Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials.
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves.
- offers same security with smaller bit sizes.

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521

Elliptic Curve Cryptography

- ECC use the two fields of EC ,prime i.e Z_{P} and 2 power of positive integer i.e $\operatorname{GF}\left(2^{m}\right)$ and also use two EC operation point addition and point doubling operation.

Some definitions

- Affine point: point present in EC
- O point : point of infinity(not present in EC)
- Generator point, G: point of the curve generate a secrete subgroup by repeating addition of G .
- $\operatorname{Ord}(\mathrm{G}), \mathrm{n}$: number of point in the subgroup
- Cofactor, h:\# of point in EC divided by number of point in subgroup.
- Its ideally 1 (i.e fields is prime).

Real Elliptic Curves

- An elliptic curve is defined by an equation in two variables $x \& y$, with coefficients.
- consider a cubic elliptic curve of form

$$
>y^{2}=x^{3}+a x+b
$$

- where x, y, a, b are all real numbers
- also define zero point O

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables \& coefficients are finite integers.
- have two families commonly used:
- prime curves $E_{p}(a, b)$ defined over Z_{p} (Finite fields)
- $y^{2} \bmod p=\left(x^{3}+a x+b\right) \bmod p$
- use integers modulo a prime for both variables and coeff
- Example: $\mathrm{P}=(3,10), \mathrm{Q}=(9,7)$, in $\mathrm{E}_{23}(1,1)$
- $P+Q=(17,20)$
- $2 \mathrm{P}=(7,12)$

Real Elliptic Addition

Example: Points $\mathrm{P}=(3,10)$, and $\mathrm{Q}(9,7)$ in $\mathrm{E}_{23}(1,1)$

Then, $E_{p}(a, b) \mid y^{2}=x^{3}+a x+b(\bmod p)$ will be

$$
E_{23}(1,1) \mid y^{2}=x^{3}+x+1(\bmod 23)
$$

All points on $E_{p}(a, b)$
 $$
\begin{aligned} & \mathrm{y}^{2}=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b} \\ & y= \pm \sqrt{x^{3}+a x+b} \end{aligned}
$$

$$
\mathrm{E}_{23}(1,1) \longrightarrow y^{2}=x^{3}+x+1(\bmod 23)
$$

Figure 10.10 The Elliptic Curve $\mathbf{E}_{23}(1,1) \quad 45$

All points on $E_{23}(1,1)$

x	RHS	y	LHS
0	1	0	0
1	3	1	1
2	11	2	4
3	8	3	9
4	0	4	16
5	16	5	2
6	16	6	13
7	6	7	3
8	15	8	18
9	3	9	12
10	22	10	8
11	9	11	6
12	16	12	6
13	3	13	8
14	22	14	12
15	10	15	18
10	19	16	3
17	9	17	13
18	9	18	2
19	2	19	16
20	17	20	9
21	14	21	4
22	22	22	1

$$
\mathrm{E}_{23}(1,1) \longrightarrow y^{2}=x^{3}+x+1(\bmod 23)
$$

$(0,1) \quad(0,22)$
$(1,7)(1,16)$
$(3,10)(3,13)$
$(5,19)(5,4)$
$(6,19)(6,4)$
$(7,11)(7,12)$
$(9,7)(9,16)$
$(11,20)(11,3)$
$(12,19)(12,4)$ $(13,7)(13,16)$
$(17,3)(17,20)$ $(18,20)(18,3)$ $(19,5)(19,18)$

$$
x, y=0,1,2,3, \ldots \ldots \ldots \ldots \ldots(p-1)
$$

Figure 10.10 The Elliptic Curve $\mathbf{E}_{23}(1,1)$
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, ${ }^{46}$ RU
ICE-4221/ Key Management and Elliptic Curve Cryptography (ECC)

Figure 10.10 The Elliptic Curve $\mathbf{E}_{23}(1,1)$

Point addition

- You can add two points on an elliptic curve together to get a third point on the curve.
- To add two points on an elliptic curve together, you first find the line that goes through those two points.

Point addition (Cont...)

- Then you determine where that line intersects the curve at a third point.
- Then you reflect that third point across the x-axis (i.e. multiply the y-coordinate by -1) and whatever point you get from that is the result of adding the first two points together.

Point addition (Cont...)

- Then you reflect that point across the x-axis.
- Therefore, $\mathrm{P}+\mathrm{Q}=\mathrm{R}$.

Point addition (Cont...)

- To do elliptic curve cryptography properly, rather than adding two arbitrary points together, we specify a base point on the curve and only add that point to itself.
- For example, let's say we have the following curve with base point P :
- Initially, we have P, or $1 \cdot P$.

Point addition (Cont...)

- Now let's add P to itself.
- First, we have to find the equation of the line that goes through P and P.
- There are infinite such lines! In this special case, we opt for the tangent line.

Point addition (Cont...)

- Now we find the "third" point that this line intersects and reflect it across the x-axis.
- Thus P added to itself, or $\mathrm{P}+\mathrm{P}$, equals $2 \cdot \mathrm{P}$.

Point addition (Cont...)

- If we add P to itself again, we'll be computing P added to itself added to itself, or $\mathrm{P}+\mathrm{P}+\mathrm{P}$. The result will be $3 \cdot P$.
- To compute $3 \cdot \mathrm{P}$, we can just add P and $2 \cdot \mathrm{P}$ together.

- We can continue to add P to itself to compute $4 \cdot P$ and $5 \cdot P$ and so on.

Subgroup Generation

Generator point, G:
 For example, $E_{17}(2,2)=>y^{2}=x^{3}+2 \mathrm{x}+2(\bmod 17)$ is $\mathrm{G}(5,1)$.

Subgroup Generation

$\mathrm{n}=19$

$$
E_{17}(2,2)=>y^{2}=x^{3}+2 x+2(\bmod 17) \text { is } \mathrm{G}(5,1) .
$$

-The subgroup of G calculated by repeated addition is Given below

$\mathrm{G}=(5,1)$	$6 \mathrm{G}=(16,13)$	$11 \mathrm{G}=(13,10)$	$16 \mathrm{G}=(10,11)$
$2 \mathrm{G}=(6,3)$	$7 \mathrm{G}=(0,6)$	$12 \mathrm{G}=(0,11)$	$17 \mathrm{G}=(6,14)$
$3 \mathrm{G}=(10,6)$	$8 \mathrm{G}=(13,17)$	$13 \mathrm{G}=(16,4)$	$18 \mathrm{G}=(5,16)$
$4 \mathrm{G}=(3,1)$	$9 \mathrm{G}=(7,6)$	$14 \mathrm{G}=(9,1)$	$19 \mathrm{G}=0$
$5 \mathrm{G}=(9,16)$	$10 \mathrm{G}=(7,11)$	$15 \mathrm{G}=(3,16)$	

How to calculate 2G, 3G?

Generator point, G:
For example, $E_{17}(2,2)=>y^{2}=x^{3}+2 x+2(\bmod 17)$ is $G(5,1)$.
$\mathbf{G}=(5,1)=\left(x_{g}, y_{g}\right) ;(a, b) \equiv(2,2)$

- $\underline{\mathbf{2 G}}=\mathbf{G}+\mathbf{G}$ (called point doubling operation) $=\left(\boldsymbol{x}_{2 g}, \boldsymbol{y}_{2 g}\right)$

$$
\begin{aligned}
& >x_{2 g}=\left(\frac{3 x_{g}^{2}+\mathrm{a}}{2 y_{g}}\right)^{2}-2 x_{g} \\
& >y_{2 g}=\left(\frac{3 x_{g}^{2}+\mathrm{a}}{2 y_{g}}\right)\left(x_{g}-x_{2 g}\right)-y_{g}
\end{aligned}
$$

- $3 \mathbf{G}=\mathbf{G}+2 \mathrm{G}$ (called point addition operation) $=\left(\boldsymbol{x}_{3 g}, \boldsymbol{y}_{3 g}\right)$

$$
\begin{aligned}
& >x_{3 g}=\left(\frac{y_{2 g}-y_{g}}{x_{2 g}-x_{g}}\right)^{2}-x_{g}-x_{2 g} \\
& >y_{3 g}=\left(\frac{y_{2 g}-y_{g}}{x_{2 g}-x_{g}}\right)\left(x_{g}-x_{2 g}\right)-y_{g}
\end{aligned}
$$

How to calculate 2G, 3G?

For calculating 2G:
Now, $x_{2 g}=s^{2}-2 x_{g}$

$$
\begin{aligned}
& =13^{2}-2 * 5(\bmod 17) \\
& =16-10(\bmod 17) \\
& =6
\end{aligned}
$$

$$
\text { and, } y_{2 g}=\mathrm{s}\left(x_{g}-x_{2 g}\right)-y_{g}
$$

$$
=13(5-6)-1
$$

$$
=-13-1=-14(\bmod 17)
$$

$$
=3
$$

Let

$$
\begin{gathered}
s=\frac{3 x_{g}^{2}+\mathrm{a}}{2 y_{g}} \\
=\frac{3 * 5^{2}+2}{2(1)} \\
=77 *(\bmod 17) \\
=9 * 9(\bmod 17) \\
=13 \\
x_{2 g}=\left(\frac{3 x_{g}^{2}+\mathrm{a}}{2 y_{g}}\right)^{2}-\mathbf{2} \boldsymbol{x}_{g} \\
=s^{2}-\mathbf{2} \boldsymbol{x}_{g} \\
\boldsymbol{y}_{2 g}=\left(\frac{3 x_{g}{ }^{2}+\mathrm{a}}{2 y_{g}}\right)\left(\boldsymbol{x}_{g}-\boldsymbol{x}_{2 g}\right)-\boldsymbol{y}_{g} \\
=\boldsymbol{s}\left(\boldsymbol{x}_{g}-\boldsymbol{x}_{2 g}\right)-\boldsymbol{y}_{g}
\end{gathered}
$$

so, $2 \mathrm{G}=(6,3)$

How to calculate 2G, 3G?

For calculating 3G:

$$
3 G=G+2 G=(5,1)+(6,3)
$$

$$
\text { now, } x_{3 g}=s^{2}-x_{g}-x_{2 g}
$$

$$
\begin{aligned}
& =2^{2}-5-6 \\
& =-7(\bmod 17) \\
& =10
\end{aligned}
$$

and,

$$
\begin{aligned}
y_{3 g} & =s\left(x_{g}-x_{3 g}\right)-y_{g} \\
& =2(5-10)-1 \\
& =-11(\bmod 17) \\
& =6
\end{aligned}
$$

so, $3 \mathrm{G}=(10,6)$
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Let

$$
\begin{gathered}
s=\frac{y_{2 g}-y_{g}}{x_{2 g}-x_{g}} \\
=\frac{3-1}{6-5} \\
=2
\end{gathered}
$$

$$
\begin{gathered}
x_{3 g}=\left(\frac{y_{2 g}-y_{g}}{x_{2 g}-x_{g}}\right)^{2}-x_{g}-x_{2 g} \\
=s^{2}-x_{g}-x_{2 g}
\end{gathered}
$$

$$
y_{3 g}=\left(\frac{y_{2 g}-y_{g}}{x_{2 g}-x_{g}}\right)\left(x_{g}-x_{2 g}\right)-y_{g}
$$

$$
\begin{equation*}
=s\left(x_{g}-x_{2 g}\right)-y_{g} \tag{59}
\end{equation*}
$$

ICE-4221/ Key Management and Elliptic Curve Cryptography (ECC)

Quick Task 1

Given, $G=(5,1), 2 G=(6,3), 3 G=(10,6)$.
Find out the value of 4 G using $E_{17}(2,2)$
We can do that by any of the following operations:

Point Doubling Operation

 4G $=2 \mathrm{G}+2 \mathrm{G}$.$\mathrm{s}=\frac{3 x_{2 g}{ }^{2}+\mathrm{a}}{2 y_{2 g}}$
$x_{4 g}=s^{2}-2 x_{2 g}$
$y_{4 g}=\mathrm{s}\left(x_{2 g}-x_{4 g}\right)-y_{2 g}$

Point Addition Operation

 $4 \mathrm{G}=3 \mathrm{G}+\mathrm{G}$.$\mathrm{s}=\left(y_{3 g}-y_{g}\right) /\left(x_{3 g}-x_{g}\right)$
$x_{4 g}=s^{2}-x_{g}-x_{3 g}$
$y_{4 g}=\mathrm{s}\left(x_{g}-x_{4 g}\right)-y_{g}$

$$
4 \mathrm{G}=(3,1)
$$

Key Exchange Using ECC

Bob

Global Public Elements

Alice

1. Private key, β
$1 \leq \beta \leq n-1$
$y^{2}=x^{3}+a x+b$
G, n
Point on ECC whose order is large value
2.Compute $\mathrm{PU}, \mathrm{P}_{\mathrm{B}}=\beta \mathrm{G}$
a, b
2. Private key, α

$$
1 \leq \alpha \leq n-1
$$

2. Compute $\mathrm{PU}, \mathrm{P}_{\mathrm{A}}=\alpha \mathrm{G}$
3. Receives,

$$
\mathrm{P}_{\mathrm{A}}=\alpha \mathrm{G}=\left(x_{\mathrm{P}_{\mathrm{A}}}, y_{\mathrm{P}_{\mathrm{A}}}\right)
$$

4.Computes,

Key $=\beta\left(\mathrm{P}_{\mathrm{A}}\right)$

3. Receives,

$$
\mathrm{P}_{\mathrm{B}}=\beta \mathrm{G}=\left(x_{\mathrm{P}_{\mathrm{B}}}, y_{\mathrm{P}_{\mathrm{B}}}\right)
$$

4. Computes,

Key Exchange Using ECC

Bob

Eve

Alice

1. Private key,

$$
\beta=9
$$

$$
\begin{gathered}
E_{17}(2,2) \\
\Rightarrow y^{2}=x^{3}+2 x+2(\bmod 17) \\
\mathrm{G}=(5,1), \mathrm{n}=19
\end{gathered}
$$

2. Compute,

$$
P_{B}=\beta \mathrm{G}=9 \mathrm{G}=(7,6)
$$

3.Recevies,

$$
P_{A}=(10,6)
$$

4.Computes,

$$
\begin{aligned}
\mathrm{K} & =\beta P_{A}=\beta \alpha \mathrm{G}=9(3 \mathrm{G}) \\
& =9(10,6)=(13,17)
\end{aligned}
$$

$$
\begin{gathered}
P_{B}=(7,6) \\
P_{A}=(10,6)
\end{gathered}
$$

3.Recevies,

$$
P_{B}=(7,6)
$$

4.Computes,

$$
\begin{aligned}
\mathrm{K} & =\alpha P_{B}=\alpha \beta \mathrm{G}=3(9 \mathrm{G}) \\
& =3(7,6)=(13,17)
\end{aligned}
$$

Why ECC is more secure?

- Consider the equation $Q=k P$ where $Q, P \in E_{p}(a, b)$ and $k<p$.
- It is relatively easy to calculate Q given k and P, but it is way too much hard to determine k given Q and P.
- This is called the discrete logarithm problem for elliptic curves.
- Example: Consider the group $\mathrm{E}_{23}(9,17)$. This is the group defined by the equation $y^{2} \bmod 23=\left(x^{3}+9 x+17\right) \bmod 23$.
- Find out the value of k given $Q=(4,5)$ and the base $P=(16,5)$
- The brute-force method is to compute multiples of P until Q is found. Thus,
- $\mathrm{P}=(16,5) ; 2 \mathrm{P}=(20,20) ; 3 \mathrm{P}=(14,14) ; 4 \mathrm{P}=(19,20) ; 5 \mathrm{P}=$ $(13,10) ; 6 \mathrm{P}=(7,3) ; 7 \mathrm{P}=(8,7) ; 8 \mathrm{P}=(12,17) ; 9 \mathrm{P}=(4,5)=\mathrm{Q}$.
- In a real application, k would be so large as to make the bruteforce attack infeasible.

How to encrypt or decrypt using ECC?

- The first task in this system is to encode the plaintext message m to be sent as an x-y point P_{m}.
- It is the point P_{m} that will be encrypted as a cipher text and subsequently decrypted.
- Note that, we cannot simply encode the message as the x or y coordinate of a point, because not all such coordinates are in $E_{k}(a, b)$.

Encryption \& Decryption using ECC

- To encrypt and send a message P_{m} to B, A chooses a random positive integer α and produces the ciphertext C_{m} consisting the pair of points:

$$
\mathrm{C}_{\mathrm{m}}=\left\{\alpha \mathrm{G}, \mathrm{P}_{\mathrm{m}}+\alpha \mathrm{P}_{\mathrm{B}}\right\}
$$

- Note that, A has used B's public key P_{B}.
- To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key β and subtracts the result from the second point:

$$
\mathrm{P}_{\mathrm{m}}+\alpha \mathrm{P}_{\mathrm{B}^{-}} \beta(\alpha \mathrm{G})=\mathrm{P}_{\mathrm{m}}+\alpha(\beta \mathrm{G})-\beta(\alpha \mathrm{G})=\mathrm{P}_{\mathrm{m}}
$$

Encryption \& Decryption using ECC

- Example: $E_{17}(2,2)=>y^{2}=x^{3}+2 x+2(\bmod 17)$ and $G(5,1)$
- We consider $(6,3)$ point on the EC as P_{m}.
- A selects $\alpha=2$. B selects $\beta=3$,
- Thus, $\mathrm{P}_{\mathrm{B}}=\beta \mathrm{G}=3 \mathrm{G}=(10,6)$.
- We have $\alpha \mathrm{G}=2 \mathrm{G}=(6,3)$, and

$$
\begin{aligned}
\left\{\mathrm{P}_{\mathrm{m}}+\alpha \mathrm{P}_{\mathrm{B}}\right\} & =\{(6,3)+2(10,6)\} \\
& =\{(6,3)+(16,13)\}=(13,7) .
\end{aligned}
$$

- Thus A sends the cipher text

$$
C_{m}=\{(6,3),(13,7)\}
$$

Quick task 2: Decrypt C_{m} and Check if it is P_{m}

ECC Encryption/Decryption

Quick task 2:
 Decrypt C_{m} and Check if it is P_{m}

