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Preliminary Lecture 

 

 

Consideration of size→                                                               and          

                                       

 

 

Roadmap in physics: 

 

 

Classical mechanics today has come into wide use to denote that part of mechanics where the objects in 

question are neither too big, nor too small interacting objects, more precisely, systems of an atomic scale 

Macroscopic              

Star, planet, etc.  

which visible to naked eye 

Microscopic   

Atoms, molecules, electron etc.  

which visible with microscope  
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so that a close agreement between theory and experiment is desirable. These extreme cases are dealt within 

general relativity and quantum mechanics respectively.  

➢ Classical physics → Two distinct aspect of nature  

• Matter: localized 

• Energy: Wave, spread in space 

   

Classical Physics  

 

 

 

 

Modern Physics  

 

Classical physics  

 

 

 

Modern Physics  

 

 

Classical physics refers to theories of physics that exist before modern, more complete, or more widely 

applicable theories. Sir Isaac Newton known as the father of classical physics. Classical physics are the 

physics that were made before the 20th century. This part of physics studies things like movement, light, 

gravity, and electricity. 

Mechanics:  

Mechanics (Greek μηχανική) is the area of physics concerned with the motions of macroscopic objects. 

Forces applied to objects result in displacements, or changes of an object's position relative to its 

environment. This branch of physics has its origins in Ancient Greece with the writings of Aristotle and 

Archimedes. 

 

Classical Mechanics:  

Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, 

and astronomical objects, such as spacecraft, planets, stars and galaxies. 

Matter  Energy 

Classical mechanics  

Electrodynamics 

One/two body system   

Quantum mechanics  

Relativity   

Statistical mechanics  

Many body system   
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If the present state of an object is known it is possible to predict by the laws of classical mechanics how it 

will move in the future (determinism) and how it has moved in the past (reversibility). 

 

The earliest development of classical mechanics is often referred to as Newtonian mechanics. It consists of 

the physical concepts employed and the mathematical methods invented by Isaac Newton, Gottfried 

Wilhelm Leibniz and others in the 17th century to describe the motion of bodies under the influence of a 

system of forces. 

 

Later, more abstract methods were developed, leading to the reformulations of classical mechanics known 

as Lagrangian mechanics and Hamiltonian mechanics. These advances, made predominantly in the 18th 

and 19th centuries, extend substantially beyond Newton's work, particularly through their use of analytical 

mechanics. They are, with some modification, also used in all areas of modern physics. 

 

Classical mechanics provides extremely accurate results when studying large objects that are not extremely 

massive and speeds not approaching the speed of light. When the objects being examined have about the 

size of an atom diameter, it becomes necessary to introduce the other major sub-field of mechanics: 

quantum mechanics. To describe velocities that are not small compared to the speed of light, special 

relativity is needed. In case that objects become extremely massive, general relativity becomes applicable. 

However, a number of modern sources do include relativistic mechanics into classical physics, which in 

their view represents classical mechanics in its most developed and accurate form. 

 

Coordinate System 

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely 

determine the position of the points or other geometric elements on a manifold such as Euclidean space. 

In geometry, a two- or three-dimensional space in which the axioms and postulates of Euclidean geometry 

apply is knows as Euclidean space. 
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Cartesian coordinate system (x, y, z)     Polar Coordinate System (r, 𝜃) 

 

   

       Spherical coordinate system (𝜌, 𝜃, 𝜑)        Cylindrical coordinate system (𝜌, 𝜑, 𝑧)  

 

Conservative system: A conservative system is a system in which work done by a force is  

1. Independent of path.  

2. Equal to the difference between the final and initial values of an energy function.  

3. Completely reversible.  

The two most notable conservative systems are gravitational and electric fields. With gravity for 

example, the gravitational potential energy acquired or lost by a mass depends only on the 

difference between heights (or between distances from the origin of the force), and not on the 

path taken to get from one state to the other.  
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Contrast a conservative system with a system involving friction in which the work done to get 

between states does depend on the path taken and is not reversible.  

 

 

Reference: 

➢ Classical mechanics – Gupta, Kumar, Sharma 

➢ Classical mechanics – Goldstein, G  

➢ Physics part 1 and part ll – David Halliday and Robert Resnick 

➢ http://103.79.117.242/ru_profile/public/teacher/21907273/profile#content 

Or, Academic→Department→Physics→Faculty member→ Md. Saifur Rahman→Course Materials  

➢ Internet 
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Lagrangian Formulation 

Formulation:  The action of creating or preparing something.   

A material or mixture prepared according to a particular formula. 

Lagrangian mechanics: This is a reformulation of classical mechanics, introduced by the Italian-French 

mathematician and astronomer Joseph-Louis Lagrange in 1788. 

In Lagrangian mechanics, the trajectory of a system of particles is derived by solving the 

Lagrange equations in one of two forms: either the Lagrange equations of the first kind, 

which treat constraints explicitly as extra equations, often using Lagrange multipliers; or 

the Lagrange equations of the second kind, which incorporate the constraints directly by 

judicious choice of generalized coordinates. In each case, a mathematical function called 

the Lagrangian is a function of the generalized coordinates, their time derivatives, and time, 

and contains the information about the dynamics of the system. 

 

Constraints:  

The constraints are the restriction on a body which limit the motion of that body. In classical 

mechanics, the motion of the bodies is constrained in some way, for example, a massive bead may be 

constrained to move along a bent wire of certain shape; a massive cylinder may be rolling along a surface 

(but not sliding or flying around); or two masses may be connected by a rigid stick of fixed length. In each 

of these cases there are forces acting on the constrained bodies, which limits the motion of that body. These 

forces are called constraint force.   

                            

 

In the above examples, the wire produces a force on the bead, the plane acts by the force of friction on the 

cylinder, and the stick pulls or pushes on the two masses. These forces may vary in 

time and we do not know the magnitude of these forces in advance. We know, 

however, that these forces are at every time exactly such as to guarantee that the 

constraints hold. The bead would fly away if there were no forces acting on it, but 

the wire provides a force that keeps the bead in place. The two masses connected by 

a rigid stick experience a force from the stick that is exactly necessary to keep them 

at a constant distance from each other. This is what it means that the stick is "rigid". 

Constraints are classified as: 

1. Scleronomic: If the equations of constraints do not contain the time as an explicit variable and the  

                   equation of constraints can be described by generalized coordinates, then such type of  

                   constraints are called scleronomic constraints.  

      In this case the mechanical system is scleronomous. 
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2. Rheonomic: constraint relations depend explicitly on time 

         In this case the mechanical system is rheonomous. 

 

In the figure, the string is attached at the top end to a pivot and at the bottom end to a weight. Being 

inextensible, the string has a constant length as there is no time dependency. Therefore, this system is 

scleronomous; it obeys the scleronomic constraint  

  

The situation changes if the pivot point is moving, e.g. undergoing a simple harmonic 

motion  

 

Where x0 is the amplitude, ω is the angular frequency, and t is the time. 

 

Although the top end of the string is not fixed, the length of this inextensible string is 

still a constant. The distance between the top end and the weight must stay the same. 

Therefore, this system is rheonomous; it obeys the rheonomic constraint 

 

1. Holonomic: constraint relations are or can be made independent of velocities ( �̇�, �̇�, �̇�) 
2. Non-holonomic: constraint relations are not holonomic (depend on velocities) 

Holonomic constraints are relations between the position variables (and possibly time) which can be 

expressed in the following form: 

 

Where {q1, q2, q3… qn} are the n coordinates which describe the system. For example, the motion of a 

particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle 

is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the 

first case the holonomic constraint may be given by the equation: 

 

Where r is the distance from the center of a sphere of radius a. Whereas the second non-holonomic case 

may be given by: 

 

Velocity-dependent constraints such as: 

 

r 

a 

r 

a 

g 
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are not usually holonomic. The constraints involved in the motion of the molecules in a gas container are 

non-holonomic. An object rolling on a rough surface without slipping involves non-holonomic constraint 

in the description of its motion.  

Note that there are some special cases of velocity-dependent constraints which can actually be integrated 

to give holonomic constraints, these are holonomic-in-disguise. For example, consider a general velocity-

dependent constraint: 

𝐴�̇� + 𝐵 = 0 

This doesn’t look holonomic, and in general it’s not. However, in the case where there exists a function f 

such that A=
𝜕𝑓

𝜕𝑥
 and B=

𝜕𝑓

𝜕𝑡
, then  

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑡
= 0 

𝑑𝑓 = 0 

Which means we may integrate this to yield a holonomic constraint f=0 (constant) 

 

1. Conservative: In this case, total mechanical energy of the system is conserved while performing 

the constrained motion. Constraint forces do not do any work. 

2. Dissipative: constraint forces do work and total mechanical energy is not conserved.  

Usually the constraint forces act in a direction perpendicular to the surface of constraints at every point on 

it, while the motion of the object is parallel to the surface at every point. In such cases the work done by 

constraint forces is zero. One obvious exception is, of course, the frictional force due to sliding which does 

work for real displacements. Another exception is the rheonomic constraint for which the constraint force 

need not act perpendicular to the real displacement. We see from the figure that   

 

 

 

 

  

 

 

 

1. Bilateral: at any point on the constraint surface both the forward and backward motions are 

possible. Constraint relations are not in the form of inequalities but are in the form of equation. 

2. Unilateral: at some points no forward motion is possible. Constraint relations are expressed in the 

form of inequalities.  

T T’ 

T’

’ 

T’’’ 

∆𝑟 

∆𝑟 

∆𝑟 
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If one slowly pushes a box around on a horizontal surface z=0 (and it is a reasonable assumption that the 

box will not lose contact with the surface because of downward gravity), then one can replace the actual 

unilateral constraint z≥0 with an effective description in terms of a bilateral constraint z=0. 

The constraint function f(q)=q2 is a bilateral constrain. Here may be q=0 and negative and positive, hence 

bilateral. 

 

Some typical examples constraints are as follows: 

• The bob of a pendulum must remain a fixed distance from the point of support. 

• The particles of a rigid body must maintain fixed distances from each other. 

• A particle sliding on a wire must not leave the wire. 

• The contact particle of a body rolling on a fixed surface must be at rest. 

The rolling condition is a kinematical constraint since it involves the velocity of a particle. All the other 

constraints are geometrical 

Degrees of Freedom:  

The number of independent ways in which a mechanical system can move without violating any constraint 

which may be imposed such that its configuration changes, is called the number of degrees of freedom of 

the system. It is indicated by the least possible number of coordinates to describe the system completely.  

 

For example, when a single particle moves in space, it has three degrees of freedom, but if it is constrained 

to move along a certain space curve, it has only one. Similarly, a rigid body rotating about an axis fixed in 

space has only one degree of freedom—that of rotation angle about the axis. We then conclude that 

imposing constraints is a way of simplifying the problems mathematically in that the number of equations 

of motion are reduced to the same number as the number of degrees of freedom. In a system of N particles 

subject to k independent constraints expressible in k equations of the form  

g1 (x1, y1, z1 ….. zN, t) = a1 

g2 (x1, y1, z1….. zN, t) = a2 

……………………….. 

gk (x1, y1, z1….. zN, t) = ak 

 

Then the number of degrees of freedom f = 3N-k  

In the above equations, g1, g2, gk are k specified functions of 3N coordinates and possibly of time if 

constraints depend on time explicitly.  

Initially there are 360 joints in the human body. Degrees of freedom of human hand is 7 whereas the total 

human body possess 244 degree of freedom. The number of joints are 230 in matured human body. And, 

many of the joints have one degree of freedom and some have more than one DoF. 

 

 

 

(1) 
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Generalized Coordinates: 

To describe the configuration of a system, we select the smallest possible number of variables. These are 

called the generalized coordinates of the system. Generalized coordinates refer to the parameters that 

describe the configuration of the system relative to some reference configuration. These parameters must 

uniquely define the configuration of the system relative to the reference configuration.  

We shall not restrict our choice only to Cartesian coordinates. In many cases these are not the most 

convenient coordinates in terms of which we are to describe the motion of the system. A set of generalized 

coordinates is any set of coordinates which describe the configuration.  

A system of N particles, free from constraints has 3N independent coordinates. If there exist holonomic 

constraints expressed in (k) equations in the form f(r1, r2, …..t) then we may use to eliminate k of 3N 

coordinates. The number of independent coordinates will be given by  

f=3N-k 

The number of independent coordinates in D dimensions, the original configuration would need ND 

coordinates, and the reduction by constraints means n = ND − k. It is ideal to use the minimum number of 

coordinates needed to define the configuration of the entire system, while taking advantage of the 

constraints on the system. These quantities are known as generalized coordinates. 

This elimination of the independent coordinates can be expressed by the introduction of new 3N-k 

independent variables q1, q2, q3…...q3N-k in terms of which the old coordinates r1, r2, r3…...rN can be 

expressed by the equation of the form  

r1 = r1 (q1, q2, q3…...q3N-k, t) 

r2 = r2 (q1, q2, q3…...q3N-k, t) 

……………………………. 

rN = rN (q1, q2, q3…..q3N-k, t) 

The above set of equation can be solved in terms of q1, q2, q3…..q3N-k as  

q1 = q1 (r1, r2, r3….rN, t) 

………………………….. 

qf = qf (r1, r2, r3….rN, t) 

This set of new coordinates q1, q2, q3…..q3N-k, is known as generalized coordinates.  

In general, we can always express generalized coordinates as some functions of Cartesian coordinates, and 

possibly function of time as  

 q1 = q1 (x1, y1, z1; x2, y2, z2;… xN, yN, zN; t) 

q2 = q2 (x1, y1, z1; x2, y2, z2;… xN, yN, zN; t) 

………………………………………………… 

q3N = q3N (x1, y1, z1, x2, y2, z2,… xN, yN, zN, t) 

(2) 

(3) 

(4) 
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Above equations are the transformation equation from a set of 3N Cartesian coordinates to 3N generalized 

coordinates.  

Generalized coordinates are paired with generalized momenta to provide canonical coordinates on phase 

space. Some examples of generalized coordinate: 

   

 
Arc length s Angle 𝜃 Angle 𝜃1, 𝜃2 Displacement x, angle 𝜃  

 

                  

Generalized Displacement  

Let us consider a small displacement of an N-particle system defined by changes 𝛿ri in Cartesian 

coordinates ri (i = 1, 2, ..., N) with time t held fixed. For the sake of simplicity we may consider an arbitrary 

virtual displacement 𝛿ri, then since ri are functions of generalized coordinates defined by the equation for 

unconstrained system as: 

ri = ri (q1, q2, q3…..q3N, t) 

We have from Euler’s theorem  

𝛿𝒓𝑖 = 
𝜕𝒓𝒊

𝜕𝑞1
𝑑𝑞1 +

𝜕𝒓𝒊

𝜕𝑞2
𝑑𝑞2+. . . . +

𝜕𝒓𝒊

𝜕𝑡
𝑑𝑡 

𝛿𝒓𝑖 = ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
𝛿𝑞𝑗

3𝑁

𝑗=1

 

Euler’s theorem  

X=X (x1, x2, x3)  

𝑑𝑋 = 
𝜕𝑋

𝜕𝑥1
𝑑𝑥1 + 

𝜕𝑋

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑋

𝜕𝑥3
𝑑𝑥3  

We have chosen ri, to represent the 3N coordinates (x1, y1, ...zN) for notational convenience; each ri is 

equivalent to three component coordinates x1, y1, zl and so on. 𝛿qj are called the generalized displacements 

or virtual arbitrary displacements. If qj is an angle coordinate, 𝛿qj is an angular displacement.  

 

 

 

(4) 

(5) 

(6) 

(as 𝛿𝑡 = 0) 
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Generalized Velocity 

Generalized velocity may be described in terms of time derivative of the generalized coordinate qj, i.e. 𝑞�̇�, 

which is then called generalized velocity associated with a particular coordinate qj. We have for an 

unconstrained system:  

ri = ri (q1, q2, q3…..q3N, t) 

Then  

𝑑𝒓𝑖

𝑑𝑡
=  ∑

𝜕𝒓𝑖

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝑡
+ 

3𝑁

𝑗=1

∑
𝜕𝒓𝑖

𝜕𝑡

𝜕𝑡

𝜕𝑡

3𝑁

𝑗=1

 

�̇�𝑖 = ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
�̇�𝑗 + 

𝜕𝒓𝑖

𝜕𝑡

3𝑁

𝑗=1

 

If the N-system contains k constraints, the number of generalized coordinates is 3N – k = f and in that case  

�̇�𝑖 = ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
�̇�𝑗 + 

𝜕𝒓𝑖

𝜕𝑡

𝑓

𝑗=1

 

Note that if the generalized coordinate qj involves both Cartesian and angle coordinates, the generalized 

velocity associated with a Cartesian coordinate x is just the corresponding linear velocity while generalized 

velocity with an angular coordinate 𝜃 is the corresponding angular velocity. If a generalized coordinate has 

the dimensions of momentum, the generalized velocity will have the dimensions of force and so on.  

 

Generalized Acceleration 

 Components of accelerations are given by differentiating eqn. of velocities. Here the generalized velocity 

is  

�̇�𝑖 = ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
�̇�𝑗 + 

𝜕𝒓𝑖

𝜕𝑡

3𝑁

𝑗=1

 

Differentiating it again w.r.t. time, we get 

�̈�𝑖 =
𝑑

𝑑𝑡
 (∑

𝜕𝒓𝑖

𝜕𝑞𝑗
�̇�𝑗 + 

𝜕𝒓𝑖

𝜕𝑡

3𝑁

𝑗=1

) 

= ∑
𝑑

𝑑𝑡
(
𝜕𝒓𝑖

𝜕𝑞𝑗
�̇�𝑗) + 

𝑑

𝑑𝑡
(
𝜕𝒓𝑖

𝜕𝑡
)

3𝑁

𝑗=1

 

(7) 

(8) 

(8) 
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= ∑�̇�𝑗

𝑑

𝑑𝑡
(
𝜕𝒓𝑖

𝜕𝑞𝑗
) + ∑(

𝜕𝒓𝑖

𝜕𝑞𝑗
) �̈�𝑗

3𝑁

𝑗=1

+ 
𝜕�̇�𝑖

𝜕𝑡

3𝑁

𝑗=1

 

= ∑
𝜕�̇�𝑖

𝜕𝑞𝑗
�̇�𝑗 + ∑

𝜕𝒓𝑖

𝜕𝑞𝑗
�̈�𝑗

3𝑁

𝑗=1

+ 
𝜕�̇�𝑖

𝜕𝑡

3𝑁

𝑗=1

 

Putting for �̇�𝑖 from eq. (8), on changing index j to k, we get  

�̈�𝑖 = ∑
𝜕

𝜕𝑞𝑗
(∑

𝜕𝒓𝑖

𝜕𝑞𝑘
�̇�𝑘 + 

𝜕𝒓𝑖

𝜕𝑡

3𝑁

𝑘=1

) �̇�𝑗 + ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
�̈�𝑗

3𝑁

𝑗=1

+ 
𝜕

𝜕𝑡

3𝑁

𝑗=1

(∑
𝜕𝒓𝑖

𝜕𝑞𝑘
�̇�𝑘 + 

𝜕𝒓𝑖

𝜕𝑡

3𝑁

𝑘=1

) 

 

= ∑ ∑
𝜕2𝒓𝑖

𝜕𝑞𝑗𝜕𝑞𝑘
�̇�𝑘�̇�𝑗 + ∑

𝜕2𝒓𝑖

𝜕𝑞𝑗𝜕𝑡
�̇�𝑗 

3𝑁

𝑗=1

3𝑁

𝑘=1

+ ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
�̈�𝑗

3𝑁

𝑗=1

+ 

3𝑁

𝑗=1

∑
𝜕2𝒓𝑖

𝜕𝑡𝜕𝑞𝑘
�̇�𝑘 + 

𝜕2𝒓𝑖

𝜕𝑡2

3𝑁

𝑘=1

 

The Cartesian components are not linear functions of components of generalized accelerations �̈�𝑗 alone, 

but depend quadratically and linearly on the generalized velocity components �̇�𝑗 as well. However, in the 

new approach devised by Lagrange, the computation of second derivatives of generalized coordinates is 

not required. 

 

Generalized Kinetic Energy 

Let us first write down an expression for kinetic energy in terms of generalized velocities. The kinetic 

energy T of a system of N free particles in terms of Cartesian coordinates is  

𝑇 = ∑
1

2
𝑚𝑖�̇�𝑖

2

𝑁

𝑖=1

 

= ∑
1

2
𝑚𝑖(�̇�𝑖. �̇�𝑖)

𝑁

𝑖=1

 

Substituting for �̇�𝑖 from equation (8), we obtain  

𝑇 = ∑
1

2
𝑚𝑖 [∑

𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑗 + 
𝜕𝑟𝑖
𝜕𝑡

3𝑁

𝑗=1

]

𝑁

𝑖=1

[∑
𝜕𝑟𝑖
𝜕𝑞𝑘

�̇�𝑘 + 
𝜕𝑟𝑖
𝜕𝑡

3𝑁

𝑘=1

] 

= ∑
1

2
𝑚𝑖 [∑ ∑

𝜕𝑟𝑖
𝜕𝑞𝑘

�̇�𝑘

3𝑁

𝑘=1

𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑗 + ∑
𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑗

𝜕𝑟𝑖
𝜕𝑡

+ ∑
𝜕𝑟𝑖
𝜕𝑡

𝜕𝑟𝑖
𝜕𝑞𝑘

�̇�𝑘 +

3𝑁

𝑘=1

3𝑁

𝑗=1

3𝑁

𝑗=1

(
𝜕𝑟𝑖
𝜕𝑡

)
2

]

𝑁

𝑖=1

 

(9) 

(10) 

(11) 
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=
1

2
∑∑ ∑ 𝑚𝑖

𝜕𝑟𝑖
𝜕𝑞𝑘

3𝑁

𝑘=1

𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑘�̇�𝑗 + 

3𝑁

𝑗=1

𝑁

𝑖=1

1

2
∑∑𝑚𝑖

𝑁

𝑖=1

𝜕𝑟𝑖
𝜕𝑞𝑗

𝜕𝑟𝑖
𝜕𝑡

�̇�𝑗

3𝑁

𝑗=1

+
1

2
∑ ∑𝑚𝑖

𝑁

𝑖=1

𝜕𝑟𝑖
𝜕𝑡

𝜕𝑟𝑖
𝜕𝑞𝑘

�̇�𝑘 +
1

2
∑𝑚𝑖

𝑁

𝑖=1

(
𝜕𝑟𝑖
𝜕𝑡

)

23𝑁

𝑘=1

 

Second term on the right side consists of two sums which are identical so that  

=
1

2
∑∑ ∑ 𝑚𝑖

𝜕𝑟𝑖
𝜕𝑞𝑘

3𝑁

𝑘=1

𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑘�̇�𝑗 + 

3𝑁

𝑗=1

𝑁

𝑖=1

∑ ∑𝑚𝑖

𝑁

𝑖=1

𝜕𝑟𝑖
𝜕𝑡

𝜕𝑟𝑖
𝜕𝑞𝑘

�̇�𝑘 +
1

2
∑𝑚𝑖

𝑁

𝑖=1

(
𝜕𝑟𝑖
𝜕𝑡

)

23𝑁

𝑘=1

 

= 𝑇(2) + 𝑇(1)+𝑇(0) 

Thus, the general kinetic energy in terms of generalized velocities comprises three distinct terms; T(2) 

contains terms quadratic in generalized velocities and this fact is indicated by a superscripts (2) on T; T(1) 

containing linear terms and T(0) is independent of generalized velocities.  

 

Generalized Momentum 

From eq. (11) we observe that linear momentum, associated with the linear velocity �̇�i is mi�̇�i, is given by  

𝑃𝑥𝑖
= 

𝜕𝑇

𝜕�̇�𝑖
= 𝑚𝑖�̇�𝑖 

Then momentum associated with generalized coordinate qk is similarly defined and is called the generalized 

momentum pk associated with a coordinate qk 

𝑝𝑘 =
𝜕𝑇

𝜕�̇�𝑘
 

pk need not always have dimension (MLT-1) of linear momentum; for, if qk happens to be an angular 

coordinate, pk is the corresponding angular momentum (ML2T-1). Differentiating eq. (12) w.r.t, qk we get  

𝑝𝑘 = ∑∑
𝜕𝑇

𝜕𝑞𝑘

3𝑁

𝑗=1

𝑁

𝑖=1

 

=
1

2
∑∑𝑚𝑖

𝜕𝑟𝑖
𝜕𝑞𝑘

𝜕𝑟𝑖
𝜕𝑞𝑗

�̇�𝑗 + 

3𝑁

𝑗=1

𝑁

𝑖=1

∑𝑚𝑖

𝑁

𝑖=1

𝜕𝑟𝑖
𝜕𝑡

𝜕𝑟𝑖
𝜕𝑞𝑘

 

Last term will again be absent if the generalized system is stationary. It is again a linear function of 

generalized velocities.  

 

Problem:  The kinetic energy of a particle is given by 𝑇 =
1

2
𝑚(�̇�2 + 𝑟2�̇�2 + 𝑟2𝑠𝑖𝑛2𝜃�̇�2). Calculate the 

generalized momenta.  

Solution: We know, the radial component of generalized momentum is  

(12) 

(13) 

(14) 

 

[𝑇 = ∑
1

2
𝑚𝑖�̇�𝑖

2

𝑁

𝑖=1

] 
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𝑃𝑟 =
𝜕𝑇

𝜕�̇�
=

𝜕

𝜕�̇�
{
1

2
𝑚(�̇�2 + 𝑟2�̇�2 + 𝑟2𝑠𝑖𝑛2𝜃�̇�2)} 

=
1

2
𝑚2𝑟 =̇ 𝑚�̇� 

the angular polar component of generalized momentum is  

𝑃𝜃 =
𝜕𝑇

𝜕�̇�
=

𝜕

𝜕�̇�
{
1

2
𝑚(�̇�2 + 𝑟2�̇�2 + 𝑟2𝑠𝑖𝑛2𝜃�̇�2)} 

=
1

2
𝑚𝑟22�̇� = 𝑚𝑟2�̇� 

And the azimuthal component of generalized momentum is  

𝑃𝜑 =
𝜕𝑇

𝜕�̇�
=

𝜕

𝜕�̇�
{
1

2
𝑚(�̇�2 + 𝑟2�̇�2 + 𝑟2𝑠𝑖𝑛2𝜃. �̇�2)} 

=
1

2
𝑚𝑟2𝑠𝑖𝑛2𝜃. 2�̇� = 𝑚𝑟2�̇� 𝑠𝑖𝑛2𝜃 

 

Generalized Force  

The definition of generalized force associated with a generalized displacement is given as follows: let  us 

consider the amount of work done by a force ∑ 𝛿𝑭𝑖, on the system during an arbitrary small 

displacement ∑ 𝛿𝒓𝑖, of the system 

𝛿𝑊 = ∑𝑭𝒊

𝑵

𝒊=𝟏

. 𝜹𝒓𝒊 

= ∑𝑭𝒊

𝑵

𝒊=𝟏

.∑
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

3𝑁

𝑗=1

 

 

= ∑𝑄𝑗

𝑵

𝒋=𝟏

𝛿𝑞𝑗  

Where  

𝑄𝑗 = ∑𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗

3𝑁

𝑖=1

 

We note that Qj depends on the force acting on the particles and on the coordinate qj and possibly on time 

t. It is natural to call Qj, the generalized force associated with a coordinated qj. Product of Qj with the 

arbitrary displacement, that a generalized coordinate suffers, is equal to the work done corresponding to 

that dis-placement. From eq. (15) it follows that whatever dimension a generalized coordinate has, the 

(15) 
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product of the generalized force and generalized displacement (coordinate) must have the dimensions of 

work. For that reason, the generalized force need not always have the dimensions of force.  

Generalized Potential 

If the forces acting on the system are derivable from a scalar potential V depending on the position only, 

(i.e. conservative system) then V is the potential energy of the system and we have for work done by the 

force on the system in an arbitrary displacement 𝛿𝑟𝑖 of the system as 

𝛿𝑊 = −𝛿𝑉 

(When you do conservative work on an object, the work you do is equal to the negative change in potential energy 

W=−ΔU. As an example, if you lift an object against Earth's gravity, the work will be −mgh. Gravity is doing work 

on the object by pulling it towards the Earth, but since you are pushing it in the other direction, the field does negative 

work when you increase a particle's potential energy.) 

= −∑[
𝜕𝑉

𝜕𝑥𝑖
𝛿𝑥𝑖 +

𝜕𝑉

𝜕𝑦𝑖
𝛿𝑦𝑖 +

𝜕𝑉

𝜕𝑧𝑖
𝛿𝑧𝑖]

𝑁

𝑖=1

 

Also  

𝛿𝑊 = − ∑
𝜕𝑉

𝜕𝑞𝑘
𝛿𝑞𝑘

3𝑁

𝑘=1

 

= ∑ 𝑄𝑘𝛿𝑞𝑘

3𝑁

𝑘=1

 

 Thus  

𝑄𝑘 = −
𝜕𝑉

𝜕𝑞𝑘
 

In this sense, the definition of Qk as generalized force is a natural one. Also eq. (17) directly follows from 

eq. (16): for, 

𝜕𝑉

𝜕𝑞𝑘
= ∑[

𝜕𝑉

𝜕𝑥𝑖

𝛿𝑥𝑖

𝜕𝑞𝑘
+

𝜕𝑉

𝜕𝑦𝑖

𝛿𝑦𝑖

𝜕𝑞𝑘
+

𝜕𝑉

𝜕𝑧𝑖

𝛿𝑧𝑖

𝜕𝑞𝑘
]

𝑁

𝑖=1

 

= ∑𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑘

𝑁

𝑖=1

= −𝑄𝑘 

When the system is not conservative (i.e., say depends on the generalized velocities �̇�) we define the 

generalized force associated with a coordinate qj as 

𝑄𝑘 = −
𝜕𝑉

𝜕𝑞𝑘
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕�̇�𝑗
) 

Where U may be called a 'velocity dependent potential' or ‘generalized potential’ since it gives rise to 

generalized force Qj. The obvious advantage that we have in formulating laws of mechanics in terms of 

(16) 

(17) 
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generalized coordinates and the associated mechanical quantities is that the equation of motion then look 

simpler and can be solved independently of each other since generalized coordinates are all independent—

constraints have no effect on them. Equations of motion are Lagranges Equation of Motion. 

 

Virtual Displacement:  

Let us consider two possible configurations of a system of particles at a particular instant which are 

consistent with the forces of constraints. In order to transform from one configuration to the other we need 

only a small displacement 𝛿𝒓𝒏 of n-th particle from the old to the new position. 𝛿𝒓𝒏 is called the virtual 

displacement. In the case of virtual displacement, there are finite number of paths in the configuration space. 

The duration of time in which the force acting on the particle is zero. 

Whereas the path which is actually followed by the system in this configuration space with respect to time 

is referred to as the actual displacement of this system.  

 

D’Alembert’s Principle 

D'Alembert's form of the principle of virtual work states that a system of rigid bodies is in dynamic 

equilibrium when the virtual work of the sum of the applied forces and the inertial forces is zero for any 

virtual displacement of the system. 

Statement: “A system of particles moves in such a way that the total virtual work done is equals to zero. 

i.e.  

∑(�⃗⃗� 𝑖
𝑎 − �⃗⃗̇� 𝑖) . 𝛿�⃗� 𝑖

𝑁

𝑖=1

= 𝑜 

Or it can be said as, “At any given instant, the force applied to a particle are balanced by the inertial force” 

Proof: 

Let us consider the system is in equilibrium, i.e. total force Fi  on every particle is zero. i.e.  

Fi = 0              (1) 

Then the work done by this force in a small virtual displacement  𝛿𝒓𝑖 is  

∑𝐅𝒊 .

𝑖

𝛿𝒓𝑖 = 0 

Let the total force be expressed as sum of applied force Fi
a and forces of constraint fi i.e.  

Fi = Fi
a + fi               (3) 

Then from eqn. 2 and 3 we get,  

∑𝐅𝑖 .

𝑖

𝛿𝒓𝑖 = ∑(𝐅𝑖
𝑎  +  𝐟𝑖  ).

𝑖

𝛿𝒓𝑖 = 0 

(2) 

(4) 



19       
    Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 2H / Chapter-1 / 2020 

∑𝐅𝑖
𝑎 .

𝑖

𝛿𝒓𝑖 + ∑𝐟𝑖 .

𝑖

𝛿𝒓𝑖 = 0 

We now consider the system for which the virtual work of the forces of constraints is zero. An example of 

such system is, if we consider that, a particle be constrained to move on a smooth surface so that the forces 

of constraints being perpendicular to the surface while virtual displacement tangential to it, then the virtual 

work done by forces of constraints will be zero. Thus,  

∑𝐅𝑖
𝑎 .

𝑖

𝛿𝒓𝑖 = 0 

Where,        ∑ 𝐟𝑖 .𝑖 𝛿𝒓𝑖 = 0 

The equation is termed as principle of virtual work. 

To interpret the equilibrium of the system, D’Alembert’s conceived that a system will remain in equilibrium 

under the action of a force equal to the actual force Fi plus reversed effective force 𝑷𝒊
̇  i.e. the total force 

equal to the reverse effective force. Thus,  

𝐅𝑖 + (−�̇�𝑖) = 𝟎 

𝐅𝑖 − �̇�𝑖 = 𝟎 

𝐅𝑖 − �̇�𝑖 = 𝟎 

So  

∑(𝐅𝑖 − �̇�𝑖).

𝑖

𝛿𝒓𝑖 = 0 

∑(𝐅𝑖
𝑎 + 𝐟𝑖 − �̇�𝑖).

𝑖

𝛿𝒓𝑖 = 0 

∑(𝐅𝑖
𝑎 − �̇�𝑖).

𝑖

𝛿𝒓𝑖 + ∑𝐟𝑖 .

𝑖

𝛿𝒓𝑖 = 0 

∑(𝐅𝑖
𝑎 − �̇�𝑖).

𝑖

𝛿𝒓𝑖 = 0 

Since force of constraints are no more in picture, it is better to drop superscript a (as 𝐟𝑖 = 𝒐, 𝐅𝑖 = 𝐅𝑖
𝑎 ). 

Thus,  

∑(𝐅𝒊 − �̇�𝒊).

𝑖

𝛿𝒓𝑖 = 0 

This equation is D’Alembert’s principle.  

(F = ma; in D’Alembert’s form, the force F plus the negative of the mass m times acceleration a of the body 

is equal to zero: F - ma = 0. In other words, the body is in equilibrium under the action of the real force F 

and the fictitious force -ma. The fictitious force is also called an inertial force and a reversed effective 

force.) 

[Virtual work] 
(5) 

(6) 

[𝑎𝑠   ∑𝐟𝑖 .

𝑖

𝛿𝒓𝑖 = 𝟎] 

(7) 
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Lagrange’s Equation from D’Alembert’s Principle: 

The coordinate transformation equations are 

ri = ri (q1, q2, q3…..qn, t) 

So that  

𝑑𝒓𝒊

𝑑𝑡
=  

𝜕𝒓𝑖

𝜕𝑞1

𝑑𝑞1

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑞2

𝑑𝑞2

𝑑𝑡
+. . . . +

𝜕𝒓𝒊

𝜕𝑡

𝑑𝑡

𝑑𝑡
 

𝒗𝒊 = �̇�𝒊 = ∑
𝜕𝒓𝒊

𝜕𝑞𝑗
�̇�𝑗 + 

3𝑁

𝑗=1

𝜕𝒓𝒊

𝜕𝑡
 

The infinitesimal displacement 𝛿𝑟𝑖 can be connected with 𝛿𝑞𝑗 as, 

𝛿𝒓𝒊 = ∑
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗 +

𝜕𝒓𝑖

𝜕𝑡

𝑛

𝑗=1

𝛿𝑡 

 

But last term is zero since in virtual displacement only coordinate displacement is considered and not that 

of time. Therefore,  

𝛿𝒓𝒊 = ∑
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑛

𝑗=1

 

From D’Alembert’s principle we know 

∑(𝐅𝒊 − �̇�𝒊).

𝑖

𝛿𝒓𝒊 = 0 

Using equation 3 in this equation we get 

∑(𝐅𝒊 − �̇�𝒊).

𝑖

∑
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑛

𝑗=1

= 0 

 

∑𝐅𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗 − ∑�̇�𝒊.

𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖𝑗𝑖𝑗

= 0 

We know the generalized force is   

𝑄𝑗 = ∑𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗

𝑛

𝑖=1

 

𝑄𝒋 have the dimension of force and the product 𝑄𝒋𝛿𝑞𝑗 must have the dimension of work. Thus, the above 

equation takes the form 

(1) 

(2) 

(3) 

(4) 
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∑𝑄𝑗𝛿𝑞𝑗 − ∑�̇�𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖𝑗𝑗

= 0 

Let us evaluate the second term of eqn. 4  

∑�̇�𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖𝑗

= ∑𝑚𝑖�̈�𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖𝑗

 

= ∑{
𝑑

𝑑𝑡
(𝑚𝑖�̇�𝒊.

𝜕𝒓𝒊

𝜕𝑞𝑗
) − 𝑚𝑖�̇�𝒊.

𝑑

𝑑𝑡
 (

𝜕𝒓𝒊

𝜕𝑞𝑗
)} 𝛿𝑞𝑗

𝑖𝑗

 

= ∑{
𝑑

𝑑𝑡
(𝑚𝑖𝒗𝒊.

𝜕𝒓𝒊

𝜕𝑞𝑗
) − 𝑚𝑖𝒗𝒊.

𝑑

𝑑𝑡
 (

𝜕𝒓𝒊

𝜕𝑞𝑗
)} 𝛿𝑞𝑗

𝑖𝑗

 

Further  

𝑑

𝑑𝑡
 (

𝜕𝒓𝒊

𝜕𝑞𝑗
) =

𝜕

𝜕𝑞𝑗
(
𝑑𝒓𝒊

𝑑𝑡
) =

𝜕𝒗𝒊

𝜕𝑞𝑗
 

Also differentiating eqn. (2) with respect to �̇�𝑗, we get 

𝜕𝒗𝒊

𝜕�̇�𝑗
= 

𝜕𝒓𝒊

𝜕𝑞𝑗
 

Putting eqn. (6) and (7) in eqn. (5), we get,  

∑�̇�𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖𝑗

 = ∑{
𝑑

𝑑𝑡
(𝑚𝑖𝒗𝒊.

𝜕𝒗𝒊

𝜕�̇�𝑗
) − 𝑚𝑖𝒗𝒊.

𝜕𝒗𝒊

𝜕𝑞𝑗
} 𝛿𝑞𝑗

𝑖𝑗

 

= ∑{
𝑑

𝑑𝑡
(

𝜕

𝜕�̇�𝑗
(∑

1

2
𝑚𝑖𝑣𝑖

2

𝑖

)) −
𝜕

𝜕𝑞𝑗
(∑

1

2
𝑚𝑖𝑣𝑖

2

𝑖

)}𝛿𝑞𝑗

𝑗

 

= ∑{
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
} 𝛿𝑞𝑗

𝑗

 

Where for ∑
1

2
𝑚𝑖𝑣𝑖

2
𝑖  is the kinetic energy and can be denoted as T. 

With substitution eqn. 4 becomes, 

∑𝑄𝑗𝛿𝑞𝑗 − ∑{
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
} 𝛿𝑞𝑗

𝑗𝑗

= 0 

Further 

∑[
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
− 𝑄𝑗 ] 𝛿𝑞𝑗

𝑗

= 0 

(5) 

(6) 

(7) 
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Since constraints are holonomic, 𝑞𝑗 are independent of each other and hence to satisfy above equation the 

coefficient of each 𝛿𝑞𝑗 should separately vanish, i.e.  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= 𝑄𝑗 

Case I: Conservative System:  

Now we fit this problem to conservative system so that above set of equations may be identified as 

Lagrange’s equations of motion. For a conservative system, forces Fi are derivable from potential function 

V, the latter being purely dependent on coordinates, i.e.,  

𝑭𝒊 = −𝛁𝒊𝑉 

= −
𝜕𝑉

𝜕𝐫𝒊
 

Then generalized force at once can be expressed as  

𝑄𝑗 = ∑𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗

𝑛

𝑖=1

= −∑𝛁𝒊𝑉.
𝜕𝒓𝒊

𝜕𝑞𝑗

𝑛

𝑖=1

  

= −∑
𝜕𝑉

𝜕𝐫𝒊
.
𝜕𝒓𝒊

𝜕𝑞𝑗

𝑛

𝑖=1

 

= −
𝜕𝑉

𝜕𝑞𝑗
 

Now from eqn. (8)  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= −

𝜕𝑉

𝜕𝑞𝑗
 

𝑑

𝑑𝑡
(
𝜕(𝑇 − 𝑉)

𝜕�̇�𝑗
) −

𝜕(𝑇 − 𝑉)

𝜕𝑞𝑗
= 0 

Since V is not a function of �̇�𝑗.  

Recognizing (T-V) as L, the Lagrangian for the conservative system, we see that equations become  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
= 0 

∑[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
]

𝑛

𝑗=1

= 0 

Which are known as Lagrange’s equations of motion for conservative system.  

 

Case II. Non-conservative System:  

(8) 

(9) 

= ∑
𝜕𝑉

𝜕r𝒊
r�̂�.

𝜕𝑟𝑖
𝜕𝑞𝑗

𝑛

𝑖=1

r�̂� 

= ∑
𝜕𝑉

𝜕𝐫𝒊
.
𝜕𝒓𝒊

𝜕𝑞𝑗

𝑛

𝑖=1

 

𝛁𝒊𝑉 =
𝜕𝑣𝒊

𝜕𝑥
+

𝜕𝑣𝒋

𝜕𝑦
+

𝜕𝑣𝒌

𝜕𝑧
 

=
𝜕𝑣𝒊. 𝒊

𝜕𝑥𝒊
+

𝜕𝑣𝒋. 𝒋

𝜕𝑦𝒋
+

𝜕𝑣𝒌. 𝒌

𝜕𝑧𝒌
 

=
𝜕𝑣

𝜕𝒙
+

𝜕𝑣

𝜕𝒚
+

𝜕𝑣

𝜕𝒛
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If potentials are velocity dependent, called generalized potentials, then though the system is not 

conservative, and the generalized force 𝑄𝑗(𝑞𝑗, �̇�𝑗) can be written as 

𝑄𝑗 = −
𝜕𝑈

𝜕𝑞𝑗
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕�̇�𝑗
) 

Putting this value of Q; in equation (8), we get  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= −

𝜕𝑈

𝜕𝑞𝑗
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕�̇�𝑗
) 

𝑑

𝑑𝑡
(
𝜕(𝑇 − 𝑈)

𝜕�̇�𝑗
) −

𝜕(𝑇 − 𝑈)

𝜕𝑞𝑗
= 0 

If we take Lagrangian L = T —U, where U is generalized potential, then above equation is  

[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
] = 0 

which is exactly of the same form as eq. (9). An example of of such a type will follow in the calculation of 

Lagrangian for the case of electromagnetic forces on moving charges (art. applications of Lagrange's 

equations).  

 

 

(10) 
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Scalar potential 

Scalar potential, simply stated, describes the situation where the difference in the potential 

energies of an object in two different positions depends only on the positions, not upon the path 

taken by the object in traveling from one position to the other. It is a scalar field in three-space: a 

directionless value (scalar) that depends only on its location. A familiar example is potential 

energy due to gravity.  

A scalar potential is a fundamental concept in vector analysis and physics (the adjective scalar is 

frequently omitted if there is no danger of confusion with vector potential). The scalar potential is 

an example of a scalar field. Given a vector field F, the scalar potential P is defined such that:  

𝐅 = −𝛁𝑃 = −(
𝜕𝑃𝒊

𝜕𝑥
+

𝜕𝑃𝒋

𝜕𝑦
+

𝜕𝑃𝒌

𝜕𝑧
) 

Vector potential  

In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is 

analogous to a scalar potential, which is a scalar field whose gradient is a given vector field.  

Formally, given a vector field v, a vector potential is a vector field A such that  

𝑩 = 𝜵 × 𝑨 

The vector A is called the magnetic vector potential. 

 

B is a divergence free field s 𝛁. 𝑩 = 0.   So 𝛁. ( 𝛁 × 𝑨) = 0 

Dimension of B is 𝑀𝑇−2𝐼−1. 

Dimensions of the Magnetic potential is 𝑀𝐿𝑇−1𝑄−1  or  𝑀𝐿𝑇−2𝐼−1 

 

Lorentz force: 

The force F acting on a particle of electric charge q with instantaneous velocity v, due to an 

external electric field E and magnetic field B, is given by (in SI units): 

𝑭 = 𝑞[𝑬 + (𝑽 × 𝑩)] 

In cgs-Gaussian units, which are somewhat more common among theoretical physicists as well as 

condensed matter experimentalists, one has instead 

 

𝐹 = 𝑞𝑉𝐵 𝑠𝑖𝑛𝜃   [𝐵] =
[𝑀𝐿𝑇−2]

[𝐼𝑇][𝐿𝑇−1]
= [𝑀𝑇−2𝐼−1] 
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Where 

𝑞𝑐𝑔𝑠 =
𝑞𝑠𝑖

√4𝜋𝜀0
   𝐸𝑐𝑔𝑠 = √4𝜋𝜀0 𝐸𝑠𝑖    𝐵𝑐𝑔𝑠 = √

4𝜋

𝜇0
 𝐵𝑠𝑖     𝐶 =

1

√𝜇0𝜀0
 

𝑭 = 𝑞𝑐𝑔𝑠√4𝜋𝜀0 [
𝑬𝑐𝑔𝑠

√4𝜋𝜀0

+ (𝑽 × 𝑩𝑐𝑔𝑠)√
𝜇0

4𝜋
] 

𝑭 = 𝑞𝑐𝑔𝑠 [𝑬𝑐𝑔𝑠 +
1

𝐶
(𝑽 × 𝑩𝑐𝑔𝑠)] 

 

Lagrangian for a Charged Particles in an Electromagnetic Field: 

In an electromagnetic field the force on a particle of charge, q, is given by 

𝑭 = 𝑞 [𝑬 +
1

𝐶
(𝑽 × 𝑩)] 

 

But to incorporate it in Lagrangian formulation, we must express F in terms of vector and scalar potentials 

A and 𝜙. Thus writing  

𝑩 = 𝛁 × 𝑨 

and  

𝑬 = −𝛁𝜙 −
1

𝐶

𝜕𝑨

𝜕𝑡
 

Equation for F becomes  

𝑭 = 𝑞 [−𝛁𝜙 −
1

𝐶

𝜕𝑨

𝜕𝑡
+

1

𝐶
(𝑽 × 𝛁 × 𝑨)] 

To write it in a more convenient form, let us write the x-component of all terms on right hand side, i.e.  

(𝛁𝜙)𝑥 =
𝜕𝜙

𝜕𝑥
 

and  

𝑽 × 𝛁 × 𝑨 = 𝑽 × ||

𝐢 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

|| 

 

(1) 
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= 𝑽 × {𝒊 (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) + 𝒋 (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) + 𝒌(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)} 

 

= ||

𝐢 𝒋 𝒌
𝑉𝑥 𝑉𝑦 𝑉𝑧

(
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)
|| 

 

(𝑽 × 𝛁 × 𝑨)𝑥 = 𝑉𝑦 (
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) − 𝑉𝑧 (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) 

 

= 𝑉𝑦
𝜕𝐴𝑦

𝜕𝑥
− 𝑉𝑦

𝜕𝐴𝑥

𝜕𝑦
− 𝑉𝑧

𝜕𝐴𝑥

𝜕𝑧
+ 𝑉𝑧

𝜕𝐴𝑧

𝜕𝑥
 

= 𝑉𝑥
𝜕𝐴𝑥

𝜕𝑥
−𝑉𝑥

𝜕𝐴𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝐴𝑦

𝜕𝑥
− 𝑉𝑦

𝜕𝐴𝑥

𝜕𝑦
− 𝑉𝑧

𝜕𝐴𝑥

𝜕𝑧
+ 𝑉𝑧

𝜕𝐴𝑧

𝜕𝑥
 

on adding and subtracting the term 𝑉𝑥
𝜕𝐴𝑥

𝜕𝑥
 

(𝑽 × 𝛁 × 𝑨)𝑥 = 𝑉𝑥
𝜕𝐴𝑥

𝜕𝑥
+𝑉𝑦

𝜕𝐴𝑦

𝜕𝑥
+ 𝑉𝑧

𝜕𝐴𝑧

𝜕𝑥
− 𝑉𝑥

𝜕𝐴𝑥

𝜕𝑥
− 𝑉𝑦

𝜕𝐴𝑥

𝜕𝑦
− 𝑉𝑧

𝜕𝐴𝑥

𝜕𝑧
 

=
𝜕

𝜕𝑥
(𝑽. 𝑨) − [𝑉𝑥

𝜕𝐴𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝐴𝑥

𝜕𝑦
+ 𝑉𝑧

𝜕𝐴𝑥

𝜕𝑧
] 

Further, total time derivative of Ax is  

𝑑𝐴𝑥

𝑑𝑡
=

𝜕𝐴𝑥

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑧

𝑑𝑧

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑡
 

=
𝜕𝐴𝑥

𝜕𝑥
𝑉𝑥 +

𝜕𝐴𝑥

𝜕𝑦
𝑉𝑦 +

𝜕𝐴𝑥

𝜕𝑧
𝑉𝑧 +

𝜕𝐴𝑥

𝜕𝑡
 

Or, 

𝑑𝐴𝑥

𝑑𝑡
−

𝜕𝐴𝑥

𝜕𝑡
=

𝜕𝐴𝑥

𝜕𝑥
𝑉𝑥 +

𝜕𝐴𝑥

𝜕𝑦
𝑉𝑦 +

𝜕𝐴𝑥

𝜕𝑧
𝑉𝑧 

Putting this in equation 2 we get,  

(𝑽 × 𝛁 × 𝑨)𝑥 =
𝜕

𝜕𝑥
(𝑽. 𝑨) − [

𝑑𝐴𝑥

𝑑𝑡
−

𝜕𝐴𝑥

𝜕𝑡
] 

Then equation 1 becomes  

𝐹𝑥 = 𝑞 [−
∂𝜙

∂x
−

1

𝐶

𝜕𝐴𝒙

𝜕𝑡
+

1

𝐶
(

𝜕

𝜕𝑥
(𝑽. 𝑨) − [

𝑑𝐴𝑥

𝑑𝑡
−

𝜕𝐴𝑥

𝜕𝑡
])] 

(2) 
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= 𝑞 [−
∂

∂x
(𝜙 −

1

𝐶
𝑽. 𝑨) −

1

𝐶

𝑑𝐴𝑥

𝑑𝑡
] 

Also  

𝜕

𝜕𝑉𝑥
(𝑽. 𝑨) = 𝐴𝑥 ,  since 

𝜕𝐴𝑥

𝜕𝑉𝑥
= 0 

Thus 

𝐹𝑥 = 𝑞 [−
∂

∂x
(𝜙 −

1

𝐶
𝑽.𝑨) +

𝑑

𝑑𝑡
{

𝜕

𝜕𝑉𝑥
(−

𝑽. 𝑨

𝐶
)}] 

Since 𝜙 is independent of velocity, we can write the term  

𝜕

𝜕𝑉𝑥
(−

𝑽.𝑨

𝐶
)   as    

𝜕

𝜕𝑉𝑥
(𝜙 −

𝑽.𝑨

𝐶
) 

Therefore,  

𝐹𝑥 = 𝑞 [−
∂

∂x
(𝜙 −

1

𝐶
𝑽.𝑨) +

𝑑

𝑑𝑡
{

𝜕

𝜕𝑉𝑥
(𝜙 −

𝑽. 𝑨

𝐶
)}] 

Let us put  

𝑈 = 𝑞𝜙 −
𝑞

𝐶
𝑽.𝑨 

𝐹𝑥 = −
∂U

∂x
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕𝑉𝑥
) 

It shows that the force acting on the particle is derivable from a potential which is dependent on velocity. 

Such a particle system is called non-conservative one and we apply the following equations of motion  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= 𝑄𝑗 

Writing equation (3) in generalized co-ordinates 

𝐹𝑥 = 𝑄𝑗 = −
∂U

∂q𝑗
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕𝑞�̇�
) 

And putting in eqs. (4), we get  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= −

∂U

∂q𝑗
+

𝑑

𝑑𝑡
(
𝜕𝑈

𝜕𝑞�̇�
) 

𝑑

𝑑𝑡
[
𝜕(𝑇 − 𝑈)

𝜕�̇�𝑗
] −

𝜕(𝑇 − 𝑈)

𝜕𝑞𝑗
= 0 

Which can be written as  

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕�̇�𝑗
] −

𝜕𝐿

𝜕𝑞𝑗
= 0 

(3) 

(4) 
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Where Lagrangian 𝐿 = 𝑇 − 𝑈 = 𝑇 − 𝑞𝜙 +
𝑞

𝐶
𝑽. 𝑨. This shows that form of Lagrange's equation even if the 

system is non-conservative.  

 

Technique of Calculus of Variation 

Solution of a dynamical problem means that, we want to locate the position of the 

system, e.g., a particle, at a particular instant of time. We are also interested in the 

path adopted by the system. The piece-wise information of this path i.e. where it 

is maximum or minimum is secured through differential calculus by putting 

�̇�(𝑥) = 0 etc. But if we want the information about the whole path then we shall 

have to look for integral calculus and will be interested in the arguments like 

whether the path as a whole is largest or shortest (extremum or having a stationary 

value). This study requires the technique of calculus of variations. (fig. 1). Two 

paths which a particle may follow in going from position 1 to position 2 are 

shown. The straight-line path is shortest and can be represented as  

y = mx+c  

or                 y = y(x) 

in functional form indicating that y is a function of independent parameter x. For each value of x there will 

be fixed value of y. As we are interested in the length of the path, denoted by say, I, we can Write  

𝐼 = ∫𝑑𝑠 = ∫√(𝑑𝑥2 + 𝑑𝑦2) 

= ∫√(1 +
𝑑𝑦2

𝑑𝑥2)𝑑𝑥2 

∫√{1 + (
𝑑𝑦

𝑑𝑥
)
2

}𝑑𝑥 

= ∫√(1 + �̇�2)𝑑𝑥 

= ∫𝑓(�̇�)𝑑𝑥 

= ∫𝑓(𝑦, �̇�, 𝑥)𝑑𝑥 

Because �̇� involves both y and x, we have expressed it in f. Thus, we note that path, I, is the integral of the 

function, f, which itself is the function of y. If we want that path, I, be extremum, any variation,𝛿, in it, i.e., 

𝛿𝐼 should be zero. That is  

𝛿𝐼 = 𝛿 ∫𝑓(𝑦, 𝑦, 𝑥̇ )𝑑𝑥 = 0 

Fig. 1 
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= 𝛿 ∫𝑓[𝑦(𝑥), �̇�(𝑥), 𝑥]𝑑𝑥 = 0 

This is the formulation of the problem of calculus of variations. Note that variation 𝛿 is defined as the 

variation in the quantity to which it is applied at the fixed value of independent parameter i.e.  

𝛿𝑦 = (𝑦2 − 𝑦1)𝑥 

If we account for both curves then the eq. y=y (x) is incapable to represent both. y=mx+ c will represent 

straight line path only. Therefore, to include other paths, we require another parameter, say 𝛼, designating 

path, to be introduced in y i.e.  

𝑦 = 𝑦(𝑥, 𝛼) 

So that,               𝑦 = 𝑦(𝑥, 𝛼1) 

and                𝑦 = 𝑦(𝑥, 𝛼2) 

may represent the two paths. However, the relationship can be expressed as  

𝑦(𝑥, 𝛼) = 𝑦(𝑥, 0) + 𝛼𝜂(𝑥) 

Where, 𝜂(𝑥) is any arbitrary function of x which vanishes at end points. Note 𝛼=0 in y (x, 0) may be taken 

to represent extremum path. Thus 𝛼 represents the paths. It means I, the path length, which is different for 

different paths, will also be a function of 𝛼, i.e., I=I(𝛼) so that we may write the integral 

𝛿𝐼(𝛼) = 𝛿 ∫𝑓[𝑦(𝑥, 𝛼), �̇�(𝑥, 𝛼), 𝑥]𝑑𝑥 = 0 

Thus, it may be noted that 𝛿 is taken at a fixed value of independent parameter, i.e., 𝑥 is same for all paths 

considered i.e., 𝑥 is not the function of 𝛼 or we can write  

𝜕𝑥

𝜕𝛼
= 0 

Further, at endpoints, all paths meet and therefore there is no variation even in y coordinate at end points 

or  

𝜕𝑦

𝜕𝛼
|
𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 1 & 2

= 0 

The shortest path is taken as extremum path and the other paths with which we compare it (in our 

discussion of finding the extremum path) are called comparison paths.  

In the variational approach, the actual physical behavior of the system is distinguished by the fact that it 

makes a certain integral functional stationary. Thus, all of the physics is somehow contained in the 

integrand of this functional! 
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Necessary Condition for the Integral 𝑰 = ∫ 𝒇(𝒚, �̇�, 𝒙)𝒅𝒙
𝒙𝟐

𝒙𝟏
 to be an Extremum 

We wish to find a function y (x) which will cause the integral 

𝐼 = ∫ 𝑓(𝑦, �̇�, 𝑥)𝑑𝑥
𝑥2

𝑥1

 

to have a stationary value (extremum). The integral f is taken to be a function of 

the dependent variable y, independent variable x and �̇� =
𝑑𝑦

𝑑𝑥
. Thus, we write   

 

𝛿𝐼 = 𝛿 ∫ 𝑓(𝑦, �̇�, 𝑥)𝑑𝑥
𝑥2

𝑥1

= 0 

Where 𝛿 is called variation and represents the increase in the quantity to which it 

is applied in switching from stationary path to the comparison path at the fixed 

value of x. 

Since y(x) represents a path, our aim is to find a curve (path) between two points 

(x1 and x2) for which the integral is an extremum. We will, in solving the problem, take into account all the 

possible paths between the two points x1 and x2. We label all the possible curves y(x) with different value 

of a parameter 𝛼 regarding that some value of 𝛼, say 𝛼 = 0, the curves would coincide with the path or 

paths for which the integral ∫𝑓(𝑦, �̇�, 𝑥)𝑑𝑥 is extremum (may be taken as the shortest). Therefore, y should 

then be the function of both, x and the parameter 𝛼, i.e. 

𝑦(𝑥, 𝛼) = 𝑦(𝑥, 0) +  𝛼𝜂(𝑥) 

Where 𝜂(𝑥) is any arbitrary function of x which vanishes at x = x1 and x = x2 since it is variation with fixed 

ends. 

Thus, integral I, which will now be a function of 𝛼, can be written as  

𝐼(𝛼) = ∫ 𝑓[𝑦(𝑥, 𝛼), �̇�(𝑥, 𝛼), 𝑥]𝑑𝑥
𝑥2

𝑥1

 

Since 𝛼 refers to different paths, 
𝜕𝐼

𝜕𝛼
= 0 will correspond to a path for which the integral is an extremum. 

Thus  

𝜕𝐼(𝛼)

𝜕𝛼
= ∫ {

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼
+

𝜕𝑓

𝜕�̇�

𝜕�̇�

𝜕𝛼
+

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝛼
}

𝑥2

𝑥1

𝑑𝑥 

Since x is not a function of 𝛼,  
𝜕𝑥

𝜕𝛼
= 0  so that  

𝜕𝐼(𝛼)

𝜕𝛼
= ∫ {

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼
+

𝜕𝑓

𝜕�̇�

𝜕�̇�

𝜕𝛼
}

𝑥2

𝑥1

𝑑𝑥 

= ∫
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥 + ∫
𝜕𝑓

𝜕�̇�

𝜕�̇�

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥  

(1) 

Fig. 1: Possible paths of motion 
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= ∫
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥 + ∫
𝜕𝑓

𝜕�̇�
{
𝜕

𝜕𝛼
(
𝜕𝑦

𝜕𝑥
)}

𝑥2

𝑥1

𝑑𝑥 

= ∫
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥 + ∫
𝜕𝑓

𝜕�̇�

𝜕2𝑦

𝜕𝛼𝜕𝑥

𝑥2

𝑥1

𝑑𝑥 

Integrating the second term by parts,  

= ∫
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥 + [
𝜕𝑓

𝜕�̇�

𝜕𝑦

𝜕𝛼
]
𝑥1

𝑥2

− ∫
𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
)
𝜕𝑦

𝜕𝛼

𝑥2

𝑥1

𝑑𝑥 

Since the end points (x1, y1) and (x2, y2) are fixed and same for every curve so at end points x1 and x2 

differentiation of different paths of motion vanishes, i.e.  
𝜕𝑦

𝜕𝛼
= 0, then [

𝜕𝑓

𝜕�̇�

𝜕𝑦

𝜕𝛼
]
𝑥1

𝑥2
= 0. Thus eq. (2) reduces 

to  

𝜕𝐼

𝜕𝛼
= ∫ [

𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
)]

𝑥2

𝑥1

𝜕𝑦

𝜕𝛼
𝑑𝑥 

To find the stationary value, we multiply the above equation by 𝑑𝛼 and evaluate the derivative at 𝛼 = 0, 

so that  

(
𝜕𝐼

𝜕𝛼
)
0
𝑑𝛼 = ∫ [

𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
)]

𝑥2

𝑥1

(
𝜕𝑦

𝜕𝛼
)
0
𝑑𝛼𝑑𝑥 

But (
𝜕𝐼

𝜕𝛼
)
0
𝑑𝛼 = increase in the integral I as we pass from the extremum path to the comparison path at the 

same value of x (i.e., 𝛿-variation of I) = 𝛿𝐼 

Similarly, (
𝜕𝑦

𝜕𝛼
) 𝑑𝛼 = 𝛿𝑦. Therefore equation (3) takes the form  

𝛿𝐼 = ∫ [
𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
)]

𝑥2

𝑥1

𝛿𝑦𝑑𝑥 

But 𝛿𝐼 = 0, then  

∫ [
𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
)]

𝑥2

𝑥1

𝛿𝑦𝑑𝑥 = 0 

Here, 𝛿𝑦 represents some arbitrary variation of y(x) with respect to the arbitrary parameter 𝛼 about its 

extremum value (𝛼=0). Since 𝛿𝑦 is arbitrary,  

𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
) = 0 

Which is a relation that should be satisfied by a function f [which is a function of y (x)], if the integral I is 

to be extremum.  

 

 

(2) 

(3) 

(4) 
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FEW EXAMPLES 

(A) Shortest distance between two points in a plane  

A straight line is regarded as the shortest distance between two 

points in a plane. Thus, straight line is an extremum path of a 

particle in a plane and consequently, the equation of such a path 

should conveniently be obtained from the above technique of the 

calculus of variations.  

An element of small are length ds in a plane can be represented as  

𝑑𝑠 =  √(𝑑𝑥2 + 𝑑𝑦2) = 𝑑𝑥√(1 + �̇�2) 

The total length of a curve between any two points 1 and 2 in a 

plane can be written as  

𝐼 = ∫ 𝑑𝑠
2

1

= ∫ √(1 + �̇�2)𝑑𝑥
2

1

= ∫ 𝑓𝑑𝑥
2

1

 

For this curve to be shortest, 𝛿𝐼 = 0, i.e., the equation  

𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
) = 0 

Where 𝑓 = √(1 + �̇�2) must be satisfied. Then 
𝜕𝑓

𝜕𝑦
= 0. The equation (1) therefore reduces to  

𝑑

𝑑𝑥
(
𝜕√(1 + �̇�2) 

𝜕�̇�
) = 0 

𝑑

𝑑𝑥
(
1

2
2�̇�(1 + �̇�2) −

1
2
 ) = 0 

𝑑

𝑑𝑥
(

�̇� 

√(1 + �̇�2)
) = 0 

�̇� 

√(1 + �̇�2)
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

for which �̇� = a, a constant, giving y=ax+b. This is an equation representing a straight line; a and b can be 

calculated in terms of end points coordinates of the curve.  

 

(1) 

�̇� = 𝑎 

𝑑𝑦

𝑑𝑥
= 𝑎 

𝑦 = 𝑎𝑥 + 𝑏 

𝑑𝑠 𝑑𝑦 

𝑑𝑥 



34       
    Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 2H / Chapter-1 / 2020 

(B) Minimum surface of revolution  

We form a surface of revolution by revolving a curve about a certain axis. 

In this example, curve passing through two end points (xl, yl) and (x2, y2) has 

been rotated about y-axis. Our aim is to find a curve which on revolving 

about a certain axis forms geometry of minimum surface area.   

Let us consider a strip at point A formed due to the revolution of arc length 

ds about y axis. If the distance of this arc from y-axis be x, then surface area 

of the strip 

= 2𝜋𝑥𝑑𝑠 

= 2𝜋𝑥√(1 + �̇�2)𝑑𝑥 

The total surface area is then 

𝐼 = ∫ 2𝜋𝑥√(1 + �̇�2)𝑑𝑥
2

1

 

and will be minimum if 𝛿𝐼 = 0, for which the equation  

𝜕𝑓

𝜕𝑦
 −

𝑑

𝑑𝑥
(
𝜕𝑓

𝜕�̇�
) = 0 

should be satisfied. For this problem 𝑓 = 𝑥√(1 + �̇�2), so that  

𝜕𝑓

𝜕𝑦
= 0,        𝑎𝑛𝑑         

𝜕𝑓

𝜕�̇�
=

𝑥. 2�̇� 

2√(1 + �̇�2)
=

𝑥�̇� 

√(1 + �̇�2)
 

Putting in the said equation, we get  

𝑑

𝑑𝑥
(

𝑥�̇� 

√(1 + �̇�2)
) = 0 

𝑥�̇�  

√(1 + �̇�2)
= 𝑎 

a is a constant of integration. Squaring and arranging, we get  

𝑥2�̇�2

1 + �̇�2
= 𝑎2;      ⇒  𝑥2�̇�2 = 𝑎2 + 𝑎2�̇�2 

�̇�2 =
𝑎2

𝑥2 − 𝑎2
      ⇒ �̇� =

𝑎

√𝑥2 − 𝑎2
 

the integration of which yields  

𝑦 = 𝑎 ∫
𝑑𝑥

√𝑥2 − 𝑎2
+ 𝑏 = 𝑎 𝑐𝑜𝑠ℎ−1

𝑥

𝑎
+ 𝑏 

Fig. 1: Minimum surface of 

revolution 

A 
ds 
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⇒ 𝑥 = 𝑎 𝑐𝑜𝑠ℎ
𝑦 − 𝑏

𝑎
 

Which is the equation of a catenary (the curve, that is an 

idealized hanging chain or cable assumes under its own 

weight when supported only at its ends. The catenary 

curve has a U-like shape, superficially similar in 

appearance to a parabolic arch, but it is not a parabola). 

 

 

 

 

 

 

Hamilton Principle (Variational Principle of least action): 

The principle of least action – or, more accurately, the principle of stationary action – is a variational 

principle that, when applied to the action of a mechanical system, can be used to obtain the equations of 

motion for that system. It was historically called "least" because its solution requires finding the path of 

motion in space that has the least value. The principle can be used to derive Newtonian, Lagrangian and 

Hamiltonian equations of motion, and even general relativity.  

Among all possible paths along which a dynamical system may move from one point to another point within 

specified time interval consistent with any constraints, the actual path followed is that which minimizes the 

time interval of the difference between the kinetic and potential energies.  

In terms of calculus variations, Hamilton principle becomes,  

𝛿 ∫ 𝐿𝑑𝑡 = 0
𝑡2

𝑡1

 

Where, 𝐿 = 𝑇 − 𝑈 = Lagrangian function  

 𝛿 = Variation symbol  

The statement of the variation principle requires only that L be an extremum. The integral  

∫ 𝐿𝑑𝑡 
𝑡2
𝑡1

   is denoted by I. i.e.    

I =  ∫ 𝐿𝑑𝑡
𝑡2

𝑡1

 

Where I is referred to as an action of action integral.  
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Lagrange’s Equation of Motion from Hamilton’s Principle for Conservative System: 

According to Hamilton’s variational principle, motion of a conservative system from time t1 to time t2 is 

such that the variation of the line integral 𝐼 = ∫ 𝐿[𝑞𝑗(𝑡),  �̇�𝑗(𝑡), 𝑡]𝑑𝑡
𝑡2
𝑡1

  is zero, i.e.,                                         

𝛿𝐼 = 𝛿 ∫ 𝐿[𝑞𝑗(𝑡),  �̇�𝑗(𝑡), 𝑡]𝑑𝑡 = 0
𝑡2

𝑡1

 

Now we shall show that, Lagrange’s equation of motion follows directly from Hamilton’s principle. If we 

account for all possible paths of motion of the system in configuration space and label each with a value of 

a parameter 𝛼, then, since paths are being represented by 𝑞𝑗(𝑡, 𝛼), I also becomes a function of 𝛼 so that 

we write,  

𝐼(𝛼) = ∫ 𝐿[𝑞𝑗(𝑡, 𝛼),  �̇�𝑗(𝑡, 𝛼), 𝑡]𝑑𝑡
𝑡2

𝑡1

 

So that,     

𝜕𝐼(𝛼)

𝜕𝛼
= ∫ ∑[

𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝛼
+

𝜕𝐿

𝜕�̇�𝑗

𝜕�̇�𝑗

𝜕𝛼
+

𝜕𝐿

𝜕𝑡

𝜕𝑡

𝜕𝛼
]

𝑗

𝑑𝑡
𝑡2

𝑡1

 

Since in 𝛿 variation, there is no time variation along any path and also at end points and hence 
𝜕𝑡

𝜕𝛼
 is zero 

along all paths. Therefore, on multiplying by 𝑑𝛼, above equation becomes 

𝜕𝐼(𝛼)

𝜕𝛼
𝑑𝛼 = ∫ ∑[

𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝛼
+

𝜕𝐿

𝜕�̇�𝑗

𝜕�̇�𝑗

𝜕𝛼
]

𝑗

𝑑𝛼𝑑𝑡
𝑡2

𝑡1

 

= ∫ ∑
𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡 + ∫ ∑
𝜕𝐿

𝜕�̇�𝑗

𝜕2𝑞𝑗

𝜕𝑡𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

 

Integrating second term by parts,  

= ∫ ∑
𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡 + ∑
𝜕𝐿

𝜕�̇�𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼|

𝑡1

𝑡2

− ∫ ∑
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

 

The middle term is zero since 𝛿 variation involves fixed end points. Then ∑
𝜕𝐿

𝜕�̇�𝑗

𝜕𝑞𝑗

𝜕𝛼𝑗 𝑑𝛼|
𝑡1

𝑡2
= 0 at end 

points t2 and t1 

∴                
𝜕𝐼(𝛼)

𝜕𝛼
𝑑𝛼 = ∫ ∑

𝜕𝐿

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡 − ∫ ∑
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗

𝜕𝑞𝑗

𝜕𝛼
𝑗

𝑑𝛼𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

 

⇒              𝛿𝐼(𝛼) = ∫ ∑[
𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
] 𝛿𝑞𝑗

𝑗

𝑑𝑡
𝑡2

𝑡1

 

(1) 

(2) 
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Since 𝑞𝑗 are independent of each other, the variations 𝛿𝑞𝑗 will be independent. Hence 𝛿𝐼(𝛼) = 0 if and 

only if the coefficient of 𝛿𝑞𝑗 separately vanishes, i.e.,  

𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
= 0 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0 

Which are Lagrange’s equations of motions for a conservative system. It is thus obvious that these 

equations follow directly from Hamilton’s principle.  

 

Lagrange’s Equations Using Variational Principle for Non-Conservative Systems 

Involving Forces not Derivable from Potential Functions:  

To include the non-conservative forces, let us extend the principle to assume a form 

𝛿𝐼 = 𝛿 ∫ (𝑇 + 𝑊)𝑑𝑡 = 0
2

1

 

⇒ ∫ 𝛿𝑇𝑑𝑡 + ∫ 𝛿𝑊𝑑𝑡
2

1

= 0
2

1

 

With fixed end points, where 𝛿𝑊 = 𝛿 ∑𝑭𝒊. 𝒓𝒊 = ∑𝑭𝒊. 𝛿𝒓𝒊  represents the 

work done by the force on the system during the virtual displacement from 

actual to the rest conceived or rather varied paths. The variation 𝛿 doesnot 

include time variation. Thus, the time of motion for the system along every 

path is same.  

Possible paths are referred to as 𝑞𝑗(𝑡, 𝛼). The transformation equations can 

be written as  

𝒓𝑖 = 𝒓𝑖[𝑞𝑗(𝑡, 𝛼), 𝑡] 

From which we find that,  

𝛿𝒓𝑖 = ∑
𝜕𝒓𝑖

𝜕𝑞𝑗
𝑗

𝛿𝑞𝑗 

Further, the components of generalized force are expressed as 

𝛿𝑊 = ∑𝑭𝒊. 𝛿𝒓𝒊

𝑖

 

= ∑𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

𝑖,𝑗

 

(1) 

1 

2 
t1 

t2 
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= ∑𝑄𝑗𝛿𝑞𝑗

𝑗

 

Because, 𝑄𝑗 = ∑ 𝑭𝒊.
𝜕𝒓𝒊

𝜕𝑞𝑗
𝑖 .  Thus equation 1 takes the form 

∫ 𝛿𝑇(𝑞𝑗, �̇�𝑗)𝑑𝑡
2

1

+ ∫ ∑𝑄𝑗𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= 0 

∫ ∑(
𝜕𝑇

𝜕𝑞𝑗
𝛿𝑞𝑗 + 

𝜕𝑇

𝜕�̇�𝑗
𝛿�̇�𝑗)𝑑𝑡

𝑗

2

1

+ ∫ ∑𝑄𝑗𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= 0 

∫ ∑(
𝜕𝑇

𝜕𝑞𝑗
𝛿𝑞𝑗)𝑑𝑡

𝑗

2

1

+ 
𝜕𝑇

𝜕�̇�𝑗
𝛿𝑞𝑗|

1

2

− ∫ ∑
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
𝛿𝑞𝑗)𝑑𝑡

𝑗

2

1

+ ∫ ∑𝑄𝑗𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= 0 

The middle term is zero as it is a variation with fixed end point. So  

∫ ∑[
𝜕𝑇

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) + 𝑄𝑗] 𝛿𝑞𝑗𝑑𝑡

𝑗

2

1

= 0 

Again, since the constraints are assumed to be holonomic, 𝛿𝑞𝑗 are independent of each other, and the above 

integral can vanish if and only if the coefficients of 𝛿𝑞𝑗 separately vanishes, i.e. 

𝜕𝑇

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) + 𝑄𝑗 = 0 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
= 𝑄𝑗 

Which are Lagrange’s equations of motion for non-conservative system.  

Again, we know  

𝑄𝑗 =
𝜕𝑉

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(
𝜕𝑉

𝜕�̇�𝑗
) 

Then, from second term of eqn 2 of LHS can be written as 

∫ ∑𝑄𝑗𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= −∫ ∑𝛿𝑞𝑗 [
𝜕𝑉

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(
𝜕𝑉

𝜕�̇�𝑗
)]

𝑗

𝑑𝑡
2

1

 

Integrating by parts of second term of RHS of equation 3 we get 

∫ ∑
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕�̇�𝑗
)𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= ∑
𝜕𝑉

𝜕�̇�𝑗
𝛿𝑞𝑗|

1

2

𝑗

− ∫ ∑(
𝜕𝑉

𝜕�̇�𝑗
)𝛿𝑞�̇�

𝑗

𝑑𝑡
2

1

 

= −∫ ∑(
𝜕𝑉

𝜕�̇�𝑗
)𝛿𝑞�̇�

𝑗

𝑑𝑡
2

1

 

(2) 

(3) 

(4) 
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From eqn. 3 and 4 we get,  

∫ ∑𝑄𝑗𝛿𝑞𝑗

𝑗

𝑑𝑡
2

1

= −∫ ∑[
𝜕𝑉

𝜕𝑞𝑗
𝛿𝑞𝑗 − (

𝜕𝑉

𝜕�̇�𝑗
)𝛿𝑞�̇�]

𝑗

𝑑𝑡
2

1

 

= −𝛿 ∫ 𝑉𝑑𝑡
2

1

 

Hence, eqn.2 becomes 

𝛿𝐼 = ∫ 𝛿𝑇𝑑𝑡
2

1

− ∫ 𝛿𝑉𝑑𝑡
2

1

 

= 𝛿 ∫ (𝑇 − 𝑉)𝑑𝑡
2

1

 

 

Applications of Lagrange’s Equation of Motion:  

1) Simple Pendulum  

The angle 𝜃 between rest position and deflected position is chosen as 

generalized coordinate. If the string is of length l, then kinetic energy is  

𝑇 =
1

2
𝑚𝑣2 =

1

2
𝑚(𝑙�̇�)2 =

1

2
𝑚𝑙2�̇�2 

Where m is the mass of the bob.  

In coming from position B to A, the mass has fallen freely through a vertical 

distance CA. Thus potential energy is  

𝑉 = 𝑚𝑔(𝑂𝐴 − 𝑂𝐶) 

= 𝑚𝑔(𝑙 − 𝑙𝑐𝑜𝑠𝜃) 

= 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃) 

Where the reference level or zero level of potential energy has been taken at a distance l below the point of 

suspension. Thus Lagrangian is  

 𝐿 = 𝑇 − 𝑉 

=
1

2
𝑚𝑙2�̇�2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃) 

So that     
𝜕𝐿

𝜕�̇�
= 𝑚𝑙2�̇� 

And      
𝜕𝐿

𝜕𝜃
= −𝑚𝑔𝑙 sin 𝜃 

Putting in Lagrange’s equation   
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0 

[𝐴𝑠 𝑉 = 𝑉(𝑞, �̇�)] (5) 

𝜃 

𝐵 

𝑚 

𝐶 

𝐴 

𝑂 

𝑙 
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we get, 

𝑑

𝑑𝑡
(𝑚𝑙2�̇�) + 𝑚𝑔𝑙 sin𝜃 = 0 

𝑚𝑙2�̈� + 𝑚𝑔𝑙 sin 𝜃 = 0 

�̈� +
𝑔

𝑙
sin 𝜃 = 0 

Which is an equation of simple harmonic motion with time period 

𝑇 = 2𝜋√
𝑙

𝑔
 

 

2) Compound Pendulum 
A rigid body capable of oscillating in a vertical plane above a fixed horizontal axis is called a compound 

pendulum. Let vertical plane of oscillation be xy, O be the point through which axis of rotation passes, C 

is the center of mass. Let mass of the pendulum be m, moment of inertia about axis of rotation I and distance 

OC=l. 

If 𝜃 be the angle through which the body is defrelted, then kinetic energy is  

𝑇 =
1

2
𝐼�̇�2 

The potential energy relative to a horizontal plane through O is  

𝑉 = −𝑚𝑔𝑙 𝑐𝑜𝑠𝜃 

The Lagrangian is  

𝐿 = 𝑇 − 𝑉 =
1

2
𝐼�̇�2 + 𝑚𝑔𝑙 𝑐𝑜𝑠𝜃 

So that,  

𝜕𝐿

𝜕�̇�
= 𝐼�̇� 

𝜕𝐿

𝜕𝜃
= −𝑚𝑔𝑙 sin𝜃 

As 𝜃 is chosen as generalized coordinate, Lagrange’s equation is  
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0 

𝑑

𝑑𝑡
(𝐼�̇�) + 𝑚𝑔𝑙 sin 𝜃 = 0 

𝐼�̈� + 𝑚𝑔𝑙 sin𝜃 = 0 

�̈� +
𝑚𝑔𝑙

𝐼
sin𝜃 = 0 
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If amplitude of oscillation is small then  

�̈� +
𝑚𝑔𝑙

𝐼
𝜃 = 0 

Which is an equation of simple harmonic motion of time period 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑙
 

 

2) Isotropic Oscillator (three dimensional):  
An isotropic harmonic oscillator can be considered as a vibrating particle that is acted upon by a force 

directed always towards or away from the position of equilibrium and the magnitude of which varies 

linearly with the distance from the position of equilibrium. Such a force can be represented as F=-kr where 

k is called the force constant. The potential energy is  

𝑉 = −∫𝐹𝑑𝑟 

= −∫−𝑘𝑟𝑑𝑟 

=
1

2
𝑘𝑟2 + 𝑐 

If we choose the horizontal plane passing through the position of equilibrium 

as the reference level, then V=0 at r=0, making the constant, c, zero. Thus  

𝑉 =
1

2
𝑘𝑟2 

    =
1

2
𝑘(𝑥2 + 𝑦2 + 𝑧2) 

The kinetic energy of the oscillator is 

𝑇 =
1

2
𝑚�̇�2 

=
1

2
𝑚(�̇�2 + �̇�2 + �̇�2) 

The Lagrangian L for the oscillator can be written as  

𝐿 = 𝑇 − 𝑉 

Which in three dimensions, on using Cartesian coordinates, takes the form,  

𝐿 =
1

2
𝑚(�̇�2 + �̇�2 + �̇�2) −

1

2
𝑘(𝑥2 + 𝑦2 + 𝑧2) 

Giving,  

(1) 
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𝜕𝐿

𝜕�̇�
= 𝑚�̇�    

𝜕𝐿

𝜕�̇�
= 𝑚�̇�   

𝜕𝐿

𝜕�̇�
= 𝑚�̇� 

𝜕𝐿

𝜕𝑥
= −𝑘𝑥   

𝜕𝐿

𝜕𝑦
= −𝑘𝑦    

𝜕𝐿

𝜕𝑧
= −𝑘𝑧 

The Lagrange’s equation in Cartesian coordinates are 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= 0 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑦
= 0 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑧
= 0 

Or,             𝑚�̈� + 𝑘𝑥 = 0  

𝑚�̈� + 𝑘𝑦 = 0 

𝑚�̈� + 𝑘𝑧 = 0 

This gives the desired equations of motion for three-dimensional isotropic oscillator.  

 

Conservation of Energy:  

Let us consider:  

i) a conservative system, so that, the potential energy is a function of coordinates only and not that of 

velocities,  

ii) constraints do not change with time, i.e., they are independent of time and consequently, equation of 

transformation to generalized coordinates do not involve time explicitly and hence  

iii) L can be written as 𝐿(𝑞𝑗,�̇�𝑗) 

Thus, its total time derivative will be  

𝑑𝐿

𝑑𝑡
= ∑

𝜕𝐿

𝜕𝑞𝑗
𝑗

𝑑𝑞𝑗

𝑑𝑡
+ ∑

𝜕𝐿

𝜕�̇�𝑗
𝑗

𝑑�̇�𝑗

𝑑𝑡
 

Putting  
𝜕𝐿

𝜕𝑞𝑗
=

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) from Lagrange’s equation, we get 

𝑑𝐿

𝑑𝑡
= ∑[

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
)
𝑑𝑞𝑗

𝑑𝑡
+

𝜕𝐿

𝜕�̇�𝑗

𝑑�̇�𝑗

𝑑𝑡
]

𝑗

 

= ∑[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) �̇�𝑗 +

𝜕𝐿

𝜕�̇�𝑗

𝑑�̇�𝑗

𝑑𝑡
]

𝑗

 

(2) 

(3) 

(4) 

(1) 
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= ∑
𝑑

𝑑𝑡
(�̇�𝑗

𝜕𝐿

𝜕�̇�𝑗
)

𝑗

 

Because for a conservative system (velocity independent potential) 

𝜕𝐿

𝜕�̇�𝑗
=

𝜕𝑇

𝜕�̇�𝑗
= 𝑝𝑗       𝑎𝑠     

𝜕𝑉

𝜕�̇�𝑗
= 0 

Thus, from above equation      

𝑑𝐿

𝑑𝑡
− ∑

𝑑

𝑑𝑡
𝑗

(�̇�𝑗𝑝𝑗) = 0 

𝑑

𝑑𝑡
(𝐿 − ∑(�̇�𝑗𝑝𝑗)

𝑗

) = 0 

𝑑

𝑑𝑡
(∑(�̇�𝑗𝑝𝑗)

𝑗

− 𝐿) = 0 

∑(�̇�𝒋𝒑𝒋)

𝒋

− 𝑳 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = 𝑯 = 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

Now, Euler’s theorem on homogeneous function states that if f is a homogeneous function of order n, of a 

set of variable qj, then,  

∑𝑞𝑗

𝜕𝑓

𝜕𝑞𝑗
𝑗

= 𝑛𝑓 

In our case, here n is 2, so that  

∑�̇�𝑗

𝜕𝑇

𝜕�̇�𝑗
𝑗

= 2𝑇 

∑�̇�𝑗𝑝𝑗

𝑗

= 2𝑇 

Thus from eqn. 3,  

𝐻 = 2𝑇 − 𝐿 

𝐻 = 2𝑇 − (𝑇 − 𝑉) 

𝐻 = 𝑇 + 𝑉 

Which shows that H equals total energy and it is constant i.e. conserved.  

 

 

[𝑒. 𝑔.  𝑓 = 𝑇 =
1

2
𝑚𝑣2      ℎ𝑒𝑟𝑒 𝑛 = 2] 

(2) 

(3) 
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