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Electron Theory of Conductivity 

The classical model of electrical conduction in metals that was first proposed by 

Paul Drude in 1900. This model leads to Ohm’s law and shows that resistivity 

can be related to the motion of electrons in metals. Although the Drude model 

described here does have limitations, it nevertheless introduces concepts that 

are still applied in more elaborate treatments.  

Consider a conductor as a regular array of atoms plus a collection of free 

electrons, which are sometimes called conduction electrons. The conduction 

electrons, although bound to their respective atoms when the atoms are not part 

of a solid, gain mobility when the free atoms condense into a solid. In the absence 

of an electric field, the conduction electrons move in random directions through 

the conductor with average speeds of the order of 106 m/s. The situation is similar 

to the motion of gas molecules confined in a vessel. In fact, some scientists refer 

to conduction electrons in a metal as an electron gas. There is no current through 

the conductor in the absence of an electric field because the drift velocity of the 

free electrons is zero. That is, on the average, just as many electrons move in 

one direction as in the opposite direction, and so there is no net flow of charge.  

This situation changes when an electric field is applied. Now, in addition to 

undergoing the random motion just described, the free electrons drift slowly in a 

direction opposite that of the electric field, with an average drift speed vd that is 

much smaller (typically 10-4 m/s) than their average speed between collisions 

(typically 106 m/s).  

Figure 1 provides a basic description of the motion of free electrons in a 

conductor. In the absence of an electric field, there is no net displacement after 

many collisions (Fig. 1a). An electric field E modifies the random motion and 

causes the electrons to drift in a direction opposite that of E (Fig. 1b). The slight 

curvature in the paths shown in Figure 1b results from the acceleration of the 

electrons between collisions, which is caused by the applied field. 

In our model, we assume that the motion of an electron after a collision is 

independent of its motion before the collision. We also assume that the excess 

energy acquired by the electrons in the electric field is lost to the atoms of the 

conductor when the electrons and atoms collide. The energy given up to the atoms increases their vibrational energy, 

and this causes the temperature of the conductor to increase. The temperature increase of a conductor due to 

resistance is utilized in electric toasters and other familiar appliances. 

* 

We will now derive an expression for the drift velocity. When a free electron of mass me and charge q=(-e) is 

subjected to an electric field E, it experiences a force F=qE. Because ∑𝑭 = 𝑚𝑒𝒂, we conclude that the acceleration 

of the electron is  

𝒂 =
𝑞𝑬

𝑚𝑒
 

Figure 1: (a) A schematic diagram of 

the random motion of two charge 

carriers in a conductor in the absence 

of an electric field. The drift velocity 

is zero. (b) The motion of the charge 

carriers in a conductor in the presence 

of an electric field. Note that the 

random motion is modified by the 

field, and the charge carriers have a 

drift velocity.  

(1) 
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This acceleration, which occurs for only a short time between collisions, enables the electron to acquire a small drift 

velocity. If t is the time since the last collision and vi is the electron’s initial velocity the instant after that collision, 

then the velocity of the electron after a time t is 

𝒗𝑓 = 𝒗𝑖 + 𝒂𝑡 = 𝒗𝑖 +
𝑞𝑬

𝑚𝑒
𝑡 

We now take the average value of vf over all possible times t and all possible values of vi. If we assume that the 

initial velocities are randomly distributed over all possible values, we see that the average value of vi is zero. The 

term 
𝑞𝑬

𝑚𝑒
𝑡 is the velocity added by the field during one trip between atoms. If the electron starts with zero velocity, 

then the average value of the second term of Equation 2 is 
𝑞𝑬

𝑚𝑒
𝜏 where, 𝜏 is the average time interval between 

successive collisions. Because the average value of 𝒗𝑓 is equal to the drift velocity, we have  

𝒗𝑓 = 𝒗𝑑 =
𝑞𝑬

𝑚𝑒
𝜏 

We can relate this expression for drift velocity to the current in the conductor. Substituting this into equation of the 

current density we find  

𝑱 = 𝑛𝑞𝒗𝑑 = 𝑛𝑞
𝑞𝑬

𝑚𝑒
𝜏 =

𝑛𝑞2𝑬

𝑚𝑒
𝜏 

Where n is the number of charge carriers per unit volume. Comparing this expression with Ohm’s law, 𝐽 = 𝜎𝐸 we 

obtain the following relationships for conductivity and resistivity:  

𝜎 =
𝑛𝑞2

𝑚𝑒
𝜏 

𝜌 =
1

𝜎
=

𝑚𝑒

𝑛𝑞2𝜏
 

According to this classical model, conductivity and resistivity do not depend on the strength of the electric field. 

This feature is characteristic of a conductor obeying Ohm’s law. 

The average time between collisions 𝜏  is related to the average distance between collisions l (that is, the mean free 

path) and the average speed 𝒗  through the expression  

𝜏 =
𝑙

𝒗
 

 

Problem 1: The 12-gauge copper wire in a building has a cross-sectional area of 3.31 x 10-6 m2. If it carries a current 

of 10.0 A, what is the drift speed of the electrons? Assume that each copper atom contributes one free electron to 

the current. The density of copper is 8.95 g/cm3.  

(a) Using the data and results from Example 27.1 and the classical model of electron conduction, estimate the 

average time between collisions for electrons in household copper wiring. (b) Assuming that the average speed for 

free electrons in copper is 1.6 x 106 m/s and using the result from part (a), calculate the mean free path for electrons 

in copper.  

(2) 

(3) Drift velocity 

Conductivity 

Resistivity 
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Where 𝜌 = 1.7 × 10−8 Ω𝑚 for copper and the carrier density is 𝑛 = 8.49 × 1028 electrons/m3 for the wire. 

Solution (a): Substitution of these values into the expression above gives 

𝜏 =
𝑚𝑒

𝑛𝑞2𝜌
=

9 × 10−31

8.49 × 1028 × (1.6 × 10−19)2 × 1.7 × 10−8
 𝑆 

= 2.5 × 10−14 𝑆 

 

Solution (b): We know mean free path is  

𝑙 = 𝜏𝒗 = 2.5 × 10−14  × 1.6 × 106 𝑚 

= 4.0 × 10−8 𝑚  

Which is equivalent to 40 nm (compared with atomic spacing of about 0.2 nm). Thus, although the time between 

collisions is very short, an electron in the wire travels about 200 atomic spacing between collisions.  

 

 

Band Theory of Solids 

A useful way to visualize the difference between conductors, insulators and semiconductors is to plot the available 

energies for electrons in the materials. Instead of having discrete energies as in the case of free atoms, the available 

energy states form bands. Key to the conduction process is whether or not there are electrons in the conduction 

band. In insulators the electrons in the valence band are separated by a large gap from the conduction band, in 

conductors like metals the valence band overlaps the conduction band, and in semiconductors there is a small 

enough gap between the valence and conduction bands that thermal or other excitations can bridge the gap. With 

such a small gap, the presence of a small percentage of a doping material can increase conductivity dramatically. 

An important parameter in the band theory is the Fermi level, the top of the available electron energy levels at zero 

kelvin. The position of the Fermi level with the relation to the conduction band is a crucial factor in determining 

electrical properties. 
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Insulator Energy Bands 

Most solid substances are insulators, and in terms of the band theory of solids this implies that 

there is a large forbidden gap between the energies of the valence electrons and the energy at 

which the electrons can move freely through the material (the conduction band). 

Glass is an insulating material which may be transparent to visible light for reasons closely 

correlated with its nature as an electrical insulator. The visible light photons do not have enough 

quantum energy to bridge the band gap and get the electrons up to an available energy level in 

the conduction band. The visible properties of glass can also give some insight into the effects 

of "doping" on the properties of solids. A very small percentage of impurity atoms in the glass 

can give it color by providing specific available energy levels which absorb certain colors of 

visible light. The ruby mineral (corundum) is aluminum oxide with a small amount (about 

0.05%) of chromium which gives it its characteristic pink or red color by absorbing green and 

blue light. 

While the doping of insulators can dramatically change their optical properties, it is not enough 

to overcome the large band gap to make them good conductors of electricity. However, the 

doping of semiconductors has a much more dramatic effect on their electrical conductivity and   

is the basis for solid state electronics. 

 

Semiconductor Energy Bands 

For intrinsic semiconductors like silicon and germanium, the Fermi level is essentially 

halfway between the valence and conduction bands. Although no conduction occurs at 

0 K, at higher temperatures a finite number of electrons can reach the conduction band 

and provide some current. In doped semiconductors, extra energy levels are added. 

 

The increase in conductivity with temperature can be modeled in terms of the Fermi 

function, which allows one to calculate the population of the conduction band. 

 

 

Conductor Energy Bands 

In terms of the band theory of solids, metals are unique as good conductors of 

electricity. This can be seen to be a result of their valence electrons being essentially 

free. In the band theory, this is depicted as an overlap of the valence band and the 

conduction band so that at least a fraction of the valence electrons can move through 

the material. 
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Why bands and band gaps occur 

The electrons of a single, isolated atom occupy atomic orbitals each of which has a discrete energy level. When two 

or more atoms join together to form into a molecule, their atomic orbitals overlap. The Pauli Exclusion Principle 

dictates that no two electrons can have the same quantum numbers in a molecule. So if two identical atoms combine 

to form a diatomic molecule, each atomic orbital splits into two molecular orbitals of different energy, allowing the 

electrons in the former atomic orbitals to occupy the new orbital structure without any having the same energy. 

Similarly if a large number N of identical atoms come together to form a solid, such as a crystal lattice, the atoms' 

atomic orbitals overlap. Since the Pauli exclusion principle dictates that no two electrons in the solid have the same 

quantum numbers, each atomic orbital splits into N discrete molecular orbitals, each with a different energy. Since 

the number of atoms in a macroscopic piece of solid is a very large number (N~1022) the number of orbitals is very 

large and thus they are very closely spaced in energy (of the order of 10−22 eV). The energy of adjacent levels is 

so close together that they can be considered as a continuum, an energy band. 

This formation of bands is mostly a feature of 

the outermost electrons (valence electrons) in 

the atom, which are the ones involved in 

chemical bonding and electrical conductivity. 

The inner electron orbitals do not overlap to a 

significant degree, so their bands are very 

narrow. 

Band gaps are essentially leftover ranges of 

energy not covered by any band, a result of the 

finite widths of the energy bands. The bands 

have different widths, with the widths 

depending upon the degree of overlap in the 

atomic orbitals from which they arise. Two 

adjacent bands may simply not be wide enough 

to fully cover the range of energy. For example, 

the bands associated with core orbitals (such as 

1s electrons) are extremely narrow due to the 

small overlap between adjacent atoms. As a 

result, there tend to be large band gaps between 

the core bands. Higher bands involve 

comparatively larger orbitals with more 

overlap, becoming progressively wider at 

higher energies so that there are no band gaps 

at higher energies. 

 

 

 

 

 

Figure showing how electronic band structure comes about by the 

hypothetical example of a large number of carbon atoms being 

brought together to form a diamond crystal. The graph (right) shows 

the energy levels as a function of the spacing between atoms. When 

the atoms are far apart (right side of graph) each atom has valence 

atomic orbitals p and s which have the same energy. However, when 

the atoms come closer together their orbitals begin to overlap. Due 

to the Pauli Exclusion Principle each atomic orbital splits into N 

molecular orbitals each with a different energy, where N is the 

number of atoms in the crystal. Since N is such a large number, 

adjacent orbitals are extremely close together in energy so the 

orbitals can be considered a continuous energy band. a is the atomic 

spacing in an actual crystal of diamond. At that spacing the orbitals 

form two bands, called the valence and conduction bands, with a 

5.5 eV band gap between them 
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Comparison between Conductors, Semiconductors and Insulators 

 

Parameter Conductor Semiconductor Insulator 

Forbidden energy 

gap 

Not exist Small (1 eV) Large (>5 eV) 

Conductivity High (10-7 mho/m) Medium (10-7 to 10-13 

mho/m) 

Very Low (10-3 

mho/m) 

Almost negligible. 

Resistivity Low Moderate High 

Flow of current Due to movement of free 

electrons. 

Due to movement of 

electrons and holes. 

Almost negligible but 

only due to free 

electrons. 

Temperature 

coefficient of 

resistance 

Positive Negative Negative 

Charge carriers in 

conduction band 

Completely filled Partially filled Completely vacant 

Charge carriers in 

valence band 

Almost vacant Partially filled Completely filled 

Example Copper, Aluminium, 

graphite etc. 

Silicon, Germanium, 

arsenic etc. 

Paper, rubber, glass, 

plastic etc. 

Applications Conducting wires, 

Transformers, in electrical 

cords etc. 

Diodes, transistors, 

optocouplers etc. 

Sports equipment, 

home appliances etc. 

 

 

 

Superconductors 

The electrical resistivity of many metals and alloys drops suddenly to 

zero when the specimen is cooled to a sufficiently low temperature, 

often a temperature in the liquid helium range. The phenomena of the 

reduction in the value of electrical resistivity to zero is known as 

superconductivity and the materials which show this property are 

called the superconductors. Examples of superconductors are Nb3Ge, 

Nb3Al, K3C6O etc.  
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This phenomena was observed first by Heike Kamerlingh Onnes in 1911 in mercury. He observed a sudden decrease 

in resistivity when pure mercury was cooled down below 4.2 k. The resistivity of mercury vanish completely below 

4.2 k.   

Transition/Critical temperature: The temperature at which the specimen undergoes a phase transition from a state 

of normal electrical resistivity to a superconducting state is known as transition of critical temperature. It is denoted 

by 𝑇𝐶 

 

Basic Properties of a Superconductor:  

For a material to be considered as a superconductor it has to exhibit two distinctive/basic properties: 

i) It has no resistivity for all temperature below the critical temperature of that material. i.e. 𝜌 = 0   𝑓𝑜𝑟 𝑇 < 𝑇𝐶 . 

ii) It has no magnetic induction i.e. B=0 inside the superconductor ( i.e. perfect diamagnetic below 𝑇𝐶) 

 

Persistent Current:  

If a superconductor has the form of a ring, a current can be induced in the ring by the electromagnetic induction. 

We have simply to cool the ring in a magnetic field from a temperature above the critical temperature 𝑇𝐶 to below 

𝑇𝐶 and then to remove the field. Now it has been observed that this current continue to persist with undiminished 

strength for years. In a typical experiment a led ring could carry an induced current of several hundred amperes for 

a year without any change, such current is called persistent current. 

 

Meissner Effect:  

Meissner and Ochsenfeld found that, if a superconductor is cooled in a magnetic 

field to below the transition temperature, then at the transition the lines of induction 

B are pushed out. This phenomenon is called the Meissner effect.  

Meissner effect shows that a bulk superconductor behaves in an applied external 

field 𝐵𝑎 as if inside the specimen, B=0. We obtain a particularly useful form of this 

result if we limit ourselves to long thin specimens with long axes parallel to 𝐵𝑎. 

Now the demagnetizing field contribution to magnetic induction B will be 

negligible. Hence  

𝐵 = 𝐵𝑎 + 4𝜋𝑀 = 0 

 𝐵𝑎 = −4𝜋𝑀 

Where 𝐵𝑎 is the applied field and M is the magnetization of the specimen. Now  

𝑀

𝐵𝑎
= −

1

4𝜋
 

𝜒 = −
1

4𝜋
 

Where 𝜒 =
𝑀

𝐵𝑎
 is called the magnetic susceptibility, which is –ve in this case. This means that superconductors 

exhibit perfect diamagnetism.  
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This important result cannot be derived from the characterization of a superconductor as a mediam of zero 

resistivity. From the Ohm’s law, we can write 𝐸⃗⃗  ⃗ = 𝜌𝐽 . 

If the resistivity 𝜌 goes to zero while 𝐽  is held infinite, then  𝐸⃗⃗  ⃗ must be zero. By Maxwell’s equation 
𝑑�⃗� 

𝑑𝑡
 is 

proportional to curl E, i.e. 

𝑑�⃗� 

𝑑𝑡
= −∇⃗⃗ × �⃗�  

So that zero resistivity implies 
𝑑�⃗� 

𝑑𝑡
= −∇⃗⃗ × �⃗� = −𝜌(∇⃗⃗ × 𝐽 ) = 0 

So             �⃗� = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The Meissner effect contradicts this result and suggests that, perfect diamagnetism is an essential property 

of superconducting state.  

 

A superconductor with little or no magnetic field within it is said to be in the Meissner state. The Meissner state 

breaks down when the applied magnetic field is too strong. Superconductors can be divided into two classes 

according to how this breakdown occurs. 

In TYPE-I superconductors, superconductivity is abruptly destroyed when the strength of the applied field rises 

above a critical value Hc. Depending on the geometry of the sample, one may obtain an intermediate state  consisting 

of a baroque pattern of regions of normal material carrying a magnetic field mixed with regions of superconducting 

material containing no field. 

In TYPE-II superconductors, raising the applied field past a critical value Hc1 leads to a mixed state (also known 

as the vortex state) in which an increasing amount of magnetic flux penetrates the material, but there remains no 

resistance to the electric current as long as the current is not too large. At a second critical field strength Hc2, 

superconductivity is destroyed. The mixed state is caused by vortices in the electronic superfluid, sometimes called 

fluxons because the flux carried by these vortices is quantized.  

Most pure elemental superconductors, except niobium and carbon nanotubes, are type I, while almost all impure 

and compound superconductors are type II. 
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Difference between type-I and type-II superconductors:  

 

Type – I Superconductors Type – II Superconductors 

Low critical temperature  

(typically in the range of 0K to 10K) 

High critical temperature  

(typically greater than 10K) 

Low Critical magnetic field 

(Typically in the range of 0.0000049 T to 1T) 

High Critical magnetic field  

(Typically greater than 1T) 

Perfectly obey the Meissner effect: Magnetic 

field cannot penetrate inside the material. 

Partly obey the Meissner effect but not completely: 

Magnetic field can penetrate inside the material. 

Exhibits single critical magnetic field. Exhibits two critical magnetic field 

Easily lose the superconducting state by low-

intensity magnetic field. Therefore, type-I 

superconductors are also known as soft 

superconductors. 

Does not easily lose the superconducting state by 

external magnetic field. Therefore, type-II 

superconductors are also known as hard 

superconductors. 

The transition from a superconducting state to a 

normal state due to the external magnetic field is 

sharp and abrupt for type-I superconductors.

 

The transition from a superconducting state to a 

normal state due to the external magnetic field is 

gradually but not shape and abrupt. At lower 

critical magnetic field (HC1), type-II 

superconductor starts losing its superconductivity. 

At upper critical magnetic field (HC2), type-II 

superconductor completely loses its 

superconductivity. The state between lower critical 

magnetic field and upper magnetic field is known 

as an intermediate state or mixed state.

 
  

Due to the low critical magnetic field, type-I 

superconductors cannot be used for 

manufacturing electromagnets used for 

producing strong magnetic field. 

Due to the high critical magnetic field, type-II 

superconductors can be used for manufacturing 

electromagnets used for producing strong magnetic 

field. 

Type-I superconductors are generally pure 

metals. 

Type-II superconductors are generally alloys and 

complex oxides of ceramics. 



11           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi/ICE/Chapter-3/2019 

BCS theory can be used to explain the 

superconductivity of type-I superconductors. 

BCS theory cannot be used to explain the 

superconductivity of type-II superconductors. 

These are completely diamagnetic. These are not completely diamagnetic 

No mixed state exists in type-I Superconductors. A mixed state exists in type-II Superconductors. 

Slight impurity does not affect the 

superconductivity of type-I superconductors. 

Slight impurity greatly affects the 

superconductivity of type-II superconductors. 

Due to the low critical magnetic field, type-I 

superconductors have limited technical 

applications. 

Due to the high critical magnetic field, type-II 

superconductors have wider technical applications. 

Examples: Hg, Pb, Zn,etc. Examples: NbTi, Nb3Sn, etc. 
 

 

 

 

Current and Current Density 

Electric Current 

Whenever there is a net flow of charge through some region, a current is 

said to exist. To define current more precisely, suppose that the charges are 

moving perpendicular to a surface of area A, as shown in Figure 1. (This 

area could be the cross-sectional area of a wire, for example.) The current 

is the rate at which charge flows through this surface. If ∆Q is the 

amount of charge that passes through this area in a time interval ∆𝑡, the 

average current 𝐼𝑎𝑣 is equal to the charge that passes through A per unit 

time:  

𝐼𝑎𝑣 =
∆𝑄

∆𝑡
 

If the rate at which charge flows varies in time, then the current varies in 

time; we define the instantaneous current I as the differential limit of 

average current:  

𝐼𝑎𝑣 = lim
∆𝑡→0

∆𝑄

∆𝑡
=

𝑑𝑄

𝑑𝑡
 

The SI unit of current is the ampere (A): 

1𝐴 =
1𝐶

1𝑠
 

That is, 1 A of current is equivalent to 1 C of charge passing through the surface area in 1 s. The charges passing 

through the surface in Figure 1 can be positive or negative, or both. It is conventional to assign to the current the 

same direction as the flow of positive charge. In electrical conductors, such as copper or aluminum the current is 

due to the motion of negatively charged electrons. Therefore, when we speak of current in an ordinary conductor, 

the actual direction of the current is opposite the direction of flow of electrons. However, if we are considering a 

Figure 1: Charges in motion through an 

area A. The time rate at which charge 

flows through the area is defined as the 

current I. The direction of the current is the 

direction in which positive charges flow 

when free to do so.  
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beam of positively charged protons in an accelerator, the current is in the direction of motion of the protons. In 

some cases—such as those involving gases and electrolytes, for instance—the current is the result of the flow of 

both positive and negative charges. 

If the ends of a conducting wire are connected to form a loop, all points on the loop are at the same electric potential, 

and hence the electric field is zero within and at the surface of the conductor. Because the electric field is zero, there 

is no net transport of charge through the wire, and therefore there is no current. The current in the conductor is zero 

even if the conductor has an excess of charge on it. However, if the ends of the conducting wire are connected to a 

battery, all points on the loop are not at the same potential. The battery sets up a potential difference between the 

ends of the loop, creating an electric field within the wire. The electric field exerts forces on the conduction electrons 

in the wire, causing them to move around the loop and thus creating a current. It is common to refer to a moving 

charge (positive or negative) as a mobile charge carrier. For example, the mobile charge carriers in a metal are 

electrons.  

 

Microscopic Model of Current  

We can relate current to the motion of the charge carriers by describing a 

microscopic model of conduction in a metal. Consider the current in a 

conductor of cross-sectional area A (Fig. 1). The volume of a section of the 

conductor of length x (the gray region shown in Fig. 1) is 𝐴∆𝑥. If n 

represents the number of mobile charge carriers per unit volume (in other 

words, the charge carrier density), the number of carriers in the gray section 

is nA∆x. Therefore, the charge ∆Q in this section is 

∆Q = (number of carriers in section) × (charge per carrier) = (nA∆x)q 

where q is the charge on each carrier. If the carriers move with a speed 𝑣𝑑, 

the distance they move in a time ∆𝑡 is ∆𝑥 = 𝑣𝑑∆𝑡. Therefore, we can write 

∆Q in the form  

∆𝑄 = (𝑛𝐴𝑣𝑑∆𝑡)𝑞 

If we divide both sides of this equation by ∆t, we see that the average current 

in the conductor is 

𝐼𝑎𝑣 =
∆𝑄

∆𝑡
= 𝑛𝐴𝑣𝑑𝑞 

The speed of the charge carriers 𝑣𝑑 is an average speed called the drift speed. To understand the meaning of drift 

speed, consider a conductor in which the charge carriers are free electrons. If the conductor is isolated—that is, the 

potential difference across it is zero—then these electrons undergo random motion that is analogous to the motion 

of gas molecules. As we discussed earlier, when a potential difference is applied across the conductor (for example, 

by means of a battery), an electric field is set up in the conductor; this field exerts an electric force on the electrons, 

producing a current. However, the electrons do not move in straight lines along the conductor. Instead, they collide 

repeatedly with the metal atoms, and their resultant motion is complicated and zigzag (Fig. 27.3). Despite the 

collisions, the electrons move slowly along the conductor (in a direction opposite that of E) at the drift velocity 𝒗𝑑.  

 

 

Figure 1: A section of a uniform 

conductor of cross-sectional area A. 

The mobile charge carriers move 

with a speed 𝑣𝑑, and the distance 

they travel in a time ∆𝑡 is ∆𝑥 = 𝑣𝑑∆𝑡.  
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We can think of the atom–electron collisions in a conductor as an effective 

internal friction (or drag force) similar to that experienced by the molecules of a 

liquid flowing through a pipe stuffed with steel wool. The energy transferred 

from the electrons to the metal atoms during collision causes an increase in the 

vibrational energy of the atoms and a corresponding increase in the temperature 

of the conductor.  

Figure 2: A schematic representation of the zigzag motion of an electron in a 

conductor. The changes in direction are the result of collisions between the 

electron and atoms in the conductor.  

 

Problem 1: The 12-gauge copper wire in a typical residential building has a cross-sectional area of 3.31× 10−6 𝑚2. 

If it carries a current of 10.0 A, what is the drift speed of the electrons? Assume that each copper atom contributes 

one free electron to the current. The density of copper is 8.95 g/cm3.  

Solution: From the periodic table of the elements we know the molar mass of copper is 63.5 g/mol. Recall that 1 

mol of any substance contains Avogadro’s number of atoms (6.02 × 1023). Knowing the density of copper, we can 

calculate the volume occupied by 63.5 g (=1mole) of copper:  

𝑉 =
𝑚

𝜌
=

63.5 g/mol

8.95 g/cm3
= 7.09 cm3  

Because each copper atom contributes one free electron to the current, we have  

n =
6.02 × 1023 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 

7.09 cm3
 (1.00 × 106 cm3/m3) 

= 8.49 × 1028 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/m3 

 

We know the drift speed is  

𝑣𝑑 =
𝐼

𝑛𝐴𝑞
 

Where q is the absolute value of the charge on each electron. Thus,  

𝑣𝑑 =
10.0 

8.49 × 1028  × 3.31 × 10−6  × 1.6 × 10−19
 𝑚/𝑠 

 = 2.22 × 10−4 𝑚/𝑠 

 

Exercise:  If a copper wire carries a current of 80.0 mA, how many electrons flow past a given cross-section of the 

wire in 10.0 min?  

Solution: Try yourself. 

Answer: 3.0 × 1020 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 
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Resistance and Ohm’s Law 

We know that no electric field can exist inside a conductor. However, this statement is true only if the conductor is 

in static equilibrium. The purpose of this section is to describe what happens when the charges in the conductor are 

allowed to move.  

Charges moving in a conductor produce a current under the action of an electric field, which is maintained by the 

connection of a battery across the conductor. An electric field can exist in the conductor because the charges in this 

situation are in motion—that is, this is a nonelectrostatic situation.  

Consider a conductor of cross-sectional area A carrying a current I. The current density J in the conductor is 

defined as the current per unit area. Because the current the current 𝐼 = 𝑛𝐴𝑣𝑑𝑞, the current density is  

𝐽 =
𝐼

𝐴
= 𝑛𝑣𝑑𝑞, 

where J has SI units of A/m2. This expression is valid only if the current density is uniform and only if the surface 

of cross-sectional area A is perpendicular to the direction of the current. In general, the current density is a vector 

quantity: 

𝑱 = 𝑛𝒗𝑑𝑞, 

From this equation, we see that current density, like current, is in the direction of charge motion for positive charge 

carriers and opposite the direction of motion for negative charge carriers.  

A current density J and an electric field E are established in a conductor whenever a potential difference is 

maintained across the conductor. If the potential difference is constant, then the current also is constant. In some 

materials, the current density is proportional to the electric field:  

𝑱 = 𝜎𝑬, 

Where the constant of proportionality 𝜎 is called the conductivity of the conductor. Materials that obey this equation 

are said to follow Ohm’s law, named after Georg Simon Ohm. More specifically, Ohm’s law states that 

for many materials (including most metals), the ratio of the current density to the electric field is a constant 

𝝈 that is independent of the electric field producing the current. 

Materials that obey Ohm’s law and hence demonstrate this simple relationship between E and J are said to be ohmic.  

 

 

Kirchhoff’s Law and its Applications 

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as 

voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist 

Gustav Kirchhoff. 

Kirchhoff’s First Law – The Current Law, (KCL) 

Kirchhoff’s Current Law or KCL, states that the “total current or charge entering a junction or node is exactly equal 

to the charge leaving the node as it has no other place to go except to leave, as no charge is lost within the node’’. 
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In other words the algebraic sum of ALL the currents entering and leaving a node must be equal to zero, 

I(exiting) + I(entering) = 0. This idea by Kirchhoff is commonly known as the Conservation of Charge. 

 

Here, the three currents entering the node, I1, I2, I3 are all positive in value and the two currents leaving the node, I4 

and I5 are negative in value. Then this means we can also rewrite the equation as; 

I1 + I2 + I3 – I4 – I5 = 0 

The term Node in an electrical circuit generally refers to a connection or junction of two or more current carrying 

paths or elements such as cables and components. Also for current to flow either in or out of a node a closed circuit 

path must exist. We can use Kirchhoff’s current law when analyzing parallel circuits. 

 

Kirchhoff’s Second Law – The Voltage Law, (KVL) 

Kirchhoffs Voltage Law or KVL, states that “in any closed loop network, the directional sum of the voltage drops 

in various components in the loop is equal to the directional sum of the e.m.f.’s of the voltage source in the same 

network”. In other words the algebraic sum of all voltages within the loop must be equal to zero. This idea by 

Kirchhoff is known as the Conservation of Energy. 

 

Starting at any point in the loop continue in the same direction noting the direction of all the voltage drops, either 

positive or negative, and returning back to the same starting point. It is important to maintain the same direction 

either clockwise or anti-clockwise or the final voltage sum will not be equal to zero. We can use Kirchhoff’s voltage 

law when analyzing series circuits. 
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Common DC Circuit Theory Terms: 

When analyzing either DC circuits or AC circuits using Kirchhoff’s Circuit Laws a number of definitions and 

terminologies are used to describe the parts of the circuit being analyzed such as: node, paths, branches, loops and 

meshes. These terms are used frequently in circuit analysis so it is important to understand them. 

 • Circuit – a circuit is a closed loop conducting path in which an electrical current flows. 

 • Path – a single line of connecting elements or sources. 

 • Node – a node is a junction, connection or terminal within a circuit were two or more circuit 

elements are connected or joined together giving a connection point between two or more 

branches. A node is indicated by a dot. 

 • Branch – a branch is a single or group of components such as resistors or a source which are 

connected between two nodes. 

 • Loop – a loop is a simple closed path in a circuit in which no circuit element or node is 

encountered more than once. 

 • Mesh – a mesh is a single open loop that does not have a closed path. There are no components 

inside a mesh. 

 

Problem 1: Find the current flowing in the 40Ω Resistor, R3 also find the voltage drop in this resistor in 

the circuit below. 

  

 

  
Solution: The circuit has 3 branches, 2 nodes (A and B) and 2 independent loops. 

Using Kirchhoffs Current Law, KCL the equations are given as: 

At node A :    I1 + I2 = I3 

At node B :    I3 = I1 + I2 

Using Kirchhoffs Voltage Law, KVL the equations are given as: 

Loop 1 is given as :    10 = R1 I1 + R3 I3 = 10I1 + 40I3 

Loop 2 is given as :    20 = R2 I2 + R3 I3 = 20I2 + 40I3 
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Loop 3 is given as :    10 – 20 = 10I1 – 20I2 

As I3 is the sum of I1 + I2 we can rewrite the equations as; 

Eq. No 1 :    10 = 10I1 + 40(I1 + I2)  =  50I1 + 40I2 

Eq. No 2 :    20 = 20I2 + 40(I1 + I2)  =  40I1 + 60I2 

We now have two simultaneous equations that can be reduced to give us the values of I1 and I2. Substitution of I1 

in terms of I2 gives us the value of I1 as -0.143 Amp 

Substitution of I2 in terms of I1 gives us the value of I2 as +0.429 Amp 

As :    I3 = I1 + I2 

The current flowing in resistor R3 is given as :    -0.143 + 0.429 = 0.286 Amp 

and the voltage across the resistor R3 is given as :    0.286 x 40 = 11.44 volt 

The negative sign for I1 means that the direction of current flow initially chosen was wrong, but never the less still 

valid. In fact, the 20v battery is charging the 10v battery. 

 

Applications of Kirchhoff’s Law 

1. Wheatstone bridge principle. 

If four junctions are made due to the formation of a closed-loop by 

connecting four resistors in series and if an electric cell is connected 

between the two opposite junctions and a galvanometer is connected 

between the other two opposite junctions then the circuit thus formed is 

called Wheatstone bridge. The Wheatstone bridge is a circuit which is used 

to measure correctly an unknown resistance. Wheatstone bridge principle 

states that when the bridge is impartial, the products of the resistance of the 

opposite arms are equivalent. 

Let the resistance of the galvanometer be G and currents flowing 

through P, Q, S, and G be respectively i1, i2, i3, i4, and ig. 

Now, applying Kirchhoff’s first law respectively at points C and F. 

we get, 

i1 – i3 – ig = 0 i.e., i1 = i3 + ig … … … (1) 

and,   i2 + ig – i4 = 0  i.e., i4 = i2 + ig … … … (2) 

Again, applying Kirchhoff’s second law respectively at closed loops ACFA and CDFC, we get, 

i1P + igG – i2R = 0 … … … (3) 

and, i3Q – i4S – igG = 0 … … … (4) 
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But at balanced condition of the bridge, ig = 0. 

So, under this condition, according to equations (1) and (2), i1 = i3 and i4 = i2. 

According to equations, (3) and (4),         i1P = i2R … … … (5) 

and i3Q = i4S … … … (6) 

Now dividing equation (5) by equation (6) we get 

i1P / i3Q = i2R / i4S; but, i1 = i3 and i4 = i2 

So, P / Q = R /S … … … (7) 

According to the equation (7), at the equilibrium of the Wheatstone bridge, if values of any three resistors 

are known, then the resistance of the fourth resistor can be determined. It is called the Wheatstone bridge 

principle for the measurement of resistance. 

 

2. Parallel Combination of Cells  

Let us consider e.m.f.’s of three cells are E1, E2 and E3 and their internal 

resistance are r1, r2, and r3 respectively. They are connected in parallel 

with a resistor R. Let the current flow due to individual cells are I1, I2, 

and I3. Applying KCL at a and b points we get 

𝐼1 + 𝐼2 + 𝐼3 = 𝐼 

Applying KVL in RAE1BR, RAE2BR, RAE3BR loops we get 

𝐼1𝑟1 + 𝐼𝑅 = 𝐸1 

𝐼2𝑟2 + 𝐼𝑅 = 𝐸2 

𝐼3𝑟3 + 𝐼𝑅 = 𝐸3 

Dividing eqn 2, 3, and 4 by r1, r2, and r3 respectively and then summing we get 

(𝐼1 + 𝐼2 + 𝐼3) + 𝐼 (
𝑅

𝑟1
+

𝑅

𝑟2
+

𝑅

𝑟3
) =

𝐸1

𝑟1
+

𝐸2

𝑟2
+

𝐸3

𝑟3
  

𝐼 + 𝐼 (
𝑅

𝑟1
+

𝑅

𝑟2
+

𝑅

𝑟3
) =

𝐸1

𝑟1
+

𝐸2

𝑟2
+

𝐸3

𝑟3
 

𝐼 (1 +
𝑅

𝑟1
+

𝑅

𝑟2
+

𝑅

𝑟3
) =

𝐸1

𝑟1
+

𝐸2

𝑟2
+

𝐸3

𝑟3
 

𝐼 =

𝐸1
𝑟1

+
𝐸2
𝑟2

+
𝐸3
𝑟3

1 +
𝑅
𝑟1

+
𝑅
𝑟2

+
𝑅
𝑟3

 

(1) 

(2) 

(3) 

(4) 

(5) 
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If there are n number of cells are connected in this manner then total current will be 

𝐼 =

𝐸1
𝑟1

+
𝐸2
𝑟2

+
𝐸3
𝑟3

+ ⋯…… . . +
𝐸𝑛
𝑟𝑛

1 +
𝑅
𝑟1

+
𝑅
𝑟2

+
𝑅
𝑟3

+ ⋯…… . . +
𝑅
𝑟𝑛

 

And if all the cell are of identical e.m.f. and internal resistance r then  

𝐼 =

𝑛𝐸
𝑟

1 +
𝑛𝑅
𝑟

 

𝐼 =
𝑛𝐸

𝑛𝑅 + 𝑟
 

3. Series Combination of Cells 

Try yourself. 
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