Introduction to Chemical Engineering

Md Khairul Islam (Ph.D)

Applied Chemistry & Chemical Engineering

University of Rajshahi

Objectives

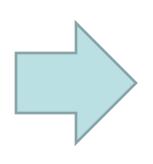
- Understand the background of chemical engineering field;
- Grasping the impact of chemical engineering in industrial development;
- > Explaining the concept of unit operations;
- Familiarization of the role of chemical engineers;
- Appreciate the ten major achievements in chemical engineering.

What is chemical engineering

"Chemical engineers" use math, physical sciences (physics, chemistry), life sciences (biology, microbiology and biochemistry), and economics to solve practical problems (convert raw materials into useful products). The difference between chemical engineers and other types of engineers is that they apply a knowledge of chemistry in addition to other engineering disciplines. Chemical engineers may be called "universal engineers" because their scientific and technical mastery is so extensive.

<u>Chemical engineering</u> focusing on transport and transformation of materials at molecular level, often accompanied with, and sometimes for the purpose of energy transport and transformation.

What chemical engineering can make?



What chemical engineering can build?

Basis of Chemical Engineering

The foundation of Chemical engineering is based on

- Physical, Organic, and Inorganic chemistry
- > Thermodynamics
- Chemical kinetics
- > Momentum, heat & mass transfer

Just like an electrician is not an electrical engineer, a chemist is not a chemical engineer.

Field of operation

Biotechnology

Chemical and allied products

Process Plant Construction

Pharmaceutical & **Toiletries**

Water Industry

Food & Beverage industries

Environment Protection & Recycling

Energy (Oil, Gas, & Nuclear)

Process plant & Equipment Manufacture

Materials (Plastics, dyes, metals, paper, etc.)

Academics

IT

Consultancy

ChE Principles:

1805 - John Dalton published Atomic Weights, allowing chemical equations to be balanced and the basis for chemical engineering mass balances.

1824 - Sadi Carnot was the first to study the thermodynamics of combustion reactions.

1850 - Rudolf Clausius applied the principles developed by Carnot to **chemical systems** at the atomic to molecular scale.

ChE Principles:

1873 to 1876 - Josiah Willard Gibbs developed a mathematical-based, graphical methodology, for the study of chemical systems using the thermodynamics of Clausius.

1882 - Hermann von Helmholtz showed that measure of chemical affinity is determined by the measure of the free energy of the **reaction process**.

1883 - Osborne Reynolds defines the dimensionless group for fluid flow, leading to practical scale-up and understanding of flow, heat and mass transfer

ChE Education:

1882 – a course in "Chemical Technology" is offered at University College London.

1885 —a course in "chemical engineering" is offered at Central College (later Imperial College), London.

1888 —a new curriculum at Massachusetts Institute of Technology (MIT) started: Course X, Chemical Engineering.

ChE Institutes:

1908 – the American Institute of Chemical Engineers (AIChE) is founded.

1922 – the UK Institution of Chemical Engineers (IChemE) is founded.

1996 – the Thailand Institute of Chemical Engineering and Applied Chemistry (TiChE) is founded.

Chemical process industry

An industry in which the raw materials undergo chemical conversion during their processing into finished products, as well as (or instead of) the physical conversions

Systematic analysis of chemical process-

- ➤ Mass and energy balances
- > Thermodynamics and kinetics
- Unit operations and chemical reactors
- Instrumentation and control
- **Economics**

Unit processes & Unit operations

- Unit processes are the chemical transformations or conversions that are performed in a process. For example; smelting, reduction, calcination, dehydrogenation, electrolysis etc.
- Unit operation is defined as a process which does not involve any chemical reaction i.e., separation, crystallization, evaporation, filtration, polymerization, isomerization etc. Unit operations only deal with physical changes of the materials involved in the process.

What does chemical engineer do?

Research

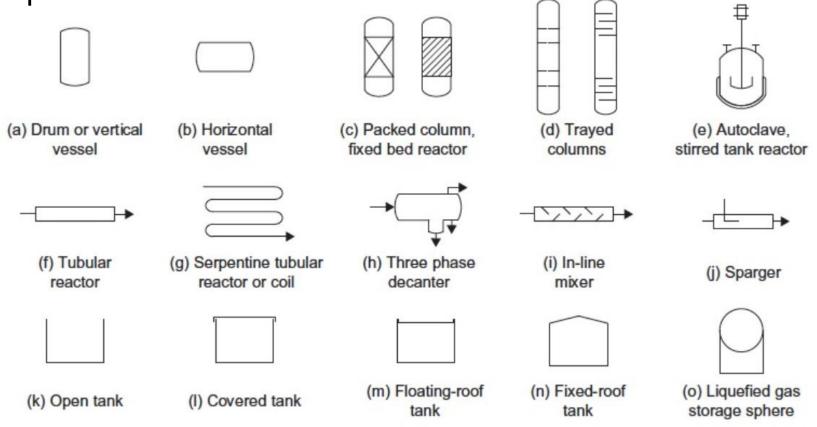
Fundamental, exploratory, and process research

Process development

- Planning the development program
- > Designing and building the pilot plant
- Operation of the pilot plant
- Correlation, presentation, and evaluation of the data from the pilot plant.

What does chemical engineer do?

Process design and evaluation (major steps)

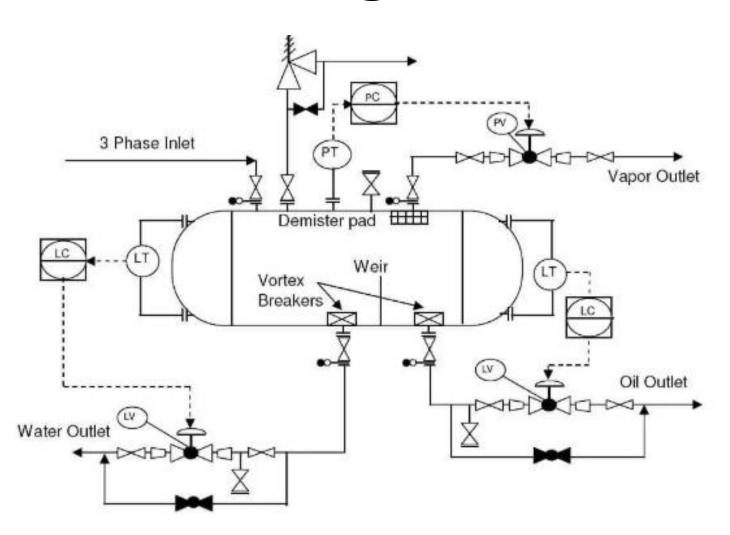

- Process flow sheet showing all pieces of equipment, instrumentation, and control and the operating pressures, temperatures, and flow rates.
- Mass balances on the overall process and on each unit in the process showing yields of the products and purity of all stream in the process
- Energy balances for all units in the process, including heat-exchanger requirements.
- > Specification of pump capacities, flow, and pressure requirements.
- Specification of size and configuration of chemical reactors and storage tanks.
- Determination of optimum operating conditions for the mass transfer operations required for the separation and purification of the raw materials and products.
- Estimation of utility requirements, such as steam, water, electricity, and fuel.
- Economic evaluation with an estimate of capital investment and operating costs.

What does chemical engineer do?

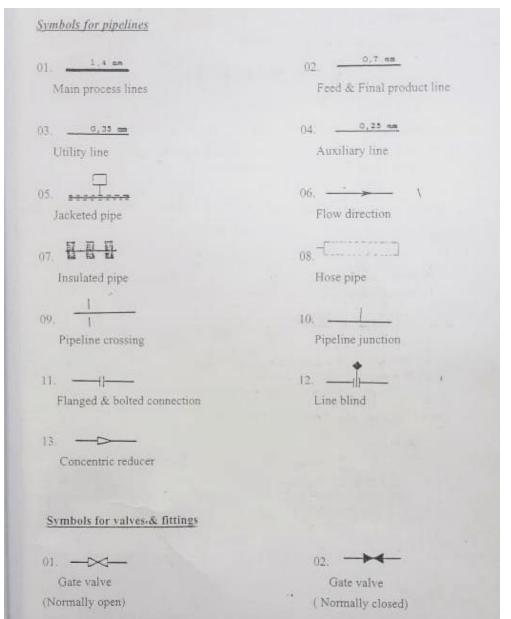
- Plant design
 - Include <u>chemical</u>, mechanical, electrical, and civil engineers.
- Construction
- Product supervision
- > Plant technical service
- Product sales

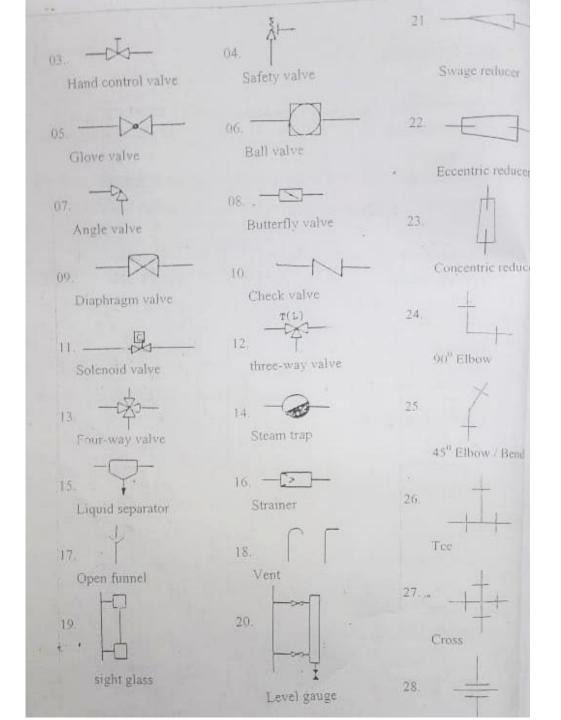
Process flow diagram

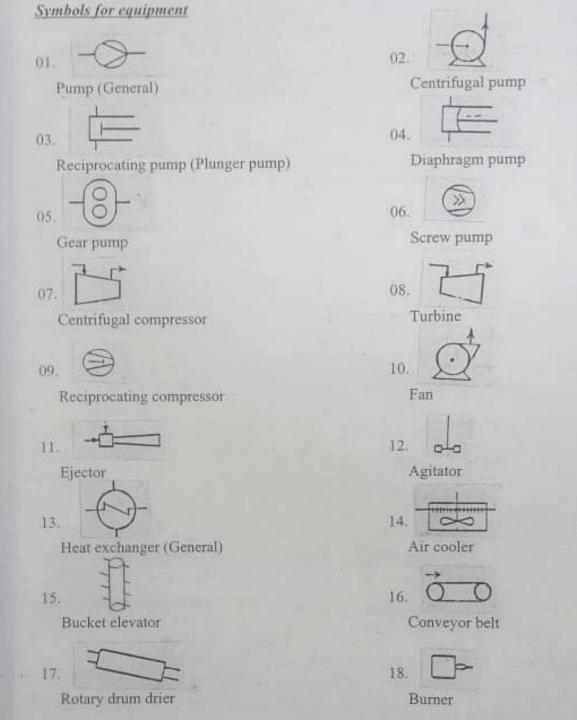
A Flow Chart (also known as a Process Flow Diagram or Process Map) is a diagram of the steps in a process and their sequence.

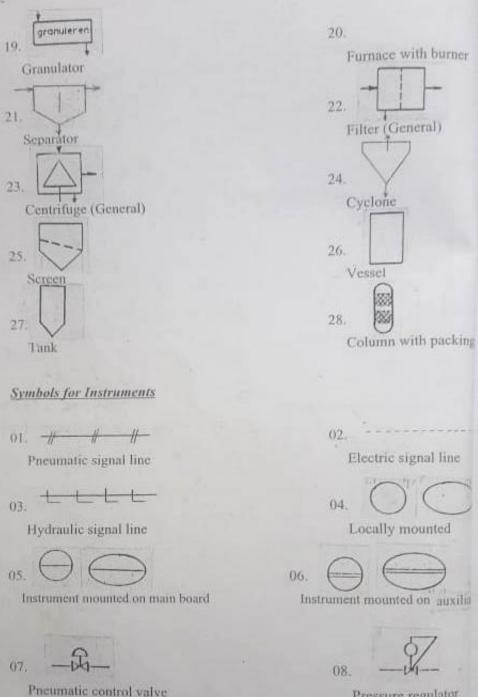

Various symbols for reactors, vessels and tanks

Diagrams Used

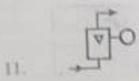

A diagram is a simple drawing or visual representation that explains how something works or the relationships between parts of a whole. Diagrams are used as visual aids to make complex ideas easier to understand, showing concepts, processes, or structures through lines, shapes, and symbols.

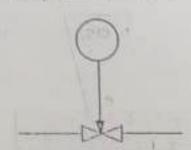

A Piping and Instrumentation Diagram (P&ID) is a detailed schematic that illustrates the functional relationship between all the piping, equipment, and instrumentation in a process plant. It serves as a critical tool for engineers and operators during the design, operation, and maintenance of industrial facilities, showing how the system's components are interconnected and controlled.

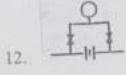

Piping and instrumentation diagram

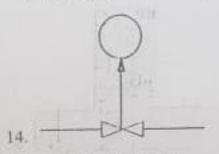


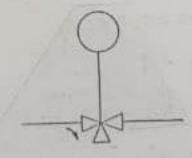
Symbols for P& I diagram


Pressure regulator


Instrument mounted behind main board


Flowmeter (General)


Float-operated flpwmeter


Two-way control valve closed on failure of actuating energy

Orifice plate

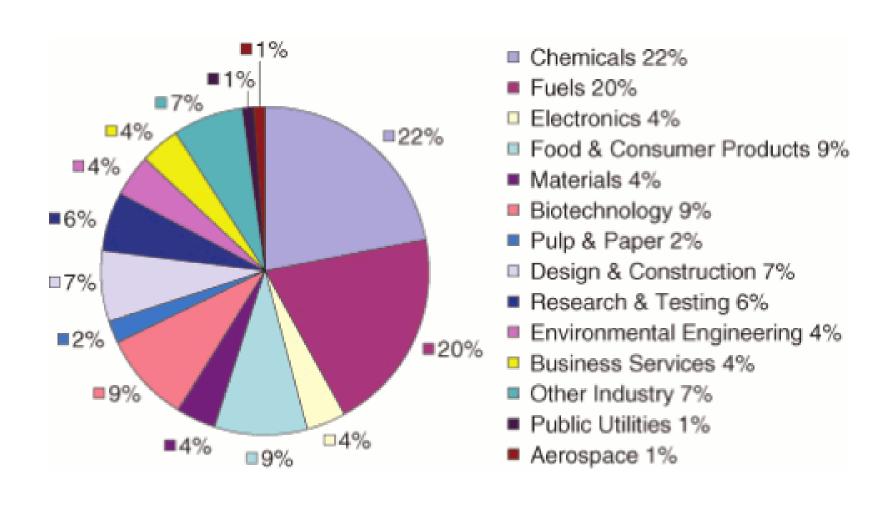
Two-way control valve opens on failure of actuating energy

15.

13.

Three-way control valve.

Arrow indicates direction in which it opens on failure of actuating energy


General aspects of chemical engineering

- **Communications**
- > Human relations
- Professional activities
- > Technical reading

TOP 10 Chemical Engineering Contribution to Society

- Fueling the world's economies
- Creating cleaner energy
- Products for growing populations
- Removing harmful sulfur from fuels
- Better living through chemistry
- Stretching natural resources
- Large scale production engineering
- Convenient & abundant food
- Healing diseases & extending life
- Powering the personal computer

Jobs Opportunity for ChE

