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Capacitance and Dielectrics 

Consider two conductors carrying charges of equal magnitude but of opposite sign, as shown in Fig. 1. 

Such a combination of two conductors is called a capacitor. The conductors are called plates. A potential 

difference ∆V exists between the conductors due to the presence of the charges. Because the unit of 

potential difference is the volt, a potential difference is often called a voltage. We shall use this term to 

describe the potential difference across a circuit element or between two points in space.  

What determines how much charge is on the plates of a capacitor for a 

given voltage? In other words, what is the capacity of the device for 

storing charge at a particular value of ∆V? Experiments show that the 

quantity of charge Q on a capacitor is linearly proportional to the 

potential difference between the conductors; that is, Q ∝ ∆𝑉. The 

proportionality constant depends on the shape and separation of the 

conductors. We can write this relationship as Q= 𝐶∆𝑉 if we define 

capacitance as follows: 

The capacitance C of a capacitor is the ratio of the magnitude of the 

charge on either conductor to the magnitude of the potential difference 

between them:  

𝐶 =
𝑄

∆𝑉
     

Capacitance has SI units of coulombs per volt. The SI unit of 

capacitance is the farad (F), which was named in honor of Michael Faraday: 1F=1C/V. The farad is a very 

large unit of capacitance. In practice, typical devices have capacitances ranging from microfarads (10-6 F) 

to picofarads (10-12 F). For practical purposes, capacitors often are labeled “mF” for microfarads and 

“mmF” for micromicrofarads or, equivalently, “pF” for picofarads. 

 

Parallel-Plate Capacitors 

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Fig. 1. One plate 

carries a charge +Q, and the other carries a charge -Q. Let us consider how the geometry of these 

conductors influences the capacity of the combination to store charge. Recall that charges of like sign 

repel one another. As a capacitor is being charged by a battery, electrons flow into the negative plate and 

out of the positive plate. If the capacitor plates are large, the accumulated charges are able to distribute 

themselves over a substantial area, and the amount of charge that can be stored on a plate for a given 

potential difference increases as the plate area is increased. Thus, we expect the capacitance to be 

proportional to the plate area A. 

Now let us consider the region that separates the plates. If the battery has a constant potential difference 

between its terminals, then the electric field between the plates must increase as d is decreased. Let us 

imagine that we move the plates closer together and consider the situation before any charges have had a 

 

Fig. 1: A capacitor consists of two 

conductors carrying charges of equal 

magnitude but opposite sign. (1) 
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chance to move in response to this change. Because no charges have moved, the electric field between the 

plates has the same value but extends over a shorter distance. 

 

 

Fig. 1: A parallel-plate capacitor consists of two parallel conducting plates, each of area A, separated by 

a distance d. 
 

Thus, the magnitude of the potential difference between the plates ∆𝑉 = 𝐸𝑑 is now smaller. The difference 

between this new capacitor voltage and the terminal voltage of the battery now exists as a potential 

difference across the wires connecting the battery to the capacitor. This potential difference results in an 

electric field in the wires that drives more charge onto the plates, increasing the potential difference 

between the plates. When the potential difference between the plates again matches that of the battery, the 

potential difference across the wires falls back to zero, and the flow of charge stops. Thus, moving the 

plates closer together causes the charge on the capacitor to increase. If d is increased, the charge decreases. 

As a result, we expect the device’s capacitance to be inversely proportional to d. 

 

Fig. 2: (a) The electric field between the plates of a parallel-plate capacitor is uniform near the center but 

nonuniform near the edges. (b) Electric field pattern of two oppositely charged conducting parallel 

plates. Small pieces of thread on an oil surface align with the electric field. 
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We can verify these physical arguments with the following derivation. The surface charge density on 

either plate is 𝜎 =
𝑄

𝐴
. If the plates are very close together (in comparison with their length and width), we 

can assume that the electric field is uniform between the plates and is zero elsewhere. The electric field 

between the plates is 

 

Because the field between the plates is uniform, the magnitude of the potential difference between the 

plates equals Ed; therefore, 

 

Substituting this result, we find that the capacitance is 

 

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates and 

inversely proportional to the plate separation, just as we expect from our conceptual argument. 

 

The Cylindrical Capacitor  

A solid cylindrical conductor of radius a and charge Q is coaxial with a cylindrical shell of negligible thickness, 

radius b > a and charge - Q. Find the capacitance of this cylindrical capacitor if its length is l. 

Solution: It is difficult to apply physical arguments to this configuration, although we can reasonably 

expect the capacitance to be proportional to the cylinder length l for the same reason that parallel-plate 

capacitance is proportional to plate area: Stored charges have more room in which to be distributed. If we 

assume that l is much greater than a and b, we can neglect end effects. In this case, the electric field is 

perpendicular to the long axis of the cylinders and is confined to the region between them (Fig. 1b). We 

must first calculate the potential difference between the two cylinders, which is given in general by 
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Fig. 1: (a) A cylindrical capacitor consists of a solid cylindrical conductor of radius a and length l 

surrounded by a coaxial cylindrical shell of radius b. (b) End view. The dashed line represents the end of 

the cylindrical Gaussian surface of radius r and length l. 

 

  

Where E is the electric field in the region a < r < b. We showed using Gauss’s law that the magnitude of 

the electric field of a cylindrical charge distribution having linear charge density 𝜆 

 is 𝐸𝑟 = 2𝐾𝑒
𝜆

𝑟
. The same result applies here because, according to Gauss’s law, the charge on the outer 

cylinder does not contribute to the electric field inside it. Using this result and noting from Fig.1b that E 

is along r, we find that 

 

Substituting this result into Eqn. 33 and using the fact that 𝜆 =
𝑄

𝑙
, we obtain 

 

Where ΔV is the magnitude of the potential difference, given by ΔV = |Vb – Va| = 2ke𝜆 𝑙𝑛(b/a), a positive 

quantity. As predicted, the capacitance is proportional to the length of the cylinders. As we might expect, 

(1) 
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the capacitance also depends on the radii of the two cylindrical conductors.  From Eqn 1, we see that the 

capacitance per unit length of a combination of concentric cylindrical conductors is  

 

An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric 

cylindrical conductors separated by an insulator. The cable carries electrical signals in the inner and outer 

conductors. Such a geometry is especially useful for shielding the signals from any possible external 

influences. 

 

The Spherical Capacitor 

A spherical capacitor consists of a spherical conducting shell of radius b and charge -Q concentric with a 

smaller conducting sphere of radius a and charge Q. Find the capacitance of this device 

Solution:  

 

Fig. 1: A spherical capacitor consists of an inner sphere of radius a surrounded by a concentric spherical 

shell of radius b. The electric field between the spheres is directed radially outward when the inner 

sphere is positively charged. 

As we know that, the field outside a spherically symmetric charge distribution is radial and given by the 

expression E=KeQ/r2. In this case, this result applies to the field between the spheres  

(a < r < b). From Gauss’s law we see that only the inner sphere contributes to this field. Thus, the potential 

difference between the spheres is  
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The magnitude of the potential difference is 

 

Substituting this value for ΔV into Eqn 33, we obtain  

 

 

Parallel Combination of Capacitors: 

. 

Two capacitors connected as shown in Fig. 1 are known as a parallel combination of capacitors. The left 

plates of the capacitors are connected by a conducting wire to the positive terminal of the battery and are 

therefore both at the same electric potential as the positive terminal. Likewise, the right plates are 

connected to the negative terminal and are therefore both at the same potential as the negative terminal. 

Thus, the individual potential differences across capacitors connected in parallel are all the same 

and are equal to the potential difference applied across the combination. In a circuit such as that 

shown in Figure 1, the voltage applied across the combination is the terminal voltage of the battery. 

Situations can occur in which the parallel combination is in a circuit with other circuit elements; in such 

situations, we must determine the potential difference across the combination by analyzing the entire 

circuit. 

When the capacitors are first connected in the circuit shown in Figure 1, electrons are transferred between 

the wires and the plates; this transfer leaves the left plates positively charged and the right plates negatively 

charged. The energy source for this charge transfer is the internal chemical energy stored in the battery, 

which is converted to electric potential energy associated with the charge separation. The flow of charge 

ceases when the voltage across the capacitors is equal to that across the battery terminals. The capacitors 

reach their maximum charge when the flow of charge ceases. Let us call the maximum charges on the two 

capacitors Q1 and Q2 . The total charge Q stored by the two capacitors is 

Q = Q1 + Q2 

That is, the total charge on capacitors connected in parallel is the sum of the charges on the 

individual capacitors. Because the voltages across the capacitors are the same, the charges that they carry 

are  

(1) 



8           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi/ICE/Chapter-2/2019 

Q1 = C1 Δ𝑉  Q2 = C2 Δ𝑉 

 

Suppose that we wish to replace these two capacitors by one equivalent capacitor having a capacitance 

Ceq , as shown in Figure 1c. The effect this equivalent capacitor has on the circuit must be exactly the 

same as the effect of the combination of the two individual capacitors. That is, the equivalent capacitor 

must store Q units of charge when connected to the battery. We can see from Fig. 1c that the voltage 

across the equivalent capacitor also is ΔV because the equivalent capacitor is connected directly across 

the battery terminals. Thus, for the equivalent capacitor, 

 

 
Fig. 1: (a) A parallel combination of two capacitors in an electric circuit in which the potential 

difference across the battery terminals is ΔV. (b) The circuit diagram for the parallel combination. (c) 

The equivalent capacitance is Ceq = C1 + C2 

Substituting these three relationships for charge into Eqn. 35, we have 
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If we extend this treatment to three or more capacitors connected in parallel, we find the equivalent 

capacitance to be 

 

Thus, the equivalent capacitance of a parallel combination of capacitors is greater than any of the 

individual capacitances. This makes sense because we are essentially combining the areas of all the 

capacitor plates when we connect them with conducting wire. 

 

 

Series Combination 

Two capacitors connected as shown in Figure 1a are known as a series combination of capacitors. The left 

plate of capacitor 1 and the right plate of capacitor 2 are connected to the terminals of a battery. The other 

two plates are connected to each other and to nothing else; hence, they form an isolated conductor that is 

initially uncharged and must continue to have zero net charge. To analyze this combination, let us begin 

by considering the uncharged capacitors and follow what happens just after a battery is connected to the 

circuit. When the battery is connected, electrons are transferred out of the left plate of C1 and into the right 

plate of C2. As this negative charge accumulates on the right plate of C2, an equivalent amount of negative 

charge is forced off the left plate of C2, and this left plate therefore has an excess positive charge. The 

negative charge leaving the left plate of C2 travels through the connecting wire and accumulates on the 

right plate of C1. As a result, all the right plates end up with a charge - Q, and all the left plates end up 

with a charge +Q. Thus, the charges on capacitors connected in series are the same. 

 

Fig. 1: (a) A series combination of two capacitors. The charges on the two capacitors are the same. (b) 

The capacitors replaced by a single equivalent capacitor. 

From Figure 1a, we see that the voltage ΔV across the battery terminals is split between the two capacitors: 
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Where ΔV1 and ΔV2 are the potential differences across capacitors C1 and C2, respectively. In general, the 

total potential difference across any number of capacitors connected in series is the sum of the potential 

differences across the individual capacitors. Suppose that an equivalent capacitor has the same effect on 

the circuit as the series combination. After it is fully charged, the equivalent capacitor must have a charge 

of -Q on its right plate and a charge of +Q on its left plate. Applying the definition of capacitance to the 

circuit in Figure 1b, we have 

 

Because we can apply the expression Q=C𝛥𝑉 to each capacitor shown in Figure 1a, the potential 

difference across each is  

 

Energy Stored in a Charged Capacitor 

Consider a parallel-plate capacitor that is initially uncharged, such that the initial potential difference 

across the plates is zero. Now imagine that the capacitor is connected to a battery and develops a maximum 

charge Q. (We assume that the capacitor is charged slowly so that the problem can be considered as an 

electrostatic system.) When the capacitor is connected to the battery, electrons in the wire just outside the 

plate connected to the negative terminal move into the plate to give it a negative charge. Electrons in the 

plate connected to the positive terminal move out of the plate into the wire to give the plate a positive 

charge. Thus, charges move only a small distance in the wires. To calculate the energy of the capacitor, 

we shall assume a different process - one that does not actually occur but gives the same final result. We 

can make this assumption because the energy in the final configuration does not depend on the actual 

charge-transfer process. We imagine that we reach in and grab a small amount of positive charge on the 

plate connected to the negative terminal and apply a force that causes this positive charge to move over to 

the plate connected to the positive terminal. Thus, we do work on the charge as we transfer it from one 

plate to the other. At first, no work is required to transfer a small amount of charge dq from one plate to 

the other. However, once this charge has been transferred, a small potential difference exists between the 

plates. Therefore, work must be done to move additional charge through this potential difference. As more 

and more charge is transferred from one plate to the other, the potential difference increases in proportion, 

and more work is required.  

Suppose that q is the charge on the capacitor at some instant during the charging process. At the same 

instant, the potential difference across the capacitor is ∆V = q/C. We know that the work necessary to 

transfer an increment of charge dq from the plate carrying charge -q to the plate carrying charge q (which 

is at the higher electric potential) is 

 

The total work required to charge the capacitor from q=0 to some final charge q=Q is  
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The work done in charging the capacitor appears as electric potential energy U stored in the capacitor. 

Therefore, we can express the potential energy stored in a charged capacitor in the following forms: 

 

This result applies to any capacitor, regardless of its geometry. We see that for a given capacitance, the 

stored energy increases as the charge increases and as the potential difference increases. In practice, there 

is a limit to the maximum energy (or charge) that can be stored because, at a sufficiently great value of 

∆V, discharge ultimately occurs between the plates. For this reason, capacitors are usually labeled with a 

maximum operating voltage. 

For a parallel-plate capacitor, the potential difference is related to the electric field through the relationship 

∆V = Ed. Furthermore, its capacitance is C = 𝜖0𝐴/𝑑. Substituting these expressions into Equation 1, we 

obtain 

 

Because the volume V (volume, not voltage!) occupied by the electric field is Ad, the energy per unit 

volume 𝑈𝐸 =
𝑈

𝑉
=

𝑈

𝐴𝑑
 known as the energy density, is 

 

Although Equation 3 was derived for a parallel-plate capacitor, the expression is generally valid. That is, 

the energy density in any electric field is proportional to the square of the magnitude of the electric 

field at a given point. 

 

 

 

Capacitors with Dielectrics 

A dielectric is a nonconducting material, such as rubber, glass, or waxed paper. When a dielectric is 

inserted between the plates of a capacitor, the capacitance increases. If the dielectric completely fills the 

space between the plates, the capacitance increases by a dimensionless factor K, which is called the 

dielectric constant. The dielectric constant is a property of a material and varies from one material to 

another. In this section, we analyze this change in capacitance in terms of electrical parameters such as 

electric charge, electric field, and potential difference. 

(1) 

(2) 

(3) 
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We can perform the following experiment to illustrate the effect of a dielectric in a capacitor: Consider a 

parallel-plate capacitor that without a dielectric has a charge Q0 and a capacitance C0. The potential 

difference across the capacitor is ∆𝑉0 =
𝑄0

𝐶0
. Figure 1a illustrates this situation. The potential difference is 

measured by a voltmeter.  

 

Fig.1: Charged capacitor (a) before and (b) after insertion of a dielectric between the plates. 

Note that no battery is shown in the figure; also, we must assume that no charge can flow through an ideal 

voltmeter. Hence, there is no path by which charge can flow and alter the charge on the capacitor. If a 

dielectric is now inserted between the plates, as shown in Figure 1b, the voltmeter indicates that the voltage 

between the plates decreases to a value ∆V. The voltages with and without the dielectric are related by the 

factor K as follows: 

 

Because ∆V < ∆V0, we see that k>1. Because the charge Q0 on the capacitor does not change, we conclude 

that the capacitance must change to the value 

 

 

 

That is, the capacitance increases by the factor K when the dielectric completely fills the region between 

the plates. For a parallel-plate capacitor, where C=
𝜖0𝐴

𝑑
, we can express the capacitance when the capacitor 

is filled with a dielectric as 

C=𝑘
𝜖0𝐴

𝑑
  

(1) 

(2) 
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From Equation 2, it would appear that we could make the capacitance very large by decreasing d, the 

distance between the plates. In practice, the lowest value of d is limited by the electric discharge that could 

occur through the dielectric medium separating the plates. For any given separation d, the maximum 

voltage that can be applied to a capacitor without causing a discharge depends on the dielectric strength 

(maximum electric field) of the dielectric. If the magnitude of the electric field in the dielectric exceeds 

the dielectric strength, then the insulating properties break down and the dielectric begins to conduct. 

Insulating materials have values of k greater than unity and dielectric strengths greater than that of air, as 

Table 1 indicates. Thus, we see that a dielectric provides the following advantages: 

• Increase in capacitance   

• Increase in maximum operating voltage   

• Possible mechanical support between the plates, which allows the plates to be close together without 

touching, thereby decreasing d and increasing C 

Table 1: Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature 

Dielectric  
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An Atomic Description of Dielectrics 

We know that the potential difference ∆V0 between the plates of a capacitor is reduced to ∆V0/k when a 

dielectric is introduced. Because the potential difference between the plates equals the product of the 

electric field and the separation d, the electric field is also reduced. Thus, if E0 is the electric field without 

the dielectric, the field in the presence of a dielectric is 

E=
𝑬𝒐

𝒌
  

Let us first consider a dielectric made up of polar molecules placed in the electric field between the plates 

of a capacitor. The dipoles (that is, the polar molecules making up the dielectric) are randomly oriented in 

the absence of an electric field, as shown in Figure 1a. When an external field E0 due to charges on the 

capacitor plates is applied, a torque is exerted on the dipoles, causing them to partially align with the field, 

as shown in Figure 1b. We can now describe the dielectric as being polarized. The degree of alignment of 

the molecules with the electric field depends on temperature and on the magnitude of the field. In general, 

the alignment increases with decreasing temperature and with increasing electric field.   

If the molecules of the dielectric are nonpolar, then the electric field due to the plates produces some 

charge separation and an induced dipole moment. These induced dipole moments tend to align with the 

external field, and the dielectric is polarized. Thus, we can polarize a dielectric with an external field 

regardless of whether the molecules are polar or nonpolar. 

With these ideas in mind, consider a slab of dielectric material placed between the plates of a capacitor so 

that it is in a uniform electric field E0, as shown in Figure 2a. The electric field due to the plates is directed 

to the right and polarizes the dielectric. The net effect on the dielectric is the formation of an induced 

positive surface charge density +𝜎ind on the right face and an equal negative surface charge density - 𝜎ind 

on the left face, as shown in Figure 2b. These induced  

(1) 
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surface charges on the dielectric give rise to an induced electric field Eind in the direction opposite the 

external field E0. Therefore, the net electric field E in the dielectric has a magnitude 

 

In the parallel-plate capacitor shown in Figure 3, the external field E0 is related to the charge density 𝜎 on 

the plates through the relationship 𝐸 = 𝜎
𝜖0

. The induced electric field in the dielectric is related to the 

induced charge density 𝜎ind through the relationship Eind = 
𝜎𝑖𝑛𝑑

𝑘
. Because E=E0/k= 𝜎 / 𝜖o substitution into 

Equation 2 gives 

 

 
Fig. 1: (a) Polar molecules are 

randomly oriented in the absence of 

an external electric field. (b) When 

an external field is applied, the 

molecules partially align with the 

field. 

 

 

Fig. 2: (a) When a dielectric is polarized, the dipole moments 

of the molecules in the dielectric are partially aligned with the 

external field E0. (b) This polarization causes an induced 

negative surface charge on one side of the dielectric and an 

equal induced positive surface charge on the opposite side. 

This separation of charge results in a reduction in the net 

electric field within the dielectric. 

(2) 
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Because k>1 this expression shows that the charge density 𝜎ind 

induced on the dielectric is less than the charge density 𝜎 on the 

plates. For instance, if k=3 we see that the induced charge density 

is two-thirds the charge density on the plates. If no dielectric is 

present, then k=1 and 𝜎ind = 0 as expected. However, if the 

dielectric is replaced by an electrical conductor, for which E=0 

then Eqn.2 indicates that this corresponds to 𝜎ind = 𝜎. That is, the 

surface charge induced on the conductor is equal in magnitude but 

opposite in sign to that on the plates, resulting in a net electric field 

of zero in the conductor.  

 

 

Effect of a Metallic Slab 

Problem 1: A parallel-plate capacitor has a plate separation d and plate area A. An uncharged metallic slab of 

thickness a is inserted midway between the plates. (a) Find the capacitance of the device. (b) Show that the 

capacitance is unaffected if the metallic slab is infinitesimally thin. (c) Show that the answer to part (a) does not 

depend on where the slab is inserted. 

Solution:  

(a): We can solve this problem by noting that any 

charge that appears on one plate of the capacitor must 

induce a charge of equal magnitude but opposite sign 

on the near side of the slab, as shown in Figure 1a. 

Consequently, the net charge on the slab remains zero, 

and the electric field inside the slab is zero. Hence, the 

capacitor is equivalent to two capacitors in series, each 

having a plate separation 
𝑑−𝑎

2
 as shown in Figure 1b. 

Using the rule for adding two capacitors in series, we 

obtain A Partially Filled Capacitor 

(53) 

 

Fig. 29: Induced charge on a dielectric 

placed between the plates of a charged 

capacitor. Note that the induced charge 

density on the dielectric is less than the 

charge density on the plates. 
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(b) In the result for part (a), we let a  0:  

 

Which is the original capacitance. So, the capacitance is unaffected if the inserted metallic slab is infinitesimally 

thin. 

 

 

(c) Let us imagine that the slab in Figure 1a is moved upward so that the distance between the upper edge of the 

slab and the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d – b – a. 

As in part (a), we find the total capacitance of the series combination: 

 

This is the same result as in part (a). It is independent of the value of b, so it does not matter where the slab is 

located. 

 

A Partially Filled Capacitor 

Problem 2:  

A parallel-plate capacitor with a plate separation d has a capacitance C0 in the absence of a dielectric. What is the 

capacitance when a slab of dielectric material of dielectric constant k and thickness d/3 is inserted between the 

plates? 

 

Solution  

In Example 1, we found that we could insert a metallic slab between the plates of a capacitor and consider the 

combination as two capacitors in series. The resulting capacitance was independent of the location of the slab. 
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Furthermore, if the thickness of the slab approaches zero, then the capacitance 

of the system approaches the capacitance when the slab is absent. From this, 

we conclude that we can insert an infinitesimally thin metallic slab anywhere 

between the plates of a capacitor without affecting the capacitance. Thus, let 

us imagine sliding an infinitesimally thin metallic slab along the bottom face 

of the dielectric shown in Figure 1a. We can then consider this system to be 

the series combination of the two capacitors shown in Figure 1b: one having a 

plate separation d/3 and filled with a dielectric, and the other having a plate 

separation 2d/3 and air between its plates. 

From Equation of paralallel plate capacitor, the two capacitances are 

 

 

For two capacitors combined in series, we have 

 

 

 

 

 

Because the capacitance without the dielectric is 𝐶 =
𝜀0𝐴

𝑑
  we see that 

 

 

 

 

 

Polarization:  

Let the small displacement of the charge qi in an induced dipole be li. Then the electric moment of the dipole is  

𝑝𝑖 = 𝑞𝑖𝑙𝑖. Now, if there are n dipoles in a small volume ∆𝑉 around a given point, then the polarization at that point 

is defined as the vector sum of the n dipoles divided by the volume ∆𝑉. In other words,  

�⃗⃗� =
1

∆𝑉
∑ 𝑝𝑖

𝑛

𝑖=1

= 𝑁𝑝 
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Where N is the number of dipoles per unit volume and 𝑝 is the average dipole moment. The polarization �⃗⃗� is, 

therefore, equal to the resultant dipole moment per unit volume. When the medium is strongly polarized, all the 

dipole moments in ∆𝑉 will be practically parallel and the vector sum of them will nearly be equal to the arithmetic 

sum and the resultant �⃗⃗� will be large. But if the field is weak there can be two things. Either the magnitude of 𝑝𝑖 of 

individual dipole mement is very small or the dipoles are oriented at random. In both these cases the resultant �⃗⃗� is 

very small or practically zero.  

 

Polarization Charges:  

Let us first consider a uniformly polarized medium with polarization �⃗⃗�. Within the volume of this medium the 

positive end of one dipole will be next to the negative end of a neighboring dipole, so that there will be no net 

volume charge, Fig 1.  Let us consider a surface of area A, whose normal is in the direction of �⃗⃗�.  

 

 

 

This surface forms a volume Al extending a distance l into the medium, where l is the length of a dipole. The electric 

moment of this volume will be AlP. The charge q that must be displaced a distance l from the charge -q to produce 

this dipole moment is, then, 

𝑝 = 𝑙𝑞 = 𝐴𝑙�⃗⃗� = 𝐴𝑙𝑃 

𝑞 = 𝐴𝑃 

On the surface there will appear an unbalanced positive charge per unit area which is equal to P. We denote the 

surface density due to polarization by 𝜎𝑝, so that  

𝜎𝑝 = �⃗⃗�. �̂� = 𝑃 

Where �̂� is a unit vector in the direction of the outward normal. Next, we suppose that the polarization �⃗⃗� is not 

uniform, but varies throughout the medium, Fig. 1. Let S be a surface enclosing a volume v of the medium. Then, 

the surface integral of �⃗⃗�. 𝑑�⃗� will represent the charge qp leaving V across the surface S during polarization of the 

medium, that is, 

𝑞𝑝 = ∮ �⃗⃗�. 𝑑�⃗�

𝑠

 

(1) 

(2) 
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There is a volume polarization density 𝜌𝑝. From the principle of conservation of charge, a net charge qp leaving a 

volume that was originally neutral must leave a charge - qp inside the volume, where  

−𝑞𝑝 = ∫ 𝜌𝑝. 𝑑𝑉

𝑉

 

 

Combining Eqs. (2) and (3), and applying the divergence theorem we get,  

∮ �⃗⃗�. 𝑑�⃗�

𝑠

= − ∫ 𝜌𝑝. 𝑑𝑉

𝑉

 

∫ ∇⃗⃗⃗. �⃗⃗�𝑑𝑉

𝑉

= − ∫ 𝜌𝑝. 𝑑𝑉

𝑉

 

or, equating the integrands  

𝜌𝑝 = −∇⃗⃗⃗. �⃗⃗� 

 

 

Gauss’s law in dielectrics:  

Suppose a material of dielectric constant K is introduced in the intervening space between 

the two plates. The dielectric slab gets polarized. A negative charged – q and + q on the 

dielectric are called the ‘induced charges’ or ‘bound charges’ while the charges +q and – q 

on the capacitor plates are called free charges. These induced charges produce their own 

field which opposes the external field �⃗⃗�0. Let �⃗⃗� be the resultant field within the dielectric. 

The net charge within the Gaussian surface is q – q. 

Let us apply Gauss' law to the surface S enclosing the volume V. To extend this law to media 

other than free space we must write  

∮ 𝜀0�⃗⃗�. 𝑑�⃗�

𝑠

= ∫ (𝜌 + 𝜌𝑝)𝑑𝑉

𝑉

 

The inclusion of pp takes into account the effect of polarization of the medium. As we know 𝜌𝑝 = −∇⃗⃗⃗. �⃗⃗�, then  

∮ 𝜀0�⃗⃗�. 𝑑�⃗�

𝑠

= ∫ (𝜌 − ∇⃗⃗⃗. �⃗⃗�)𝑑𝑉

𝑉

 

(3) 

(4) 

(1) 

(2) 
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∮ 𝜀0�⃗⃗�. 𝑑�⃗�

𝑠

= ∫ 𝜌𝑑𝑉

𝑉

− ∫ ∇⃗⃗⃗. �⃗⃗�𝑑𝑉

𝑉

 

The last term can be transformed into a surface integral by divergence theorem, so that  

∮ 𝜀0�⃗⃗�. 𝑑�⃗�

𝑠

= ∫ 𝜌𝑑𝑉

𝑉

− ∮ �⃗⃗�𝑑𝑉

𝑆

 

∮(𝜀0�⃗⃗� + �⃗⃗�). 𝑑�⃗�

𝑠

= ∫ 𝜌𝑑𝑉

𝑉

 

We define the electric displacement  𝐷⃗⃗⃗⃗  for the dielectric medium as 

 𝐷⃗⃗⃗⃗ =  𝜀0�⃗⃗� + �⃗⃗� 

For air or vacuum �⃗⃗� = 0 so 𝐷⃗⃗⃗⃗ = 𝜀0�⃗⃗�. Eq. (3) now becomes  

∮  𝐷⃗⃗⃗⃗ . 𝑑�⃗�

𝑠

= ∫ 𝜌𝑑𝑉

𝑉

 

which is Gauss' law for dielectric. The right side of Eq. (5) is the total free charge within the volume V of the 

dielectric. By divergence theorem, the left side of Eq. (5) can also be transformed into a volume integral. Thus  

∫ ∇⃗⃗⃗. �⃗⃗⃗�𝑑𝑉

𝑉

= ∫ 𝜌𝑑𝑉

𝑉

 

or, equating the integrands, we find  

∇⃗⃗⃗. �⃗⃗⃗� = 𝜌 

Which is sometimes referred to as the differential form of Gauss' law.  

 

We have eliminated the polarization charge density pp, but we have introduced D instead of E. Hence, to determine 

E in the dielectric we must know the relation between D and E. This relation will be found in the next section. Eq. 

(4) cannot be used, because P depends on E also and makes complications.  

 

Isotropic Dielectric: A dielectric whose polarization always has a direction that is parallel to the applied electric 

field, and a magnitude which does not depend on the direction of the electric field is isotropic dielectric material 

Susceptibility: The electric susceptibility (𝜒𝑒) is a dimensionless proportionality constant that indicates the degree 

of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, 

the greater the ability of a material to polarize in response to the field, and thereby reduce the total electric field 

inside the material (and store energy). It is in this way that the electric susceptibility influences the electric 

(3) 

(4) 

(5) 
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permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of 

capacitors to the speed of light. 

Permittivity: In electromagnetism, absolute permittivity, often simply called permittivity, usually denoted by the 

Greek letter ε (epsilon), is the measure of capacitance that is encountered when forming an electric field in a 

particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of 

electric flux in a given medium. 

Dielectric constant: The dielectric constant (k) of a material is the ratio of its permittivity ε to the permittivity of 

vacuum εo , so k = ε / εo. The dielectric constant is therefore also known as the relative permittivity of the material. 

Susceptibility, Permittivity and Dielectric constant 

The polarization �⃗⃗� in a homogeneous isotropic dielectric is dependent on the nature of the dielectric; it has the same 

direction as the resultant electric field and also is dependent on the field. These results are summarized by the 

equation  

�⃗⃗� ∝ �⃗⃗� 

�⃗⃗� = 𝜒𝑒 �⃗⃗� 

Where 𝜒𝑒, a scalar quantity, is called the electric susceptibilty of the material. As we know the electric displacement 

�⃗⃗⃗� for a dielectric medium is 

 𝐷⃗⃗⃗⃗ =  𝜀0�⃗⃗� + �⃗⃗� 

=  𝜀0�⃗⃗� + 𝜒𝑒 �⃗⃗� 

= ( 𝜀0 + 𝜒𝑒)�⃗⃗� 

  = 𝜀�⃗⃗�   

Where 𝜀 =  𝜀0 + 𝜒𝑒  and is called the permitivity of the material. For air or vacuum P = 0 and so, 𝜒𝑒 = 0, and 𝜀 =

 𝜀0.  

The quantities 𝜀 and 𝜒𝑒 may depend on the electric field but experimentally it has been found that except for very 

intense fields they are frequently independent of field. 𝜒𝑒 and 𝜀 are, therefore, characteristics of the materials. 

Materials of this type are called linear dielectric. The electrical behaviour of this material is completely specified 

by either 𝜒𝑒 or 𝜀. It is, however, more convenient to introduce a dimensionless quantity K, called relative 

permittivity or dielectric constant, defined by  

𝐾 =
𝜀

 𝜀0
=

 𝜀0 + 𝜒𝑒

 𝜀0
= 1 +

𝜒𝑒

 𝜀0
 

In terms of K, Gauss' law can be stated as  

∮ 𝜀0𝐾�⃗⃗�. 𝑑�⃗�

𝑠

= ∫ 𝜌𝑑𝑉

𝑉

 

Which is a convenient form, since values of K for different media are listed in tables. The units of 𝜀,  𝜀0 𝑎𝑛𝑑 𝜒𝑒 are 

the same, that is, 𝐶2𝑁−1𝑚−2. The units of D (and P) is 𝐶𝑚−2  
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