
10/11/2019

1

Power optimization

• Glitches cause unnecessary power 

consumption.

• Logic network design helps control power 

consumption:

– minimizing capacitance;

– eliminating unnecessary glitches.

Glitching example

• Gate network:

Glitching example behavior

• NOR gate produces 0 output at beginning 

and end:

– beginning: bottom input is 1;

– end: NAND output is 1;

• Difference in delay between application of 

primary inputs and generation of new 

NAND output causes glitch.

Adder chain glitching

bad
good



10/11/2019

2

Explanation

• Unbalanced chain has signals arriving at 

different times at each adder.

• A glitch downstream propagates all the 

way upstream.

• Balanced tree introduces multiple glitches 

simultaneously, reducing total glitch 

activity.

Signal probabilities

The signal probability Ps is the probability that 

signal s is “1”.

• Glitching behavior can be characterized by 
signal probabilities. 

– Delay-independent probabilities

– Delay-dependent probabilities

• Transition probabilities can be computed from 

signal probabilities if clock cycles are assumed 
to be independent.

Delay-independent probabilities

• Compute output probabilities of primitive 

functions:

– PNOT = 1 - Pin

– POR = 1 - Π(1− Pi)

– PAND = Π Pi

• Can compute output probabilities of 

reconvergent fanout-free networks by 

traversing tree.

Delay-dependent probabilities

• More accurate estimation of glitching. 

Glitch accuracy depends on accuracy of 

delay model.

• Can use simulation-style algorithms to 

propagate glitches.

• Can use statistical models coupled with 

delay models.



10/11/2019

3

Factorization for low power

• Proper factorization reduces glitching.

bad good

Factorization techniques

• In example, a has high transition 

probability, b and c low probabilities.

• Reduce number of logic levels through 

which high-probability signals must travel 

in order to reduce propagation of glitches.

Power estimation tools

• Power estimator approximates power 

consumption from:

– gate network;

– primary input transition probabilities;

– capacitive loading.

• May be switch/logic simulation based or 

use statistical models.

Manufacturing testing

• Errors are introduced during 

manufacturing.

• Testing verifies that chip corresponds to 

design.

• Varieties of testing:

– functional testing;

– performance testing (binning chips by speed).

• Testing also weeds out infant mortality.



10/11/2019

4

Testing and faults

• Fault model: 

– possible locations of faults;

– I/O behavior produced by the fault.

• Good news: if we have a fault model, we 

can test the network for every possible 

instantiation of that type of fault.

• Bad news: it is difficult to enumerate all 

types of manufacturing faults.

Fault model

• Stuck-at-0/1

• Stuck-open

• Delay fault

Stuck-at-0/1 faults

• Stuck-at-0/1: logic gate output is always 

stuck at 0 or 1, independent of input 

values.

• Correspondence to manufacturing defects 

depends on logic family.

• Experiments show that 100% stuck-at-0/1 

fault coverage corresponds to high overall 

fault coverage.

Testing procedure

• Testing procedure:

– set gate inputs;

– observe gate output;

– compare fault-free and observed gate output.

• Test vector: set of gate inputs applied to a 

system.



10/11/2019

5

Assignment

• Give at least one test for Stuck-at-0 and 

Stuck-at-1 faults for the following static 

gates

– (a+b+c)’

– [(a+b)c]’

Stuck-at faults in gates

a b OK SA0 SA1

0 0 1 0 1

0 1 1 0 1

1 0 1 0 1

1 1 0 0 1

a b OK SA0 SA1

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

1 1 0 0 1

NAND NOR

Testing single gates

• Three ways to test NAND for stuck-at-0, 

only one way to test it for stuck-at-1.

• Three ways to test NOR for stuck-at-1, 

only one way to test it for stuck-at-0.

Testing combinational networks

• 100% coverage: test every gate for

– stuck-at-0;

– stuck-at-1.

• Assume that there is only one faulty gate 

per network.

• Most networks require more than one test 

vector to test all gates.



10/11/2019

6

Multiple test example Example

• Can test both NANDs for stuck-at-0 

simultaneously (abc = 000).

• Cannot test both NANDs for stuck-at-1 

simultaneously due to inverter. Must use 

two vectors.

• Must also test inverter.

Stuck-at-open/closed model

• Models transistors always on/off.

Stuck-open behavior

• If t1 is stuck open (switch cannot be 

closed), there can be no path from VDD to 

output capacitance.

• Testing requires two cycles:

– must discharge capacitor;

– try to operate t1 to see if capacitor can be 
charged.



10/11/2019

7

Delay fault

• Delay falls outside acceptable limits:

– gate delay fault assumes that all delays are 
lumped into one gate;

– path delay fault models delay problems along 
path through network.

• Delay problems reduce yield:

– performance problems;

– functional problems in some types of circuits.

Combinational network testing

Two parts to testing:

– controlling the inputs of (possibly interior) 
gates;

– observing the outputs of (possibly interior) 
gates.

Combinational testing example Testing procedure

• Goal: test gate D for stuck-at-0 fault.

• First step: justify 0 values on gate inputs.

• Work backward from gate to primary 

inputs:

– w1 = 0 (A output = 0);

– i1 = i2 = 1.



10/11/2019

8

Testing procedure, cont’d

• Observe the fault at a primary output:

– o1 gives different values if D is true/faulty.

• Work forward and backward:

– F’s other input must be 0 to detect true/fault.

– Justify 0 at E’s output.

• In general, may have to propagate fault 

through multiple levels of logic to primary 

outputs.


