LINKED LISTS: Insertion Algorithms (@)

ICE 2261

Prepare your NICE and INTERACTIVE presentation slides on

the following topics individually:

» Insertion Algorithms in Linked List

» Inserting element at the Beginning of a Linked List
» Inserting element after a Given node of a Linked List

» Inserting element into a sorted Linked List.

Presentation Schedule: Next Class Period
Presentation Duration: 7-8 minutes + 2-3 minutes QA.

Good Luck ...1!)

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Insertion Algorithms

v" Algorithms which inserts nodes into linked lists come up in varigué**
situations :

» Inserts a node at the beginning of the list,
» Inserts a node after the node with a given location, and
> Inserts a node into a sorted list.
v All the algorithms:
» assume that linked list is in memory in the form
LIST(INFO, LINK, START, AVAIL)
» Have a variable ITEM which contains the new information to be

added to the list.

36
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Insertion Algorithms

ICE 2261

Since all the insertion algorithm will use a node in the AVAIL list, all of
the algorithm will include the following steps:

» Checking to see if space is available in the AVAIL list. If not, that is,

» |If AVAIL=NULL, then the algorithm will print the message

OVERFLOW.
» Removing the first node from the AVAIL list. Using the variable
NEW to keep track of the location of the new node.
NEW:=AVAIL, AVAIL:=LINK[AVAIL]
» Copying new information into the new node. i.e.,

INFO[NEW]=ITEM

37
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Insertion Algorithms

ICE 2261

NEwW .

AVAIL

Free-storage list

38
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Inserting at the Beginning of a list

ICE 2261
NEw .
)
AVAIL
Free-storage list
A ITEM[e} — - _ .. _
i
p— . X
START
‘ e — » = - -
\ : ' .
NEW S o e -~ L x
-]
—>{ITEM
/ Fig, 5-18 Insertion at the beginning of a list.
39
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Inserting at the BeginningALG

ICE 2261

INSFIRST (INFO, LINK, START, AVAIL,ITEM)

1. [OVERFLOW?] If AVAIL=NULL, then Write: OVERFLOW, and Exit.

2. [Remove first node from AVAIL list.]

Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]

Set INFO[NEW]:=ITEM.[Copies new data into new node.]

Set LINK[NEW]:=START.[New Node now points to original first node.]
Set START:=NEW. [Change START so it points to the new node.]

S

Exit.

40
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Inserting at the BeginningExmp

ALG 11 —-j 4

GEOM | 5§

8

.9
l | 10
AVAIL | 9 S

12

13
14
15
16

TEST LNk
16
% ||
1
82 0
s | | 12|
78 0
7 8
100 | | 13
10
3
88 2
2| | 7
|| 6
a| |
0

15

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ALG

GEOM

AVAIL

11

s

10

O 00 N M A WwWwN

(_J

—10

11
12
13
14
15
16

TEST

TEST LNk
16
74 14
1] -
82 0.
84 . 12
78 0
74 8
100 13
75 5,
3
88 2
62 7
74 6
93 4
=
15
Fam— teF-2231/ tinkedtis

LINKED LISTS: Inserting after a given node

ICE 2261

INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM)

1. [OVERFLOW?] If AVAIL=NULL, then Write: OVERFLOW, and Exit.
2. [Remove first node from AVAIL list.]
Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]
3. Set INFO[NEW]:=ITEM.[Copies new data into new node.]
4. |f LOC=NULL, then [Insert as first node.]
Set LINK[NEW]:=START and START:=NEW.
Else: [Insert after node with location LOC.]
Set LINK[NEW]:=LINK[LOC] and LINK[LOC]:=NEW.
[END if If structure.]

. 42
@'Z_Dr. MEXdltm Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Inserting into a Sorted Linked List

ICE 2261

Given Element ITEM

| TEM must be inserted between nodes A and B so that

INFO[A] < ITEM <= INFO[B]
Thus,

» Firstly we should write an Algorithm to find the location, LOC,
where is suitable to insert the ITEM in the sorted linked list.
» Secondly, we have to write the algorithm to insert to the found

Location.

43
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Find LOC in a Sorted Linked List
FINDA(INFO, LINK, START, ITEM, LOC) ICE 2261

1. [List empty?] If START=NULL, then Set LOC:=NULL, and Return.

2. [Special Case?] If ITEM<INFO[START], then: Set LOC:=NULL, and,
Return.

3. Set SAVE:=START and PTR:=LINK[START].[Initialize pointers]

4. Repeat Steps 5 and 6 while PTR = NULL.
5. If ITEM<INFOI[PTR], then:
Set LOC:=SAVE, and Return.

[End of If structure]

6. Set SAVE:=PTR and PTR:=LINK[PTR]. [Update pointers.]
[End of Step 4 loop.] srarr SAVE -

7. Set LOC:= SAVE. | ' ,\,

L - q

44
© 8.»8@1;}4{ Rhushed, Assoc. Professor, Dept. of ICE, RU Fig. 5-20 ICE 2231/ Linked List

LINKED LISTS: Insert ITEM into a Sorted Linked Lis

ICE 2261

INSSRT(INFO, LINK, START, AVAIL, ITEM)

1. [Use FINDA(INFO, LINK, START, ITEM, LOC) to find the location of
the proceeding ITEM]

2. Use INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM) to insert ITEM
after the node with location LOC.]

3. Exit.

45
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Deletion from a Linked List

ICE 2261

Let LIST be a linked list with a node N between nodes A and B.

START

-
l Node A Node N Node B
S [[I [d— Ix

(a) Before deletion.

START

s |
L Node A j Node N Node B
i 9 L ey Wiy

(b) After deletion.

Here we don’t care about the future of the deleted nodes of the

linked list 46
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Deletion from a Linked List
More Exact procedure: ICE 2261
START Data list

o
L Node A fNoch‘ Node B
o——» o---(-o -1 X

\
\6---- —:’ o . . . X

Free-storage list
Three pointer fields are changed:

» The nextpointer field of node A now points to node B.
» The nextpointer field of N now points to the original first node in the
free pool
.2 AVAIL no s to the 91@ leted node N. 4

olam Ras ssor Dept. of ICE 2231/ Linked List

LINKED LISTS: Deletion from a Linked List

ICE 2261

There are also TWO special cases:

START

Node A Node N Node B
S I S B C

(a) Before deletion.

» If the deleted node N is the first node in the list
v START will point to the node B

» If the deleted node N is the last node in the list
v Node A will contain the NULL pointer

48
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Deletion Algorithms

Algorithms which delete nodes from linked lists come up in varioes
situations:

» The first one deletes the node following a given node, and
» The second one deletes the node with a given ITEM of information

All algorithms assume that linked list is in memory in the form

LIST(INFO, LINK, START, AVAIL)
All the algorithms will return the memory space of the deleted node

N to the beginning of the AVAIL list.

LOC
-
Node N
-
AVAIL
' Free-storage list
:
 SI— - > . o~ . . e X

Fig. 5-25 LINK[LOC]:= AVAIL and AVAIL := LOC.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS:

ICE 2261
LOC
>
Node N
L o
AVAIL
' Free-storage list
!
e . - . o~ . . . X

Fig. 5-25 LINK[LOC]:= AVAIL and AVAIL := LOC.

All algorithms will include the following pair of assignments where
LOC is the location of the deleted node N:

LINK[LOC]:=AVAIL and then AVAIL:=LOC

50
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Deleting the node following a Given No

ICE 2261

DEL(INFO, LINK, START, AVAIL, LOC, LOCP)

(it deletes the node N with location LOC, LOCP is the location of the node which precedes N)
Step 1. If LOCP=NULL, then:

Set START:=LINK[START]. [Delete first node.]
Else:
Set LINK[LOCP]:=LINK[LOC]. [Deletes node N.]
[End of If structure]
Step 2. [Return deleted node to the AVAIL list.]
Set LINK[LOC]:=AVAIL and AVAIL:=LOC.

Step 3. Exit.
START LOCP LOC
= [

~ et
| I poce ~ x
1 Node N '
»

© Dr. Md. Golam Rashed, Assoc. Professor, Depfi&‘léE,zzU LlNK[l,‘_O.(_:?].: . LI‘EJSU;QIC

. ICE 2231/ Linked List
ML

LINKED LISTS: Deleting the node with a given ITEM

ICE 2261

» Let LIST be a linked list in memory.

» Suppose we are given an ITEM of Information and we want to
delete from the LIST the first node which contain ITEM.
» The algorithm has TWO PARTS

» First we give a procedure which finds the location LOC of the
node N containing ITEM, and the location LOCP of the node
preceding node N.

» If N is the first node with ITEM, we set LOCP=NULL
» If ITEM does not appear in LIST, we set LOC=NULL

» Traverse the list, using pointer variable PTR and comparing
ITEM with INFO[PTR]at each node.
» While track the location of the preceding node by using
a pointer variable SAVE. Thus

SAVE:= PTR and PTR:= LINK[PTR] 52

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: Find LOC of the 15t node N which contains ITE

ICE 2261

FINDB (INFO, LINK, START, ITEM, LOC, LOCP)
Step 1. [List Empty?] If Start=NULL, then:
Set LOC:=NULL and LOCP:=NULL, and Return.
[End of If Structure]
Step 2. [ITEM in first node?] If INFO[START]=ITEM, then:
Set LOC:=START and LOCP=NULL, and Return.
[End of If structure]
Step 3. Set SAVE:=START and PTR:=LINK[START]. [Initialize pointers]
Step 4. Repeat Steps 5 and 6 while PTR=# NULL.
Step 5. If INFO[PTR]=ITEM, then:
Set LOC:=PTR and LOCP:=SAVE, and Return.
[End of If structure]

Step 6. Set SAVE:=PTR and PTR:=LINK[PTR]. [Update pointers]
[End of Step 4 loop]
STEP 7. Set LOC:=NULL. [Search Unsuccessful.]

©§rtﬁp68anﬂgt:ul,r /Qsoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS: pelete the 15t node which contains the given ITEM of Inf

ICE 2261

DELETE (INFO, LINK, START, AVAIL, ITEM)
Step 1. Call FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
Step 2. If LOC=NULL, then: Write: ITEM not in list, and Exit.
Step 3. [Delete node.]
If LOCP=NULL, then
Set Start:=LINK[START]. [Delete fist node]
Else:
Set LINK[LOCP]:=LINK[LOC].
[End of If structure]
Step 4. [Return deleted node to the AVAIL list.]
Set LINK[LOC]:=AVAIL and AVAIL:=LOC.

Step 5. Exit

54
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

LINKED LISTS:

ICE 2261
BED LINK
START ‘$~v—ﬁ 1 | Kirk 7
2 6
e B 3 | Dean 11
4 | Maxwell 12
~— 5 Adams 3
AVALL | g | g o
_L 7 | Lane 4
9 | Samuels 0
10 | Jones 1
11 | Fields 10
' 12 | Nelson 9
Example 5.17 Teach Yourself o
ICE 223.315 Linked List

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Header Linked LISTS

ICE 2261
A header lined list is a linked list which always contains a special

node, called the header node, at the beginning of the list.
* The following are two kinds of widely used header lists:
* A Grounded Header List:

e A Circular List:

START

Header : -
' node ' »

(a) Grounded header list.
. ~

START

Header
node

*———P [_——) o4

~ (b) Circular header list. _
. . ;
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU—~ - ~~ ICE 2231/ Linked List

Header Linked LISTS

ICE 2261
Grounded Header List: is a header list where the last node contains

the null pointer.

* Observe that, the list pointer START always points to the header

node.

e Accordingly, LINK[START] =NULL indicates that a grounded header

list is empty.

*— .
l Header : :
. ._.-———-"‘ x
ERNRNNY o . -~ .—r—-—» ‘—‘-——_’

(a) Grounded header list.

57
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

Header Linked LISTS

ICE 2261
A Circular Header List: is a header list where the last node points

back to the header node.

* Observe that, the list pointer START always points to the header

node.

* LINK[START]=START indicates that a circular header list is empty.

START

Header
node

58
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

Header Linked LISTS: Traversing

ICE 2261

Traversing a Circular Header List(INFO, LINK, START)
Stepl. Set PTR:=LINK[START].[Initialize pointer PTR.]
Step2. Repeat Steps 3 and 4 while PTR # START

Step3. Apply PROCESS to INFO[PTR]

Step4. Set PTR:=LINK[PTR]. [PTR now point to the next node.]
[End of step 2 loop]

Step5. Exit.

LINKED _LIST Traversing(INFO, LINK, START)
Stepl. Set PTR:=START.[Initialize pointer PTR.]
Step2. Repeat Steps 3 and 4 while PTR # NULL

Step3. Apply PROCESS to INFO[PTR]

Step4. Set PTR:=LINK[PTR]. [PTR now point to the next node.]
[End of step 2 loop]

Step5. Exit.

59
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

Header Linked LISTS:

(Suppose LIST is a header linked list in memory, and suppose a specific ITEM of information is givgpg 2261
SRCHHL(INFO, LINK, START, ITEM, LOC)

[Finds the location of the first node in LIST which contains ITEM in a circular header list]

Stepl. Set PTR:= LIST [START].

Step2. Repeat while INFO[PTR] #ITEM and PTR # START:

Set PRT := LINK [PTR]. [PTR now points to the next node.]

[End of Loop]

Step3. If INFO[PTR]=ITEM, then:

Set LOC:= PTR.
ELSE:
SET LOC:=NULL.

[End of If structure]

©§I.tﬁcpé!51alE¥ai$red, Assoc. Professor, Dept. of ICE, RU

The two test which control the
searching loop were not
performed at the same time in
the ordinary linked lists.

60
ICE 2231/ Linked List

Linked LISTS: Searching

ICE 2261

SEARCH (INFO, LINK, START, ITEM, LOC)
Stepl. Set PTR:=START
Step2. Repeat Step 3 while PTR # NULL
Step3. If ITEM=INFO [PTR], then:
Set LOC:=PTR, and Exit.
Else:
Set LOC:=LINK[PTR]. [PTR now points to the next node.]
[End of If structure.]
[End of Step 2 loop.]
Step4. [Search is unsuccessful.] Set LOC:=NULL.
Step5. Exit. .

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

Circular Header Linked LISTS: Find Location
FINDBHL (INFO, LINK, START, ITEM, LOC, LOCP) B

Finds the location LOC of the first node N which contains ITEm and also the location LOCP of the node
preceding N.)

Stepl. Set SAVE:=START and PTR:= LINK[START] [Initialize pointers]
Step2. Repeat while INFO[PTR] #ITEM and PTR # START:

Set SAVE := PTR and PTR:= LINK [PTR]. [Update pointers.]
[End of Loop]
Step3. If INFO[PTR]=ITEM, then:
Set LOC:= PTR and LOCP:=SAVE.
ELSE:
SET LOC:=NULL and LOCP:=SAVE

[End of If structure]
Step4. Exit. o

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

Circular Header Linked LISTS: Delete

ICE 2261

DELLOCHL (INFO, LINK, START, AVAIL, ITEM)

(Deletes the first nodes N which contains ITEM when LIST is a Circular Header List.

Stepl. Call FINDBHL (INFO, LINK. START, ITEM, LOC, LOCP)
Step2. If LOC=NULL, then: write: ITEM not in list, and Exit.
Step3. Set LOC[LOCP]:=LINK [LOC] [Delete Node.]
Step4. [Return deleted node to the AVAIL list.]

Set LINK[LOC]:=AVAIL and AVAIL:=LOC.
Step5. Exit

63
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

TWO other variations of LINKED LIST

ICE 2261

1. A linked list whose last node points back to the first node

instead of containing the null pointer, called a circular list.

2. A linked list which contain both a special header node at

the beginning of the list and a special trailer node at the

end of the list.

. START

?

Y

[¥ . -
@ >

(a) Circular linked list.

*— .
Header ’ Trailer
node . ‘ node
. o o ol I
64

b) Linked list with header and trailer nodes. : . .
© Dr. Md. Golam Rashed, Assoc. Professor,(Bept. of ICE, RU ICE 2231/ Linked List

TWO-WAY LISTS:

ICE 2261
A two-way list is a linear collection of data elements, called

nodes, where each node N is divided into three parts:

(1) An information field INFO which contains the data of N

(2) A pointer field FORW which contains the location of the next node
in the list

(3) A pointer field BACK which contain the location of the preceding

node in the list.
FIRST

LAST

INFO field of node N
BACK pointer field of node N (
I {—FORW pointer field of node N

x (\\/ (:L) (% (% x

Node N

Fig, 5-33 Two-way list. -
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Linked List

TWO-WAY LISTS: Operations

Deleting: ICE 2261
_UT
e e ——*‘[NOde
: L S ? ‘V 9] e .
o’ “so! \} — .
Fig. 5-37 Deleting node N.
Inserting:
e LOCB
L l I O e S Node B
| , y "’ _/f
NEwW o :
vode N
ITEM[¢
© Dr. Md. Golam ngﬁhg'” Inserting node N. ICE 2231/ tfnked List

