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Stable and Unstable Equilibrium 

 

 

If a slight displacement of the system from its position of equilibrium results only in small bounded motion 

about the point of equilibrium, then the system is said to be in a stable equilibrium. This corresponds to the 

minimum of potential energy because bounded motion is possible only when the potential at equilibrium is 

minimum. Since the potential is minimum at equilibrium, any deviation from the equilibrium position will 

result in an increase in potential energy and the kinetic energy would then decease (as the energy is 

conserved). Due to decrease in kinetic energy, the velocities would also decrease and approach zero in the 

course of time; the motion is thus bounded. Examples are a bar pendulum at rest, a suspension galvanometer 

at its zero position.  

If a slight displacement of the system from its position of equilibrium results only in unbounded motion, 

then the system is said to be in an unstable equilibrium. Such a state is not characterized by minimum of 

potential energy. Therefore, if the system is disturbed from equilibrium by an increase in energy above the 

equilibrium energy, then the potential energy would decrease. Consequently, kinetic energy and hence 

velocities would increase infinitely with time, indicating unbound motion. A bottle standing on the edge of 

its mouth, a cone resting on its apex, a book placed on its edge are examples of unstable equilibrium. 

 

If a system is in neutral equilibrium, the system will move slightly and remain at rest again instead of 

returning to its original position or depart far away if a slight push is exerted on the system. 
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Formulation of the Problem  

Let us consider a conservative systems in which the potential energy is a function of position only. It will be 

assumed that the transformation equations defining the generalized coordinates of the system, 

𝑞1, 𝑞2, 𝑞3 ……𝑞𝑛, do not involve the time explicitly. Thus, time-dependent constraints are to be excluded. 

The system is said to be in equilibrium when the generalized forces acting on the system vanish:  

𝑄𝑖 = −(
𝜕𝑉

𝜕𝑞𝑖
) = 0 

The potential energy therefore has an extremum at the equilibrium configuration of the 

system 𝑞01, 𝑞02, 𝑞03 ……𝑞0𝑛.If the configuration is initially at the equilibrium position, with zero initial 

velocities �̇�𝑛 then the system will continue in equilibrium indefinitely.  

We shall be interested in the motion of the system within the immediate neighborhood of a configuration of 

stable equilibrium. Since the departures from equilibrium are too small, all functions may be expanded in a 

Taylor series about the equilibrium, retaining only the lowest-order terms. The deviations of the generalized 

coordinates from equilibrium will be denoted by 𝜂𝑖 

𝑞𝑖 = 𝑞0𝑖 + 𝜂𝑖 

and these may be taken as the new generalized coordinates of the motion. The Taylor series expansion of 

potential V about  𝑞0𝑖 is  

𝑉(𝑞1, 𝑞2, ……𝑞𝑛) = 𝑉(𝑞01, 𝑞02, … 𝑞0𝑛. ) +
(𝑞𝑖 −  𝑞0𝑖)

1!
(
𝜕𝑉

𝜕𝑞𝑖
)
 𝑞0𝑖

+
(𝑞𝑖 −  𝑞0𝑖)

2

2!
(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

 𝑞0𝑖

𝜂𝑖𝜂𝑗+. . . ……. 

⇒ 𝑉(𝑞𝑖) = 𝑉(𝑞0𝑖) + (
𝜕𝑉

𝜕𝑞𝑖
)
 𝑞0𝑖

𝜂𝑖 +
1

2
(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

 𝑞0𝑖

𝜂𝑖𝜂𝑗+. . . ………. 

If we set equilibrium at 0 then, 

𝑉(𝑞𝑖) = 𝑉(0) + (
𝜕𝑉

𝜕𝑞𝑖
)
0

𝜂𝑖 +
1

2
(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

𝜂𝑖𝜂𝑗+. . . ………. 

First term 𝑉(0) is a constant and has no physical significance in the sense that we can measure the potential 

energy with respect to any position and indeed we can choose it to be equal to zero. The first derivative of 

U with respect to x is zero because the curve is a minimum at x=0. The second derivative of U with respect 

to x, evaluated at  𝑞0𝑖 = 0 will be a constant. Thus we retain only the first non-zero terms in the expansion 

is  

𝑉(𝑞𝑖) =
1

2
(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

𝜂𝑖𝜂𝑗 =
1

2
𝑉𝑖𝑗𝜂𝑖𝜂𝑗 

Where the second derivatives of V have been designated by the constants 𝑉𝑖𝑗 depending only upon the 

equilibrium values of the 𝑞𝑖 's. It is obvious from their definition that the 𝑉𝑖𝑗 's are symmetrical, that is, that 

𝑉𝑖𝑗 = 𝑉𝑗𝑖. The 𝑉𝑖𝑗 coefficients can vanish under a variety of circumstances. Thus, the potential can simply be 

independent of a particular coordinate, so that equilibrium occurs at any arbitrary value of that coordinate. 

We speak of such cases as neutral or indifferent equilibrium.  

(1) 

(2) 

(3) 

(4) 
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A similar series expansion can be obtained for the kinetic energy. Since the generalized coordinates do not 

involve the time explicitly, the kinetic energy is a homogeneous quadratic function of the velocities 

𝑇 =
1

2
𝑚𝑖𝑗�̇�𝑖�̇�𝑗 =

1

2
𝑚𝑖𝑗�̇�𝑖�̇�𝑗 

The coefficients 𝑚𝑖𝑗 are in general functions of the coordinates qk, but they may be expanded in a Taylor 

series about the equilibrium configuration:  

𝑚𝑖𝑗(𝑞1, 𝑞2, ……𝑞𝑛) = 𝑚𝑖𝑗(𝑞01, 𝑞02, … 𝑞0𝑛. ) + (
𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
)

0

𝜂𝑘+. . . ……. 

⇒ 𝑚𝑖𝑗(𝑞𝑖) = 𝑚𝑖𝑗(0) + (
𝜕𝑚𝑖𝑗

𝜕𝑞𝑖
)

0

𝜂𝑘+. . . ………. 

As eqn.(5) is already quadratic in the �̇�𝑖 's, the lowest non-vanishing approximation to T is obtained by 

dropping all but the first term in the expansions of 𝑚𝑖𝑗. Denoting the constant values of the m, j functions at 

equilibrium by 𝑇𝑖𝑗, we can therefore write the kinetic energy as  

𝑇 =
1

2
𝑇𝑖𝑗�̇�𝑖�̇�𝑗 

It is again obvious that the constants 𝑇𝑖𝑗 must be symmetric, since the individual terms in eqn.(6) are 

unaffected by an interchange of indices. From Eqs. (4) and (6), the Lagrangian is given by  

𝐿 =
1

2
(𝑇𝑖𝑗�̇�𝑖�̇�𝑗 − 𝑉𝑖𝑗𝜂𝑖𝜂𝑗) 

Taking the 𝜂𝑖′s as the general coordinates, the Lagrangian of Eq. (7) leads to the following n equations of 

motion:  

𝑇𝑖𝑗�̈�𝑖 + 𝑉𝑖𝑗𝜂𝑖 = 0 

These are the required equations motion. 

 

 

Eigenvalue Equation and Principal Axis Transformation 

The equations of motion 𝑇𝑖𝑗�̈�𝑖 + 𝑉𝑖𝑗𝜂𝑖 = 0 are linear differential equations with constant coefficients, of a 

form familiar from electrical circuit theory. We are therefore led to try an oscillatory solution of the form  

𝜂𝑖 = 𝐶𝑎𝑖𝑒
−𝑖𝜔𝑡 

Here 𝐶𝑎𝑖 gives the complex amplitude of the oscillation for each coordinate 𝜂𝑖 the factor C being introduced 

for convenience as a scale factor, the same for all coordinates. It is understood of course that it is the real 

part of the equation of motion correspond to the actual motion. Substitution of the trial solution (1) into the 

equations of motion leads to the following equations for the amplitude factors:  

𝑉𝑖𝑗𝑎𝑖 − 𝜔2𝑇𝑖𝑗𝑎𝑖 = 0 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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Equations (2) constitute n linear homogeneous equations for the 𝑎𝑖 's, and consequently can have a nontrivial 

solution only if the determinant of the coefficients vanishes:  

|
𝑉11 − 𝜔2𝑇11 𝑉12 − 𝜔2𝑇12 …

𝑉21 − 𝜔2𝑇21 𝑉22 − 𝜔2𝑇22 ⋯
⋮ ⋮ ⋯

| = 0 

This determinantal condition is in effect an algebraic equation of the nth degree for 𝜔2, and the roots of the 

determinant provide the frequencies for which Eq. (1) represents a correct solution to the equations of 

motion. Equations (2) represent a type of eigenvalue equation, for writing 𝑇𝑖𝑗 as an element of the matrix 𝑇 

the equations may be written  

𝑽𝒂 = 𝜆𝑻𝒂 

Here the effect of V on the eigenvector a is not merely to reproduce the vector times the factor 𝜆, as in the 

ordinary eigenvalue problem. Instead, the eigenvector is such that V acting on a produces a multiple of the 

result of T acting on a. The eigenvectors a are orthogonal. So the matrix of the eigenvectors, a, diagonalizes 

both T and V.  

Let ak be a column matrix representing the kth eigenvector, satisfying the eigenvalue equation  

𝑽𝒂𝒌 = 𝜆𝑘𝑻𝒂𝒌 

Assume now that the only solution to Eq. (5) involves complex 𝜆 and ak. The adjoint equation, i.e., the 

transposed complex conjugate equation, for 𝜆𝑙 has the form  

𝒂𝒍
†𝑽 = 𝜆𝑙𝑻𝒂 

Here 𝒂𝒍
†
 stands for the adjoint vector—the complex conjugate row matrix and explicit use has been made of 

the fact that the V and T matrices are real and symmetric. Multiply Eq. (6) from the right by 𝜆𝑘 and subtract 

the result of the similar product of Eq. (5) from the left with 𝒂𝒍
†
. The left-hand side of the difference equation 

vanishes, leaving only  

0 = (𝜆𝑘 − 𝝀𝒍
∗)𝒂𝒍

†𝑻𝒂𝒌 

When  l= k, Eq. (7) becomes  

0 = (𝜆𝑘 − 𝝀𝒍
∗)𝒂𝒌

†𝑻𝒂𝒌 

We want to prove that the matrix product is not only real but is positive definite. For this purpose, separate 

ak into its real and imaginary components,  

𝒂𝒌 = 𝜶𝒌 + 𝒊𝜷𝒌 

The matrix product can then be written as  

𝒂𝒌
†𝑻𝒂𝒌 = �̃�𝒌𝑻𝜶𝒌 + �̃�𝒌𝑻𝜷𝒌 + 𝒊(�̃�𝒌𝑻𝜷𝒌 − �̃�𝒌𝑻𝜶𝒌) 

The imaginary term vanishes by virtue of the symmetry of T and therefore, as noted earlier, the matrix 

product is real. Further, the kinetic energy can be rewritten in terms of a column matrix �̇� as  

𝑇 =
1

2
 �̃̇�𝑻 �̇� 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Now let us multiply now Eq. (5) by ak from the left and solve for 𝜆𝑘 

𝜆𝑘 =
�̃�𝒌𝑽𝒂𝒌

�̃�𝒌𝑻𝒂𝒌
 

The denominator of this expression is equal to twice the kinetic energy for velocities aik and since the 

eigenvectors are all real, the sum must be positive definite. Similarly, the numerator is the potential energy 

for coordinates aik, and the condition that V be a minimum at equilibrium requires that the sum must be 

positive or zero. Neither numerator nor denominator can be negative, and the denominator cannot be zero, 

hence A is always finite and positive. (It may however be zero.) Recall that 𝜆 stands for 𝜔2, so that positive 

𝜆 corresponds to real frequencies of oscillation. Were the potential not a local minimum, the numerator in 

might be negative, giving rise to imaginary frequencies that would produce an unbounded exponential 

increase of the in with time. Such motion would obviously be unstable. 

From Eq. (7) which, in view of the reality of the eigenvalues and eigenvectors, can be written  

(𝜆𝑘 − 𝜆𝑙)�̃�𝒍𝑻𝒂𝒌 = 0 

If all the roots of the secular equation are distinct, then Eq. (7*) can hold only if the matrix product vanishes 

for l not equal to k:  

�̃�𝒍𝑻𝒂𝒌 = 0,         𝑙 ≠ 𝑘 

It has been remarked several times that the values of the aik's are not completely fixed by the eigenvalue 

equations (2). We can remove this indeterminacy by requiring further that  

�̃�𝒍𝑻𝒂𝒌 = 𝐼 

There are n such equations (12), and they uniquely fix the one arbitrary component of each of the n 

eigenvectors ak. If we form all the eigenvectors ak into a square matrix A with components aik, then the two 

equations (12 a and b) can be combined into one matrix equation:  

�̃�𝑻𝑨 = 𝐼 

The similarity transformation of a matrix C by a matrix B was defined by the equation  

𝑪′ =  𝑩𝑪𝑩−𝟏 

We now introduce the related concept of the congruence transformation of C by A according to the relation  

𝑪′ =  �̃�𝑪𝑨 

If A is orthogonal, so that �̃� = 𝑨−𝟏, there is no essential difference between the two types of transformation 

(as may be seen by denoting A-1 by the matrix B). Equation (13) can therefore be read as the statement that 

A transforms T by a congruence transformation into a diagonal matrix, in particular into the unit matrix.  

If a diagonal matrix 𝜆 with elements 𝜆𝑖𝑘 = 𝜆𝑘𝛿𝑙𝑘 is introduced, the eigenvalue equations (5) may be written  

𝑉𝑖𝑗𝑎𝑗𝑘 = 𝑇𝑖𝑗𝑎𝑗𝑖𝜆𝑙𝑘 

Which becomes in matrix notation  

𝑽𝑨 =  𝑻𝑨𝝀 

Multiplying by �̃� from the left, Eq. (15) takes the form  

(7*) 

(11) 

(12a) 

(12b) 

(13) 

(14) 

(15) 
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�̃�𝑽𝑨 = �̃�𝑻𝑨𝝀 

Which by Eq. (13) reduces to  

�̃�𝑽𝑨 = 𝝀 

Our final equation (16) states that a congruence transformation of V by A changes it into a diagonal matrix 

whose elements are the eigenvalues 𝜆𝑘 . Eq. (16) has solutions  

|𝑉 − 𝜆𝐼| = 0 

In summary we can use normalized Cartesian coordinates so that 𝑇𝑖𝑗 = 𝛿𝑖𝑗 which reduces the physics to 

solving  

�̃�𝑨 = 𝑰     𝑎𝑛𝑑      �̃�𝑽𝑨 = 𝑽𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 

or we may choose more general coordinates where 𝑇𝑖𝑗 ≠ 𝛿𝑖𝑗, even allowing 𝑇𝑖𝑗 = 𝑇𝑗𝑖 ≠ 0 for i ≠ j, and use  

�̃�𝑻𝑨 = 𝑰        𝑎𝑛𝑑      �̃�𝑽𝑨 = 𝑽𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 

 to solve the general problem. 

As an example, we consider a particle of mass m with two degrees of freedom (x1, x2) that obeys the 

Lagrangian  

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2) −

1

2
𝑉𝑖𝑗𝑥𝑖𝑥𝑗 

where the 𝑉𝑖𝑗 are constants. The congruence transformation (16) has solutions only when Eq. (16*) is 

satisfied, so  

|
𝑉11 − 𝜆 𝑉12

𝑉21 𝑉22 − 𝜆
| = 0 

This equation has two solutions:  

𝜆1 =
1

2
(𝑉11 + 𝑉22 + √(𝑉11 − 𝑉22)

2 + 4𝑉12𝑉21) 

𝜆2 =
1

2
(𝑉11 + 𝑉22 − √(𝑉11 − 𝑉22)

2 + 4𝑉12𝑉21) 

Associated with the eigenvalues 𝜆𝑖, are the eigenvectors 𝑎𝑖𝑗 that satisfy  

𝑎𝑖𝑗(𝑉𝑖𝑗 − 𝜆𝑖𝛿𝑖𝑗) = 0    𝑎𝑛𝑑   𝑎𝑖1
2 + 𝑎𝑖2

2 = 1      (𝑛𝑜 𝑠𝑢𝑚 𝑜𝑛 𝑖)  

We consider two limiting cases. The first case assumes V11 > V22 > 0 and 0 ≠ V21 = V12 << (V11- V22). We 

write the small quantity 𝛿 = [V12/ (V11 -V22)] then, to first order in 𝛿, the eigenvalues are  

𝜆1 = 𝑉11 + 𝑉22𝛿 

𝜆2 = 𝑉11 − 𝑉22𝛿 

whose eigenvectors are, to lowest order in 𝛿,  

(16) 

(16*) 

(17) 
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𝒂 = [
𝑎11 𝑎12

𝑎21 𝑎22
] =

[
 
 
 1 −

𝛿2

2
         −𝛿 + −

𝛿3

2

𝛿 −
𝛿3

2
              1 −

𝛿2

2 ]
 
 
 

 

These correspond to the relations  

𝑎11 = 𝑎22      and      𝑎12 = −𝑎21 

The other limiting case assumes V12 > V22 > 0 and (V11 - V22) << V12 = V21 . We now write 𝜀 = (V11 - 

V22)/8V12, which is a small quantity. To first order in 𝜀 the eigenvalues are  

𝜆1 =
1

2
(𝑉11 + 𝑉22) + 𝑉12 + (𝑉11 − 𝑉22)𝜀 

𝜆2 =
1

2
(𝑉11 + 𝑉22) − 𝑉12 − (𝑉11 − 𝑉22)𝜀 

whose eigenvectors are, to lowest order in 𝜀,  

𝒂 = [
𝑎11 𝑎12

𝑎21 𝑎22
] =

[
 
 
 
1

√2
(1 + 2𝜀)          −

1

√2
(1 − 2𝜀)

1

√2
(1 − 2𝜀)              

1

√2
(1 + 2𝜀)

]
 
 
 

 

The relations among the components of the eigenvectors ate different than in the previous example. Here 

𝑎12 = −𝑎21 is slightly less than 
1

√2
 while 𝑎11 = 𝑎22 is slightly greater than 

1

√2
. The preceding 

approximations looked at the behavior of the eigenvalues and eigenvectors in limiting cases.  

In general, any pair of eigenvectors randomly chosen out of the infinite set of allowed vectors will not be 

orthogonal. Nevertheless, it is always possible to construct a pair of allowed vectors that are orthogonal, and 

these can be used to form the orthogonal matrix A. This processes of constructing orthogonalized 

eigenvectors in the case of multiple roots is completely analogous to the Gram-Schmidt method of 

constructing a sequence of orthogonal functions out of any arbitrary set of functions. For example, the added 

indeterminacy in the eigenvector components for a double root means that all of the vectors in a plane are 

eigenvectors. We merely choose any two perpendicular directions in the plane as being the new principal 

axes, with the eigenvectors in A as unit vectors along these axes.  

 

Frequencies of Free Vibration and Normal Coordinates  

If the system is displaced slightly from equilibrium and then released, the system performs small oscillations 

about the equilibrium with the frequencies 𝜔1, 𝜔2 ……𝜔𝑛. The solutions of the secular equation are therefore 

often designated as the frequencies of free vibration or as the resonant frequencies of the system. The general 

solution of the equations of motion may now be written as a summation over an index k:  

𝜂𝑖 = 𝐶𝑘𝑎𝑖𝑘𝑒−𝑖𝜔𝑘𝑡 

there being a complex scale factor Ck for each resonant frequency. It might be objected that for each solution 

𝜆𝑘 of the secular equation there are two resonant frequencies +𝜔𝑘 and −𝜔𝑘. The eigenvector ak would be 

(18) 

(19) 

(1) 
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the same for the two frequencies, but the scale factors 𝐶𝑘
+ and 𝐶𝑘

− could conceivably be different. On this 

basis, the general solution should appear as  

𝜂𝑖 = 𝑎𝑖𝑘(𝐶𝑘
+𝑒+𝑖𝜔𝑘𝑡 + 𝐶𝑘

−𝑒−𝑖𝜔𝑘𝑡) 

Recall however that the actual motion is the real part of the complex solution, and the real part of either (1) 

or (2) can be written in the form  

𝜂𝑖 = 𝑓𝑘𝑎𝑖𝑘 cos(𝜔𝑘𝑡 + 𝛿𝑘) 

where the amplitude fk and the phase 𝛿𝑘 are determined from the initial conditions. The orthogonality 

properties of A greatly facilitate the determination of the scale factors Ck in terms of the initial conditions. 

At t = 0, the real part of Eq. (1) reduces to  

𝜂𝑖(0) = 𝑅𝑒 𝐶𝑘𝑎𝑖𝑘 

where Re stands for "real part of" Similarly, the initial value of the velocities is obtained as  

�̇�𝑖(0) = 𝐼𝑚 𝐶𝑘𝑎𝑖𝑘𝜔𝑘 

 

where Im Ck denotes the imaginary part of Ck. From these 2n equations, the real and imaginary parts of the 

n constants Ck may be evaluated. To solve Eq. (6.37), for example, let us first write it in terms of column 

matrices 𝜼 (0) and C:  

𝜼(0) = 𝑨 𝑅𝑒 𝑪 

If we multiply by �̃�𝑻 from the left and use �̃�𝑻𝑨 = 𝑰 we immediately obtain a solution for Re C:  

�̃�𝑻𝜼(0) = �̃�𝑻𝑨 𝑅𝑒 𝑪 = 𝑅𝑒 𝑪 

or, taking the lth component, 

𝑅𝑒 𝐶𝑙 = 𝑎𝑙𝑗𝑇𝑗𝑘�̇�𝑘(0) 

A similar procedure leads to the imaginary part of the scale factors as 

𝐼𝑚 𝐶𝑙 =
1

𝜔𝑙
𝑎𝑙𝑗𝑇𝑗𝑘�̇�𝑘(0) 

Equations (7) and (8) thus permit the direct computation of the complex factors Cl (and therefore the 

amplitudes and phases) in terms of the initial conditions and the matrices T and A.  

It is possible to transform from the 𝜂𝑖 to a new set of generalized coordinates that are all simple periodic 

functions of time —a set of variables known as the normal coordinates. We define a new set of coordinates  

𝜂𝑖 = 𝑎𝑖𝑗𝜁𝑗 

or, in terms of single column matrices 𝜼 and 𝜻.  

𝜼 = 𝑨𝜻 

The potential energy in matrix notation as  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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𝑽 =
1

2
�̃�𝑽𝜼 

Now, the single-row transpose matrix �̃� is related to 𝜁 by the equation  

�̃� = 𝑨�̃� = �̃��̃� 

so that the potential energy can be written also as  

𝑽 =
1

2
�̃��̃�𝑽𝑨𝜻 

But A diagonalizes V by a congruence transformation and the potential energy therefore reduces simply to  

𝑽 =
1

2
�̃�𝝀𝜻 =

1

2
𝜔𝑘

2𝜁𝑘
2 

The kinetic energy has an even simpler form in the new coordinates. Since the velocities transform as the 

coordinates, T transforms to  

𝑻 =
1

2
�̃̇��̃�𝑽𝑨�̇� 

which reduces to  

𝑻 =
1

2
�̃̇��̇� =

1

2
𝜁�̇�𝜁�̇� 

The equations of motion share in the simplification resulting from their use. The new Lagrangian is  

𝐿 =
1

2
(𝜁�̇�𝜁�̇� − 𝜔𝑘

2𝜁𝑘
2) 

so that the Lagrange equations for 𝜁𝑘 are  

𝜁�̈� + 𝜔𝑘
2𝜁𝑘 = 0 

Equations (15) have the immediate solutions  

𝜁𝑘 = 𝐶𝑘𝑒−𝑖𝜔𝑘𝑡 

Each of the new coordinates is thus a simply periodic function involving only one of the resonant 

frequencies. As mentioned earlier, it is therefore customary to call the 𝜁’s the normal coordinates of the 

system. 

Each normal coordinate corresponds to a vibration of the system with only one frequency, and these 

component oscillations are spoken of as the normal modes of vibration. All of the particles in each mode 

vibrate with the same frequency and with the same phase; the relative amplitudes being determined by the 

matrix elements 𝑎𝑖𝑗.  

Harmonics of the fundamental frequencies are absent in the complete motion essentially because of the 

stipulation that the amplitude of oscillation be small. We are then allowed to represent the potential as a 

quadratic form, which is characteristic of simple harmonic motion. The normal coordinate transformation 

emphasizes this point.  

 

(11) 

(12) 

(13) 

(14) 

(15) 
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Free Vibrations of a Linear Triatomic Molecule  

To illustrate the technique for obtaining the resonant frequencies and normal modes, we shall consider in 

detail a model based on a linear symmetrical tri-atomic molecule. In the equilibrium configuration of the 

molecule, two atoms of mass in are symmetrically located on each side of an atom of mass M (Fig. 1). All 

three atoms are on one straight line, the equilibrium distances apart being denoted by b. For simplicity, we 

shall first consider only vibrations along the line of the molecule, and the actual complicated interatomic 

potential will be approximated by two springs of force constant k joining the three atoms. There are three 

obvious coordinates marking the position of the three atoms on the line. In these coordinates, the potential 

energy is  

𝑉 =
1

2
𝑘(𝑥2 − 𝑥1 − 𝑏)2 +

1

2
𝑘(𝑥3 − 𝑥2 − 𝑏)2 

We now introduce coordinates relative to the equilibrium positions:  

𝜂𝑖 = 𝑥𝑖 − 𝑥0𝑖 

Where  

𝑥02 − 𝑥01 = 𝑏 = 𝑥03 − 𝑥02 

 

 

Fig.1: Model of a linear symmetrical triatomic molecule. 

 

The potential energy then reduces to  

𝑉 =
1

2
𝑘{𝑥2 − 𝑥1 − (𝑥02 − 𝑥01)}

2 +
1

2
𝑘{𝑥3 − 𝑥2 − (𝑥03 − 𝑥02)}

2 

=
1

2
𝑘(𝜂2 − 𝜂1)

2 +
1

2
𝑘(𝜂3 − 𝜂2)

2 

=
1

2
𝑘(𝜂2

2 − 2𝜂1𝜂2 + 𝜂1
2 + 𝜂3

2 − 2𝜂2𝜂3 + 𝜂2
2) 

⇒ 2𝑉 = 𝑘(𝜂1
2 + 2𝜂2

2 + 𝜂3
2 − 2𝜂1𝜂2 − 2𝜂2𝜂3) 

2𝑉 = [𝜂1 𝜂2 𝜂3] [
𝑘 −𝑘 0

−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

] [

𝜂1

𝜂2

𝜂3

] 

 

Hence, the V tensor has the form  

(1) 
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𝑉 = (𝑉𝑖𝑗) = [
𝑘 −𝑘 0

−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

] 

The kinetic energy has an even simpler form:  

𝑇 =
1

2
𝑚(�̇�1

2 + �̇�3
2) +

1

2
𝑀�̇�2

2 

⇒ 2𝑇 = [�̇�1 �̇�2 �̇�3] [
𝑚 0 0
0 𝑀 0
0 0 𝑚

] [

�̇�1

�̇�2

�̇�3

] 

⇒ 𝑇 = (𝑇𝑖𝑗) = [
𝑚 0 0
0 𝑀 0
0 0 𝑚

] 

so that the T tensor is diagonal. 

𝜔2𝑇 = [
𝜔2𝑚 0 0

0 𝜔2𝑀 0
0 0 𝜔2𝑚

] 

Combining these two tensors,  

𝑉 − 𝜔2𝑇 = [
𝑘 −𝑘 0

−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

] − [
𝜔2𝑚 0 0

0 𝜔2𝑀 0
0 0 𝜔2𝑚

] = 0 

[
𝑘 − 𝜔2𝑚 −𝑘 0

−𝑘 2𝑘 − 𝜔2𝑀 −𝑘
0 −𝑘 𝑘 − 𝜔2𝑚

] = 0 

(𝑘 − 𝜔2𝑚){(2𝑘 − 𝜔2𝑀)(𝑘 − 𝜔2𝑚) − 𝑘2} + 𝑘{−𝑘(𝑘 − 𝜔2𝑚)} = 0 

(𝑘 − 𝜔2𝑚)[(2𝑘 − 𝜔2𝑀)(𝑘 − 𝜔2𝑚) − 2𝑘2] = 0 

(𝑘 − 𝜔2𝑚)[2𝑘2 − 2𝑘𝜔2𝑚 − 𝜔2𝑀𝑘 + 𝜔2𝑀𝜔2𝑚 − 2𝑘2] = 0 

𝜔2(𝑘 − 𝜔2𝑚)[−2𝑘𝑚 − 𝑀𝑘 + 𝑀𝜔2𝑚] = 0 

𝜔2(𝑘 − 𝜔2𝑚)[−𝑘(2𝑚 + 𝑀) + 𝑀𝜔2𝑚] = 0 

Which has roots  

𝜔1 = 0;       𝜔2 = √
𝑘

𝑚
 ;       𝜔3 = √

𝑘

𝑚
(
2𝑚

𝑀
+ 1)  

The first eigenvalue, 𝜔1 = 0, may appear somewhat surprising and even alarming at first sight. Such a 

solution does not correspond to an oscillatory motion at all, for the equation of motion for the corresponding 

normal coordinate is  

𝜁1̈ = 0 

(2) 

(3) 

(4) 
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Which produces a uniform translational motion. But this is precisely the key to the difficulty. The vanishing 

frequency arises from the fact that the molecule may be translated rigidly along its axis without any change 

in the potential energy, an example of neutral equilibrium mentioned previously. Since the restoring force 

against such motion is zero, the effective "frequency" must also vanish. We have made the assumption that 

the molecule has three degrees of freedom for vibrational motion, whereas in reality one of them is a rigid 

body degree of freedom.  

 

Normal Coordinates and Normal Modes 

In the principal axis transformation we consider a new set of coordinates. Each of the new coordinates is 

simply a periodic function involving only one of the resonant frequencies which are the normal coordinates 

of the system. 

A normal mode of an oscillating system is a pattern of motion in which all parts of the system move 

sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the 

normal modes takes place at the fixed frequencies. These fixed frequencies of the normal modes of a system 

are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, 

or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials 

and boundary conditions. When relating to music, normal modes of vibrating instruments (strings, air pipes, 

drums, etc.) are called "harmonics" or "overtones". 

 

Forced Vibrations and the Effect of Dissipative Forces  

When the system is set into oscillation by an external driving force that continues to act on the system after 

t = 0 then the vibration is called the forced vibration. The frequency of such a forced oscillation is then deter-

mined by the frequency of the driving force and not by the resonant frequencies. Though, the normal modes 

are of great importance in obtaining the amplitudes of the forced vibration, and the problem is greatly 

simplified by use of the normal coordinates obtained from the free modes.  

If Fj is the generalized force corresponding to the coordinate 𝜂𝑗 then the generalized force Q, for the normal 

coordinate  𝑄𝑖 is  

 𝑄𝑖 =  𝑎𝑖𝑗  𝐹𝑖 

The equations of motion when expressed in normal coordinates now become  

𝜁�̈� + 𝜔2𝜁𝑖 =  𝑄𝑖 

Equations (2) are a set of n inhomogeneous differential equations that can be solved only when we know the 

dependence of Q, on time. While the solution will not be as simple as in the free case, note that the normal 

coordinates preserve their advantage of separating the variables, and each equation involves only a single 

coordinate. 

Frequently, the driving force varies sinusoidally with time. In an acoustic problem, for example, the driving 

force might arise from the pressure of a sound wave impinging on the system, and Qi then has the same 

frequency as the sound wave. Or, if the system is a polyatomic molecule, a sinusoidal driving force is present 

(1) 

(2) 
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if the molecule is illuminated by a monochromatic light beam. Each atom in the molecule is then subject to 

an electromagnetic force whose frequency is that of the incident light. Even where the driving force is not 

sinusoidal with a single frequency, it can often be considered as built up as a superposition of such sinusoidal 

terms. Thus, if the driving force is periodic, it can be represented by a Fourier series; other times, a Fourier 

integral representation is suitable. Since Eqs. (2) are linear equations, its solutions for particular frequencies 

can be superposed to find the complete solution for given  𝑄𝑖. 

It is therefore of general interest to study the nature of the oscillations when the force Q, can be written as  

 𝑄𝑖 =  𝑄0𝑖 cos(𝜔𝑡 + 𝛿𝑖) 

Where 𝜔 is the angular frequency of an external force. The equations of motion now appear as  

𝜁�̈� + 𝜔2𝜁𝑖 =  𝑄0𝑖 cos(𝜔𝑡 + 𝛿𝑖) 

 

A complete solution of Eq. (4) consists of the general solution to the homogeneous equation (that is, the free 

modes of vibration) plus a particular solution to the inhomogeneous equation. By a proper choice of initial 

conditions, the superimposed free vibrations can be made to vanish, centering our interest on the particular 

solution of Eqs. (4) that will obviously have the form 4 

𝜁𝑖 =  𝐵𝑖 cos(𝜔𝑡 + 𝛿𝑖) 

Here the amplitudes  𝐵𝑖 are determined by substituting the solution in Eqs. (5):  

 𝐵𝑖 =
 𝑄0𝑖

𝜔𝑖
2 − 𝜔2

 

The complete motion is then  

𝜂𝑗 = 𝑎𝑗𝑖𝜁𝑖 =
𝑎𝑗𝑖  𝑄0𝑖 cos(𝜔𝑡 + 𝛿𝑖)

𝜔𝑖
2 − 𝜔2

 

Thus, the vibration of each particle is again, composed of linear combinations of the normal modes, but now 

each normal oscillation occurs at the frequency of the driving force.  

Two factors determine the extent to which each normal mode is excited:  

One is the amplitude of the generalized driving force, Q0i. If the force on each particle has no component in 

the direction of vibration of some particular normal mode, then obviously the generalized force 

corresponding to the mode will vanish and Q0, will be zero. An external force can excite a normal mode 

only if it tends to move the particles in the same direction as in the given mode. 

The second factor is the closeness of the driving frequency to the free frequency of the mode. As a con-

sequence of the denominators in Eq. (7), the closer 𝜔 approaches to any 𝜔I, the stronger will that mode be 

excited relative to the other modes. Indeed, Eq. (7) apparently predicts infinite amplitude when the driving 

frequency agrees exactly with one of the 𝜔i's - the familiar phenomenon of resonance. Note that the 

oscillations are in phase with the driving force when the frequency is less than the resonant frequency, but 

that there is a phase change of at in going through the resonance.  

** 

(3) 

(4) 

(5) 

(6) 

(7) 
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Our discussion has been unrealistic in that the absence of dissipative or frictional forces has been assumed. 

In many physical systems, these forces, when present, are proportional to the particle velocities and can 

therefore be derived from a dissipation function ℱ. Let us first consider the effects of frictional forces on the 

free modes of vibration. From its definition, ℱ must be a homogeneous quadratic function of the velocities:  

ℱ =
1

2
ℱ𝑖𝑗�̇�𝑖�̇�𝑗 

The coefficients ℱ𝑖𝑗  are clearly symmetric, ℱ𝑖𝑗 = ℱ𝑗𝑖, and in general will be functions of the coordinates. 

Since we are concerned with only small vibrations about equilibrium, it is sufficient to expand the 

coefficients about equilibrium and retain only the first, constant term, exactly as was done for the kinetic 

energy. In future applications of Eq. (8), we shall take ℱ𝑖𝑗 as denoting these constant factors. Recall that 2ℱ 

is the rate of energy dissipation due to the frictional forces. The dissipation function ℱ therefore can never 

be negative. The complete set of Lagrange equations of motion now become  

𝑇𝑖𝑗�̈�𝑗 + ℱ𝑖𝑗�̇�𝑗 + 𝑉𝑖𝑗𝜂𝑗 = 0 

Clearly in order to find normal coordinates for which the equations of motion would be decoupled, it is 

necessary to find a principal axis transformation that simultaneously diagonalizes the three quadratic forms 

T, V, and ℱ As was shown above, this is not in general possible; normal modes cannot usually be found for 

any arbitrary dissipation function.  

There are however some exceptional cases when simultaneous diagonalization is possible. For example, if 

the frictional force is proportional both to the particle's velocity and its mass, then F will be diagonal 

whenever T is. When such simultaneous diagonalization is feasible, then the equations of motion are 

decoupled in the normal coordinates with the form  

𝜁�̈� + ℱ𝑖𝜁�̇� + 𝜔2𝜁𝑖 = 0 

Here the ℱ𝑖 's are the nonnegative coefficients in the diagonalized form of ℱ when expressed in terms of 𝜁𝑖. 

Being a set of linear differential equations with constant coefficients, Eqs. (10) may be solved by functions 

of the form  

𝜁𝑖 = 𝐶𝑖𝑒
−𝑖𝜔𝑖

′𝑡 

where 𝜔𝑖
′ satisfies the quadratic equation  

𝜔𝑖
′2 + 𝑖𝜔𝑖

′ℱ𝑖 − 𝜔𝑖
2 = 0 

Equation (6.70) has the two solutions  

𝜔𝑖
′ = ±√𝜔𝑖

2 −
ℱ𝑖

2

4
− 𝑖

ℱ𝑖

2
 

The motion is therefore not a pure oscillation, for 𝜔𝑖
′ is complex. It is seen from Eq. (13) that the imaginary 

part of 𝜔𝑖
′ results in a factor exp(−

ℱ𝑖𝑡

2
), and by reason of the nonnegative nature of of the ℱ𝑖 's, this is always 

an exponentially decreasing function of time. The presence of a damping factor due to the friction is hardly 

unexpected. As the particles vibrate, they do work against the frictional forces, and the energy of the system 

(and hence the vibration amplitudes) must decrease with time. The real part of Eq. (13) corresponds to the 

oscillatory factor in the motion; note that the presence of friction also affects the frequency of the vibration. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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However, if the dissipation is small, the squared term in I; may be neglected, and the frequency of oscillation 

reduces to the friction-free value.  
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