined as follows: 
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1.4.5 Final Design for Checkers Learning system 
The final design of our checkers learning system can be naturally described by four distinct 

program modules that represent the central components in many learning systems. 
1. The performance System  Takes a new board as input and outputs a trace of the game it played 

against itself. 
2. The Critic  Takes the trace of a game as an input and outputs a set of training examples of the 

target function. 
3. The Generalizer  Takes training examples as input and outputs a hypothesis that estimates the 

target function. Good generalization to new cases is crucial. 
4. The Experiment Generator  Takes the current hypothesis (currently learned function) as input and 

outputs a new problem (an initial board state) for the performance system to explore. 

 
Final design of the checkers learning program. 

1.5 Types of Learning 
In general, machine learning algorithms can be classified into three types. 

 Supervised learning 
 Unsupervised learning 
 Reinforcement learning 

1.5.1 Supervised learning 
A training set of examples with the correct responses (targets) is provided and, based on this 

training set, the algorithm generalises to respond correctly to all possible inputs. This is also called 
learning from exemplars. Supervised learning is the machine learning task of learning a function that 
maps an input to an output based on example input-output pairs. 

In supervised learning, each example in the training set is a pair consisting of an input object 
(typically a vector) and an output value. A supervised learning algorithm analyzes the training data and 
produces a function, which can be used for mapping new examples. In the optimal case, the function 
will correctly determine the class labels for unseen instances. Both classification and regression 
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problems are supervised learning problems. A wide range of supervised learning algorithms are 
available, each with its strengths and weaknesses. There is no single learning algorithm that works best 
on all supervised learning problems. 

 
Figure 1.4: Supervised learning 

Remarks 
 learning from the 

training dataset can be thought of as a teacher supervising the learning process. We know the correct 
answers (that is, the correct outputs), the algorithm iteratively makes predictions on the training data 
and is corrected by the teacher. Learning stops when the algorithm achieves an acceptable level of 
performance. 

Example 
Consider the following data regarding patients entering a clinic. The data consists of the gender 

  

 

1.5.2 Unsupervised learning 
Correct responses are not provided, but instead the algorithm tries to identify similarities 

between the inputs so that inputs that have something in common are categorised together. The 
statistical approach to unsupervised learning is 
known as density estimation. 

Unsupervised learning is a type of machine learning algorithm used to draw inferences from 
datasets consisting of input data without labeled responses. In unsupervised learning algorithms, a 
classification or categorization is not included in the observations. There are no output values and so 
there is no estimation of functions. Since the examples given to the learner are unlabeled, the accuracy 
of the structure that is output by the algorithm cannot be evaluated. The most common unsupervised 
learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns 
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or grouping in data. 

Example 
Consider the following data regarding patients entering a clinic. The data consists of the gender 

and age of the patients. 

 
Based on this data, can we infer anything regarding the patients entering the clinic? 

1.5.3 Reinforcement learning 
This is somewhere between supervised and unsupervised learning. The algorithm gets told 

when the answer is wrong, but does not get told how to correct it. It has to explore and try out different 
possibilities until it works out how to get the answer right. Reinforcement learning is sometime called 
learning with a critic because of this monitor that scores the answer, but does not suggest 
improvements. 

Reinforcement learning is the problem of getting an agent to act in the world so as to maximize 
its rewards. A learner (the program) is not told what actions to take as in most forms of machine 
learning, but instead must discover which actions yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect not only the immediate reward but also the next 
situations and, through that, all subsequent rewards. 

Example 
Consider teaching a dog a new trick: we cannot tell it what to do, but we can reward/punish it if 

it does the right/wrong thing. It has to find out what it did that made it get the reward/punishment. We 
can use a similar method to train computers to do many tasks, such as playing backgammon or chess, 
scheduling jobs, and controlling robot limbs. Reinforcement learning is different from supervised 
learning. Supervised learning is learning from examples provided by a knowledgeable expert. 

 
1.6 PERSPECTIVES AND ISSUES IN MACHINE LEARNING 

Perspectives in Machine Learning 
One useful perspective on machine learning is that it involves searching a very large space of 

possible hypotheses to determine one that best fits the observed data and any prior knowledge held by 
the learner. 
For example, consider the space of hypotheses that could in principle be output by the above checkers 
learner. This hypothesis space consists of all evaluation functions that can be represented by some 
choice of values for the weights wo through w6. The learner's task is thus to search through this vast 
space to locate the hypothesis that is most consistent with the available training examples. The LMS 
algorithm for fitting weights achieves this goal by iteratively tuning the weights, adding a correction to 
each weight each time the hypothesized evaluation function predicts a value that differs from the 
training value. This algorithm works well when the hypothesis representation considered by the learner 
defines a continuously parameterized space of potential hypotheses. 


