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Preliminary lecture 

Applied Electricity and Magnetism  

PHY1221  75 marks [70%(52) Exam, 20% (15 )Quizzes, 10% (7.5) Attendance] 

Credit: 3, Contact hours/week: 3, Exam time: 3hrs,  

Students should answer 6 questions out of 8 taking not more than three in one section. 

 

 

 

Consideration of size                                                               and          

                                       

 

Road map in physics: 

 

Macroscopic              

Star, planet, etc 

which visible to naked eye 

Microscopic   

Atoms, molecules, electron etc 

which visible with microscope  
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Section-A: 

I. Electrostatics 

II. Capacitors 

III. Electric Current 

Section-B: 

I. Electromagnetic Induction 

II. Thermoelectricity 

III. DC and AC Circuits 

 

 Classical physics  Two distinct aspect of nature  

 Matter: localized 

 Energy: Wave, spread in space 

   

Classical Physics  

 

 

 

 

Modern Physics  

 

Classical physics  

 

 

 

Modern Physics  

 

 

 

Reference: 

Physics part 1 and part 11 – David Halliday and Robert Resnick 

Concept of Modern Physics – Arthur Beiser 

 

 

 

  

Matter  Energy 

Classical mechanics  

Electrodynamics 

One body system   

Quantum mechanics  

Relativity   

Statistical mechanics  

Many body system   
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Electric field 

An electric field (sometimes abbreviated as E-field) is a vector field 

surrounding an electric charge that exerts force on other charges, 

attracting or repelling them. Mathematically the electric field is a vector 

field that associates to each point in space the force, called the Coulomb 

force, that would be experienced per unit of charge by an infinitesimal 

test charge at that point. The units of the electric field in the SI system 

are Newtons per coulomb (N/C), or volts per meter (V/m). 

Electric fields are created by electric charges, or by time-varying 

magnetic fields. On an atomic scale, the electric field is responsible for 

the attractive force between the atomic nucleus and electrons that holds 

atoms together, and the forces between atoms that cause chemical 

bonding. Electric fields and magnetic fields are both manifestations of 

the electromagnetic force, one of the four fundamental forces (or 

interactions) of nature.  
 

Electric Lines of Force: 

An electric line of force is an imaginary continuous line or curve drawn in an electric field such that tangent to it at 

any point gives the direction of the electric force at that point. The direction of a line of force is the direction along 

which a small free positive charge will move along the line. Field lines directed into a closed surface are considered 

negative; those directed out of a closed surface are positive. If there is no net charge within a closed surface, every 

field line directed into the surface continues through the interior and is directed outward elsewhere on the surface. 

 

Electric Flux: 

Electric flux is a property of an electric field that may be thought of as the number of electric lines of force (or 

electric field lines) that intersect a given area. Electric field lines are considered to originate on positive electric 

charges and to terminate on negative charges. If a net charge is contained inside a closed surface, the total flux 

through the surface is proportional to the enclosed charge, positive if it is positive, negative if it is negative. 

The mathematical relation between electric flux and enclosed charge is known as Gauss’s law for the electric field, 

one of the fundamental laws of electromagnetism. 

 

Where E is the electric field (having units of V/m), E is its magnitude, S is the area of the surface, and 𝜃 is the angle 

between the electric field lines and the normal (perpendicular) to S. 

For a non-uniform electric field, the electric flux dΦE through a small surface area dS is given by 

 

 

 

 

Fig.1: Electric field emanating 

from a point positive electric 

charge suspended over an infinite 

sheet of conducting material. 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Coulomb%27s_law
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https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Test_charge
https://en.wikipedia.org/wiki/Systeme_International
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https://en.wikipedia.org/wiki/Fundamental_interaction
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Electric Dipole 

An electric dipole is defined as a pair of equal and opposite charges separated by a distance. However, a 

continuous charge distribution can also be approximated as an electric dipole from a large distance. These 

dipoles are characterized by their dipole moment, a vector quantity defined as the charge multiplied by 

their separation and the direction of this vector quantity is from the  

-ve charge to the +ve charge. The total charge corresponding to a dipole is always zero. As the positive 

and negative charge centers are separated by a finite distance, the electric field at a test point does not 

cancel out completely leading to a finite electric field. Similarly, we also get finite electric potential due 

to a dipole. 

Electric Dipole Potential:  

The potential of an electric dipole can be found by superposing the point charge potentials of the two charges. Let 

us consider an electron dipole having charges q separated by distance d. Then the potential due to this dipole at 

point p at a distance r from the center of the dipole is: 

𝑉 = 𝑘𝑞 [
1

𝑟+
−

1

𝑟−
] = 𝑘𝑞 [

𝑟− − 𝑟+

𝑟+𝑟−
] 

Where 𝑘 =
1

4𝜋𝜖0
 is a constant. 

For cases where r>>d, we can write 𝑟− − 𝑟+ = 𝑑𝑐𝑜𝑠𝜃 and 𝑟− = 𝑟+ = 𝑟 this can be approximated by  

𝑉 = 𝑘𝑞 [
𝑑𝑐𝑜𝑠𝜃

𝑟2 ] 

As we know, the dipole moment is 𝑝 = 𝑞𝑑, so 

𝑉 = 𝑘
𝑝𝑐𝑜𝑠𝜃

𝑟2
 

 This is the required for the potential of an electric dipole. 

 

 

 

Electric Field due to a Dipole 

The electric field due to a pair of equal and opposite charges at any test point can be calculated using the Coulomb’s 

law and the superposition principle. Let the test point P be at a distance r from the center of the dipole. The distance 

between +q and -q is d. We have shown the situation in the Fig. 1 above. 

If E+ and E
- 

be the electric field at point P due to the positive and the negative charges separately then 

the total electric field E at Point P can be calculated by using the superposition principle. 

𝑟− 

𝑟+ 

𝑟 

𝑑 𝜃 

𝑑𝑐𝑜𝑠𝜃 

−𝑞 

+𝑞 

𝑃 

Fig. 1 
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Please note that the directions of 𝑬+ and 𝑬− are along 𝒓+ and 𝒓− 

respectively. This is the most general form of the electric field 

due to a dipole. However, we will express this vector in terms of 

radial and inclination vectors as shown in the diagram below. 

In order to calculate the electric field in the polar coordinate, we will use 

the expression of the electric potential due to an electric dipole which we 

have calculated earlier. 

𝑉 = 𝑘
𝑝𝑐𝑜𝑠𝜃

𝑟2
 

=
1

4𝜋𝜖0

𝑝𝑐𝑜𝑠𝜃

𝑟2
 

Here p=qd is the magnitude of the dipole moment. We can easily derive the electric field due to this dipole by 

calculating the negative gradient of this electric potential. In polar coordinate electric field will be independent of 

azimuthal (𝜑) coordinate. 

𝑬𝑟 = −
𝜕𝑉

𝜕𝑟
=

1

4𝜋𝜖0

2𝑝 𝑐𝑜𝑠𝜃

𝑟3
 

And 

𝑬𝜃 = −
1

𝑟

𝜕𝑉

𝜕𝜃
=

1

4𝜋𝜖0

𝑝 𝑠𝑖𝑛𝜃

𝑟3
 

Total electric field in vector form is  

𝑬 = 𝑬𝑟 + 𝑬𝜃 =
𝑝

4𝜋𝜖0
[
2 𝑐𝑜𝑠𝜃

𝑟3
�̂� +

 𝑠𝑖𝑛𝜃

𝑟3
𝜃] 

And the magnitude of total electric field is  

𝐸 = √𝐸𝑟
2 + 𝐸𝜃

2 

=
𝑝

4𝜋𝜖0𝑟3
√(2 𝑐𝑜𝑠𝜃)2 + (𝑠𝑖𝑛𝜃)2 

=
𝑝

4𝜋𝜖0𝑟3
√3 𝑐𝑜𝑠2𝜃 + 1 

As shown in the diagram, the resultant electric field makes an angle 𝛼 with the radial vector. Then the direction of 

the resultant is 

tan 𝛼 =
𝐸𝜃

𝐸𝑟
=

1
4𝜋𝜖0

𝑝 𝑠𝑖𝑛𝜃
𝑟3

1
4𝜋𝜖0

2𝑝 𝑐𝑜𝑠𝜃
𝑟3

=
tan 𝜃

2
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Case:1: Electric field at an axial point; 

In this case, the test point P is on the axis of the dipole. Consequently 𝜃 =

0 𝑜𝑟 𝜋. The electric field at point P is 

𝐸 =
𝑝

4𝜋𝜖0𝑟3
√3 𝑐𝑜𝑠20 + 1 

= ±
2𝑝

4𝜋𝜖0𝑟3
 

And the direction is  

tan 𝛼 =
tan 0

2
 

𝛼 = 𝑡𝑎𝑛−10 = 0° 

 

Case:2: Electric Field at an Equatorial Point 

In this case, the test point P is on the perpendicular bisector of the dipole. 𝜃 = 90° 𝑜𝑟 𝜋/2. The electric field at 

point P is  

𝐸 =
𝑝

4𝜋𝜖0𝑟3
√3 𝑐𝑜𝑠20 + 1 

=
𝑝

4𝜋𝜖0𝑟3
√3 𝑐𝑜𝑠290 + 1 

=
𝑝

4𝜋𝜖0𝑟3
 

And the direction is  

tan 𝛼 =
tan 90

2
 

𝛼 = 𝑡𝑎𝑛−1 (
tan 90

2
) = 180° 

 

 

 

Electric Dipole in an Electric Field (Torque and potential energy) 

Torque  

We know the electric dipole moment of a dipole is defined as the vector p directed from -q to +q along 

the line joining the charges and having magnitude 2aq: 

𝑝 ≡ 2𝑎𝑞 

𝑟 

𝑑

2
 

𝑑

2
 

(1) 
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Now suppose that an electric dipole is placed in a uniform electric 

field E, as shown in Figure 1. We denote E as the field external to the 

dipole, distinguishing it from the field due to the dipole. The field E 

is established by some other charge distribution, and we place the 

dipole into this field.  

Let us imagine that the dipole moment makes an angle with the field. 

The electric forces acting on the two charges are equal in magnitude 

but opposite in direction as shown in Figure 1 (each has a 

magnitude 𝐹 = 𝑞𝐸. Thus, the net force on the dipole is zero. 

However, the two forces produce a net torque on the dipole; as a 

result, the dipole rotates in the direction that brings the dipole moment 

vector into greater alignment with the field. The torque due to the 

force on the positive charge about an axis through O in Figure 1 is Fa 

sin𝜃 , where asin𝜃 is the moment arm of F about O. This force tends 

to produce a clockwise rotation. The torque about O on the negative 

charge also is Fa sin𝜃; here again, the force tends to produce a 

clockwise rotation. Thus, the net torque about O is 

𝜏 = 2𝐹𝑎𝑠𝑖𝑛𝜃 

Because 𝐹 = 𝑞𝐸 and 𝑝 = 2𝑎𝑞 we can express 𝜏 as 

𝜏 = 2𝑎𝑞𝐸𝑠𝑖𝑛𝜃 

= 𝑝𝐸𝑠𝑖𝑛𝜃 

It is convenient to express the torque in vector form as the cross 

product of the vectors p and E: 

𝝉 = 𝒑 × 𝑬 

Potential Energy 

We can determine the potential energy of the system of an electric dipole in an external electric field as a 

function of the orientation of the dipole with respect to the field. To do this, we recognize that work must 

be done by an external agent to rotate the dipole through an angle so as to cause the dipole moment vector 

to become less aligned with the field. The work done is then stored as potential energy in the system of 

the dipole and the external field. The work dW required to rotate the dipole through an angle d𝜃 is 𝑑𝑊 =

𝜏𝑑𝜃. Because 𝜏 = 𝑝𝐸𝑠𝑖𝑛𝜃 and because the work is transformed into potential energy U, we find that, for 

a rotation from 𝜃i to 𝜃f, the change in potential energy is 

 

(2) 

(3) 

 

Fig. 1a: An electric dipole consists of 

two charges of equal magnitude but 

opposite sign separated by a distance of 

2a. The electric dipole moment p is 

directed from - q to +q. 

 

Fig. 1b: An electric dipole in a uniform 

external electric field. The dipole 

moment p is at an angle 𝜃 to the field, 

causing the dipole to experience a torque. 
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The term that contains cos𝜃i is a constant that depends on the initial orientation of the dipole. It is 

convenient for us to choose 𝜃i = 0, so that cos 𝜃i = cos90 = 0. Furthermore, let us choose Ui =0 at 𝜃i =90o 

as our reference of potential energy. Hence, we can express a general value of U = Uf as 

𝑈 = −𝑝𝐸𝑐𝑜𝑠𝜃  

We can write this expression for the potential energy of a dipole in an electric field as the dot product of 

the vectors p and E: 

𝑈 = −𝒑. 𝑬 

Molecules are said to be polarized when a separation exists between 

the average position of the negative charges and the average position 

of the positive charges in the molecule. In some molecules, such as 

water, this condition is always present—such molecules are called 

polar molecules. Molecules that do not possess a permanent 

polarization are called nonpolar molecules.  

We can understand the permanent polarization of water by inspecting 

the geometry of the water molecule. In the water molecule, the 

oxygen atom is bonded to the hydrogen atoms such that an angle of 

105° is formed between the two bonds (Fig. 2). The center of the 

negative charge distribution is near the oxygen atom, and the center 

of the positive charge distribution lies at a point midway along the 

line joining the hydrogen atoms (the point labeled in Fig. 2). We can 

model the water molecule and other polar molecules as dipoles 

because the average positions of the positive and negative charges 

act as point charges. As a result, we can apply our discussion of 

dipoles to the behavior of polar molecules.  

Microwave ovens take advantage of the polar nature of the water 

molecule. When in operation, microwave ovens generate a rapidly 

changing electric field that causes the polar molecules to swing back 

and forth, absorbing energy from the field in the process. Because 

the jostling molecules collide with each other, the energy they absorb 

from the field is converted to internal energy, which corresponds to 

an increase in temperature of the food. 

 Another household scenario in which the dipole structure of water 

is exploited is washing with soap and water. Grease and oil are made 

up of nonpolar molecules, which are generally not attracted to water. 

Plain water is not very useful for removing this type of grime. Soap 

contains long molecules called surfactants. In a long molecule, the polarity characteristics of one end of 

the molecule can be different from those at the other end. In a surfactant molecule, one end acts like a 

nonpolar molecule and the other acts like a polar molecule. The nonpolar end can attach to a grease or 

(4) 

(5) 

 

Fig. 2: The water molecule, H2O, has a  

permanent polarization resulting from its 

bent geometry. The center of the positive 

charge distribution is at the point x. 

 

Fig. 3: (a) A symmetric molecule has no 

permanent polarization. (b) An external 

electric field induces a polarization in the 

molecule. 
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oil molecule, and the polar end can attach to a water molecule. Thus, the soap serves as a chain, linking 

the dirt and water molecules together. When the water is rinsed away, the grease and oil go with it.  

A symmetric molecule (Fig. 3a) has no permanent polarization, but polarization can be induced by placing 

the molecule in an electric field. A field directed to the left, as shown in Figure 3b, would cause the center 

of the positive charge distribution to shift to the left from its initial position and the center of the negative 

charge distribution to shift to the right. This induced polarization is the effect that predominates in most 

materials used as dielectrics in capacitors. 

 

Stokes' theorem: 

 

Divergence theorem: 

 

Gaussian Surface 

A Gaussian surface is a closed imaginary surface in three-dimensional space through which the flux of a vector field 

is calculated. It enclosed all the charges for which flux is to be calculated.  

 

 Gauss's Law 

The law was first formulated by Joseph-Louis Lagrange in 1773, followed by Carl Friedrich Gauss in 1813. It is 

one of Maxwell's four equations, which form the basis of classical electrodynamics. 

The net electric flux through any hypothetical closed surface (Gaussian Surface) is equal to 
𝟏

𝜺𝟎
 times 

the net electric charge within that closed surface. 

Gauss's law may be expressed as:  

 

Where ΦE is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed 

within V, and ε0 is the electric permittivity. 

Integral Form of Gauss's Law 

The electric flux ΦE is defined as a surface integral of the electric field:  

 

(2) 

[F is any function, 𝑑Γ 𝑎𝑛𝑑 𝑑𝑆 are the 

small elements of length and surface 

respectively ] 

[n is the unit normal to the surface of 

volume V ] 

(1) 

https://en.wikipedia.org/wiki/Electric_flux
https://en.wikipedia.org/wiki/Closed_surface
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_flux
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_constant
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Electric_field
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Where E is the electric field, dA is a vector representing an infinitesimal element of area of the surface, and · 

represents the dot product of two vectors. Then we can write  

𝑄 = 𝜀0 ∯ 𝑬. 𝒅𝑨
𝑠

 

Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form 

Differential Form of Gauss's Law 

By the divergence theorem, Gauss's law can alternatively be written in the differential form:  

 

Where ∇·E is the divergence of the electric field, ε0 is the electric constant, and ρ is the total electric charge 

density (charge per unit volume).  

Equivalence of integral and differential forms 

The integral and differential forms are mathematically equivalent, by the divergence theorem.  

 

Derivation of Gauss’s Law 

Let us consider a spherical surface of radius r containing an area element ∆𝐴. The solid angle ∆Ω 

subtended at the center of the sphere by this element is defined to be 
 

 
From this equation, we see that ∆Ω has no dimensions because ∆𝐴 and r2

 both have dimensions L2. The 

dimensionless unit of a solid angle is the steradian. Because the surface area of a sphere is 4𝜋r2, the total 

solid angle subtended by the sphere is 

Now consider a point charge q surrounded by a closed surface of arbitrary shape (Fig. 2). The total electric 

flux through this surface can be obtained by evaluating for each small area element ∆𝐴 and summing over 

all elements. The flux through each element is 

 

 

Where r is the distance from the charge to the area element, 𝜃 is the angle between the electric field E and 

∆𝐴 for the element, and E= 
𝑘𝑒𝑞

𝑟2  for a point charge. In Fig.3, we see that the projection of the area element 

(3) 

(4) 

(5) 

(6) 

https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Electric_constant
https://en.wikipedia.org/wiki/Charge_density
https://en.wikipedia.org/wiki/Charge_density
https://en.wikipedia.org/wiki/Divergence_theorem
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perpendicular to the radius vector is ∆𝐴cos𝜃. Thus, the quantity 
∆𝐴𝑐𝑜𝑠𝜃 

𝑟2
 is equal to the solid angle ∆Ω, that 

the surface element ∆𝐴 subtends at the charge q. We also see that ∆Ω is equal to the solid angle subtended 

by the area element of a spherical surface of radius r. As the total solid angle at a point is 4𝜋 steradians, 

the total flux through the closed surface is 

 

 

Thus we have derived 

Gauss’s law. Note that 

this result is 

independent of the 

shape of the closed 

surface and 

independent of the 

position of the charge 

within the surface.  

 

 

 

 

 

 

 

Application of Gauss’s Law to Charged Insulators 

In choosing the surface, we should always take advantage of the symmetry of the charge distribution so 

that we can remove E from the integral and solve for it. The goal in this type of calculation is to determine 

a surface that satisfies one or more of the following conditions: 

1. The value of the electric field can be argued by symmetry to be constant over the surface. 

2. The dot product in E.dA can be expressed as a simple algebraic product E dA because E and dA are   

parallel. 

3. The dot product E.dA is zero when E and dA are perpendicular. 

4. The field can be argued to be zero over the surface. 

     
Fig2: A closed surface of arbitrary 

shape surrounds a point charge q. The 

net electric flux through the surface is 

independent of the shape of the 

surface. 

 
Fig. 3: The area element ∆𝐴 subtends a solid angle 

∆Ω = 
∆𝐴𝑐𝑜𝑠𝜃 

𝑟2  at the charge q. 

(7) 
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The Electric Field Due to a Point Charge 

Starting with Gauss’s law, calculate the electric field due to an isolated point charge q. 
 

Solution: A single charge represents the simplest possible charge distribution, and we use this familiar 

case to show how to solve for the electric field with Gauss’s law. We choose a spherical Gaussian surface 

of radius r centered on the point charge, as shown in Fig.4 . The electric field due to a positive point charge 

is directed radially outward by symmetry and is therefore normal to the surface at every point. Thus, as in 

condition (2), E is parallel to dA at each point. Therefore, E.dA= E dA and Gauss’s law gives  

 

 
Fig. 4: The point charge q is at the center of the spherical Gaussian 

 surface, and E is parallel to dA at every point on the surface 

 

By symmetry, E is constant everywhere on the surface, which satisfies condition (1), so it can be removed 

from the integral. Therefore, 

 
Where we have used the fact that the surface area of a sphere is 4𝜋r2. Now, we solve for the electric field: 

 
This is the familiar electric field due to a point charge that we found from the Coulomb’s law. 

 

 

 
A Spherically Symmetric Charge Distribution 
An insulating solid sphere of radius a has a uniform volume charge density 𝜌 and carries a total positive 

charge Q. (a) Calculate the magnitude of the electric field at a point outside the sphere. 

(b) Find the magnitude of the electric field at a point inside the sphere. 

 

Solution (a): As the charge distribution is spherically symmetric, we again select a spherical Gaussian 

surface of radius r, concentric with the sphere, as shown in Fig.5. For this choice, conditions (1) and (2) 

are satisfied, as they were for the point charge in previous example, we can write, 

(8) 

(9) 

(10) 
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Note that this result is identical to the one we obtained for a point charge. Therefore, we conclude that, for 

a uniformly charged sphere, the field in the region external to the sphere is equivalent to that of a point 

charge located at the center of the sphere. 

 
Fig.5: A uniformly charged insulating sphere of radius a and total charge Q. 

 

Solution (b): In this case we select a spherical Gaussian surface having radius r < a, concentric with the 

insulated sphere (Fig. 5). Let us denote the volume of this smaller sphere by V’. To apply Gauss’s law in 

this situation, it is important to recognize that the charge qin within the Gaussian surface of volume V’ is 

less than Q. To calculate qin, we use the fact that qin =𝜌𝑉′: 

qin =𝜌𝑉′=𝜌
4

3
𝜋𝑟3  

By symmetry, the magnitude of the electric field is constant everywhere on the spherical Gaussian surface 

and is normal to the surface at each point—both conditions (1) and (2) are satisfied. Therefore, Gauss’s 

law in the region r < a gives 

 
Solving for E gives 

 

As 𝜌 =
𝑄

4

3
𝜋𝑟3

 by definition and since ke=
1

4𝜋𝑟2 this expression for E can be written as 

 
Note that this result for E differs from the one we obtained in part (a). It shows that E       0 as  

r       0. Therefore, the result eliminates the problem that would exist at r = 0 if E varied as 1/r2 inside the 

sphere as it does outside the sphere. That is, if E∝ 1/r2 for r < a, the field would be infinite at r = 0, which 

is physically impossible. Note also that the expressions for parts (a) and (b) match when r = a. A plot of 

E versus r is shown in Fig.6. 

 

(11) 

(12) 

(13) 

(14) 

(15) 
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The Electric Field Due to a Thin Spherical Shell 

A thin spherical shell of radius a has a total charge Q distributed uniformly over its surface (Fig.7). Find 

the electric field at points (a) outside and (b) inside the shell. 

 

Solution (a): The calculation for the field outside the shell is identical to that for the solid sphere shown 

in Example 2a. If we construct a spherical Gaussian surface of radius r > a concentric with the shell (Fig. 

7b), the charge inside this surface is Q. Therefore, the field at a point outside the shell is equivalent to that 

due to a point charge Q located at the center: 

 

 
Fig. 7: A thin spherical shell of radius a and charge Q. 

 

Solution (b): The electric field inside the spherical shell is zero. This follows from Gauss’s law applied 

to a spherical surface of radius r < a concentric with the shell (Fig. 7c). Because of the spherical symmetry 

of the charge distribution and because the net charge inside the surface is zero—satisfaction of conditions 

(1) and (2) again—application of Gauss’s law shows that E = 0 in the region r < a. We obtain the same 

results using coulombs law. This calculation is rather complicated. Gauss’s law allows us to determine 

these results in a much simpler way. 

 

 

A Cylindrically Symmetric Charge Distribution 

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per 

unit length 𝜆 

 

Solution: The symmetry of the charge distribution requires that E be perpendicular to the line charge and 

directed outward, as shown in Fig.8a and b. To reflect the symmetry of the charge distribution, we select 

Fig. 6: A plot of E versus r for a uniformly charged 

insulating sphere. The electric field inside the sphere 

(r<a) varies linearly with r. The field outside the sphere 

(r>a) is the same as that of a point charge Q located at r 

= 0. 

 

 

 

(16) 
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a cylindrical Gaussian surface of radius r and length 𝑙 that is coaxial with the line charge. For the curved 

part of this surface, E is constant in magnitude and perpendicular to the surface at each point—satisfaction 

of conditions (1) and (2). Furthermore, the flux through the ends of the Gaussian cylinder is zero because 

E is parallel to these surfaces—the first application we have seen of condition (3).  

We take the surface integral in Gauss’s law over the entire Gaussian surface. Because of the zero value 

of E.dA for the ends of the cylinder, however, we can restrict our attention to only the curved surface of 

the cylinder. The total charge inside our Gaussian surface is 𝜆𝑙. Applying Gauss’s law and conditions (1) 

and (2), we find that for the curved surface 

 
 

             
Fig. 8: (a) An infinite line of charge surrounded by a cylindrical Gaussian surface concentric with the 

line. (b) An end view shows that the electric field at the cylindrical surface is constant in magnitude and 

perpendicular to the surface. 

 

The area of the curved surface is A=2𝜋𝑟𝑙 therefore,  

 

 
Thus, we see that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, 

whereas the field external to a spherically symmetric charge distribution varies as 1/r2.  If the line charge 

in this example were of finite length, the result for E would not be that given by the above equation. A 

finite line charge does not possess sufficient symmetry for us to make use of Gauss’s law. This is because 

the magnitude of the electric field is no longer constant over the surface of the Gaussian cylinder—the 

field near the ends of the line would be different from that far from the ends. Thus, condition (1) would 

not be satisfied in this situation. Furthermore, E is not perpendicular to the cylindrical surface at all 

(17) 

(18) 

(19) 
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points—the field vectors near the ends would have a component parallel to the line. Thus, condition (2) 

would not be satisfied. 

 

 

 

 

 

A Nonconducting Plane of Charge 

Find the electric field due to a nonconducting, infinite plane of positive charge with uniform surface 

charge density 𝜎. 

Solution:  

 
Fig. 9: A cylindrical gaussian surface penetrating an infinite plane of charge 

 

By symmetry, E must be perpendicular to the plane and must have the same magnitude at all points 

equidistant from the plane. The fact that the direction of E is away from positive charges indicates that 

the direction of E on one side of the plane must be opposite its direction on the other side, as shown in 

Fig. 9. A Gaussian surface that reflects the symmetry is a small cylinder whose axis is perpendicular to 

the plane and whose ends each have an area A and are equidistant from the plane. Because E is parallel 

to the curved surface—and, therefore, perpendicular to dA everywhere on the surface—condition (3) is 

satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the 

cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the 

total flux through the entire Gaussian surface is just that through the ends, Φ𝐸 = 2𝐸𝐴. 

Noting that the total charge inside the surface is qin = 𝜎A, we use Gauss’s law and find that 

 

 
Because the distance from each flat end of the cylinder to the plane does not appear in the above equation, 

we conclude that E = 
𝜎

2𝜀0
 at any distance from the plane. That is, the field is uniform everywhere. An 

important charge configuration related to this example consists of two parallel planes, one positively 

charged and the other negatively charged, and each with a surface charge density 𝜎. In this situation, the 

(20) 

(21) 
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electric fields due to the two planes add in the region between the planes, resulting in a field of 

magnitude 
𝜎

𝜀0
, and cancel elsewhere to give a field of zero. 

 

 

 

 

A Sphere Inside a Spherical Shell 

A solid conducting sphere of radius a carries a net positive charge 2Q. A conducting spherical shell of 

inner radius b and outer radius c is concentric with the solid sphere and carries a net charge -Q. Using 

Gauss’s law, find the electric field in the regions labeled 1,2,3 and 4 in Fig.10 and the charge distribution 

on the shell when the entire system is in electrostatic equilibrium. 

 

Solution: 

 
Fig. 10: A solid conducting sphere of radius a and carrying a charge 2Q surrounded by a conducting 

spherical shell carrying a charge -Q. 

 

First note that the charge distributions on both the sphere and the shell are characterized by spherical 

symmetry around their common center. To determine the electric field at various distances r from this 

center, we construct a spherical Gaussian surface for each of the four regions of interest. Such a surface 

for region 2 is shown in Fig. 10.  

To find E inside the solid sphere (region 1), consider a Gaussian surface of radius r < a. Because there 

can be no charge inside a conductor in electrostatic equilibrium, we see that qin = 0; thus, on the basis of 

Gauss’s law and symmetry, E1=0 for r < a.  

In region 2—between the surface of the solid sphere and the inner surface of the shell—we construct a 

spherical Gaussian surface of radius r where a < r < b and note that the charge inside this surface is +2Q 

(the charge on the solid sphere). Because of the spherical symmetry, the electric field lines must be 

directed radially outward and be constant in magnitude on the Gaussian surface. Following Example and 

using Gauss’s law, we find that 
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In region 4, where r > c, the spherical Gaussian surface we construct surrounds a total charge of qin = 

+2Q-Q = + Q. Therefore, application of Gauss’s law to this surface gives  

 
 

In region 3, the electric field must be zero because the spherical shell is also a conductor in equilibrium. 

If we construct a Gaussian surface of radius r where b < r < c, we see that qin must be zero because From 

this argument, we conclude that the charge on the inner surface of the spherical shell must be +2Q to 

cancel the charge -2Q on the solid sphere. Because the net charge on the shell is -Q, we conclude that its 

outer surface must carry a charge +Q. 

 

 

 

ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE DISTRIBUTIONS 

We can calculate the electric potential due to a continuous charge distribution in two ways. If the charge 

distribution is known, we can calculate the potential for every charges and then sum over the potentials 

to get the total potential due to the distribution.  

 

Or we can consider the potential due to a small charge element dq, treating this element as a point charge 

(Fig. 11). The electric potential dV at some point P due to the charge element dq is  

 
Where r is the distance from the charge element to point P. To obtain 

the total potential at point P, we integrate this equation to include 

contributions from all elements of the charge distribution. Because each 

element is, in general, a different distance from point P and because ke 

is constant, we can express V as  

  
Note that, this expression for V uses a particular reference: The electric 

potential is taken to be zero when point P is infinitely far from the 

charge distribution. If the charge distribution is highly symmetric, we 

first evaluate E at any point using Gauss’s law and then substitute the 

value obtained into equation  

 

Fig. 11: The electric potential at 

the point P due to a continuous 

charge distribution 

(22) 

(23) 

(24) 

(25) 

(26) 
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to determine the potential difference ∆V between any two points. We then choose the electric potential 

V to be zero at some convenient point.  

 

 

Electric Potential Due to a Uniformly Charged Ring 

(a) Find an expression for the electric potential at a point P located on the perpendicular central axis of a 

uniformly charged ring of radius a and total charge Q.   

(b) Find an expression for the magnitude of the electric field at point P. 

 

Solution (a): Let us orient the ring so that its plane is perpendicular to an x axis and its center is at the 

origin. We can then take point P to be at a distance x from the center of the ring, as shown in Fig.12. The 

charge element dq is at a distance √𝑥2 + 𝑎2 from point P. Hence, we can express V as 

 
Because each element dq is at the same distance from point P we can remove √𝑥2 + 𝑎2 from the integral, 

and V reduces to  

 
The only variable in this expression for V is x. This is not surprising because our calculation is valid only 

for points along the x axis, where y and z are both zero. 

 
Fig. 12: A uniformly charged ring of radius a lies in a plane perpendicular to the x axis. All segments 

dq of the ring are the same distance from any point P lying on the x axis. 

 

 

Solution (b): From symmetry, we see that, along the x axis E can have only an x component. Therefore, 

we can write 

(27) 

(28) 
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This result agrees with that obtained by direct integration. Note that Ex = 0 at x = 0 (the center of 

the ring). Could you have guessed this from Coulomb’s law? 

 

Exercise: What is the electric potential at the center of the ring? What does the value of the field at the 

center tell you about the value of V at the center? 

Answer: V = keQ /a. Because Ex = - dV/dx = 0 at the center, V has either a maximum or minimum value; 

it is, in fact, a maximum. 

 

 

Electric Potential Due to a Uniformly Charged Disk 

Find (a) the electric potential and (b) the magnitude of the electric field along the perpendicular central 

axis of a uniformly charged disk of radius a and surface charge density 𝜎. 

 

Solution (a): Again, we choose the point P to be at a distance x from the center of the disk and take the 

plane of the disk to be perpendicular to the x axis. We can simplify the problem by dividing the disk into 

a series of charged rings. The electric potential of each ring is given by Equation 28. Consider one such 

ring of radius r and width dr, as indicated in Fig.13. The surface area of the ring is dA= 2𝜋rdr ; 

 
Fig. 13: A uniformly charged disk of radius a lies in a plane perpendicular to the x axis. 

 

From the definition of surface charge density, we know that the charge on the ring is  dq =  𝜎𝑑𝐴 =
𝜎2𝜋rdr. Hence, the potential at the point P due to this ring is  

 
To find the total electric potential at P, we sum over all rings making up the disk. That is, we integrate 

dV from r = 0 to r = a: 

 
This integral is of the form undu and has the value un+1/(n+1), where n= -1/2 and u=r2+x2. This gives 

(29) 
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Solution (b): As in Example 1, we can find the electric field at any axial point from 

 
The calculation of V and E for an arbitrary point off the axis is more difficult to perform, and we do not 

treat this situation in this text. 

 

 

 

Electric Potential Due to a Finite Line of Charge 

A rod of length l located along the x axis has a total charge Q and a uniform linear charge density 𝜆 =
𝑄/𝑙. Find the electric potential at a point P located on the y axis a distance a from the origin. 

 

Solution: The length element dx has a charge dq = 𝜆 dx. Because this element is a distance r=√𝑥2 + 𝑎2 

from point P, we can express the potential at point P due to this element as  

 
To obtain the total potential at P, we integrate this expression over the limits x = 0 to x = 𝑙. Noting that 

ke and 𝜆 are constants, we find that 

 
This integral has the following value 

 
Evaluating V, we find that 

 
 

(30) 

(31) 

(32) 
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Fig. 14: A uniform line charge of length located along 

the x axis. 


