

Integrated Circuits (IC)				
				$\square \square \square$
Name	Signification	Year	$\frac{\text { Transistors }}{\text { number }}$	$\begin{array}{r} \text { Logic } \\ \text { gates number } \\ \hline \end{array}$
SSI	small-scale integration	1964	1 to 10	1 to 12
MSI	medium-scale integration	1968	10 to 500	13 to 99
LSI	large-scale integration	1971	500 to 20,000	100 to 9,999
VLSI	very large-scale integration	1980	$\begin{aligned} & 20,000 \text { to } \\ & 1,000,000 \end{aligned}$	$\begin{array}{r} 10,000 \text { to } \\ 99,999 \end{array}$
ULSI	ultra-large-scale integration	1984	$1,000,000$ and more	100,000 and more
Modern	SI Design 4e: Chapter 1		Copyright © 20	08 Prentice Hall

VLSI

- Acronym of VLSI
- Very-Large-Scale Integration
- A VLSI contains more than a million or so switching devices or logic gates
- Early in the first decade of the $21^{\text {st }}$ century, the actual number of transistors has exceeded 100 million
- A piece of silicon (a chip) is typically about 1 centimeter on a side

Advantages of VLSI

■ Size: Integrated circuits are much Small size leads to advantages in speed and power consumption, since smaller components have smaller parasitic resistances, capacitances, and inductances.
■ Speed: Signals can be switched between logic 0 and logic 1 much quicker within a chip than they can between chips.

- Power consumption:
- Logic operations within a chip take much less power,
- Smaller parasitic capacitances and resistances require less power to drive them

VLSI and systems

VLSI and you

- Microprocessors:
- personal computers;
- microcontrollers.
- DRAM/SRAM.
- Lower power consumption

■ Special-purpose processors

- Integration improves the design:
- Integration reduces manufacturing cost-(almost) no manual assembly.

VLSI Design Styles....
- Full Custom - Application-Specific Integrated Circuit (ASIC)--- - Programmable Logic (PLD, FPGA) - System-on-a-Chip

Full Custom Design
.. a methodology for designing integrated circuits
by specifying the layout of each individual
transistor and the interconnections between them
- Each circuit element carefully "handcrafted"
- Huge design effort
- High Design \& NRE Costs / Low Unit Cost
- High Performance
- Typically used for high-volume applications
Macen visl Design nec chaper 1

Programmable Logic (FPGA)

It contains ten thousand to more than a million logic gates with programmable interconnection. Programmable interconnections are available for users or designers to perform given functions easily

- Pre-manufactured components with programmable interconnect
- CAD tools greatly reduce design effort
- Low Design Cost / Low NRE Cost / High Unit Cost
- Lower Performance

SoC is a system on a VLSI chip that has all needed analog as well as digital circuits, processors and software, for example, single-chip mobile phone

- Idea: combine several large blocks
» Predesigned custom cores (e.g., microcontroller) "intellectual property" (IP)
» ASIC logic for special-purpose hardware
» Programmable Logic (PLD, FPGA)
» Analog
- Open issues
» Keeping design cost low

Moore's Law

- Gordon Moore: co-founder of Intel.
- Predicted that number of transistors per chip would grow exponentially (double every 18 months).
- Exponential improvement in technology is a natural trend: steam engines, dynamos, automobiles.

