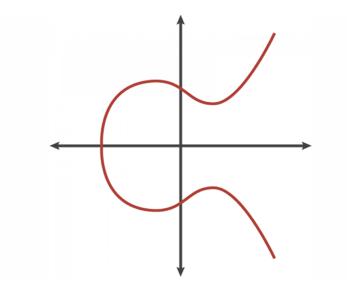
Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials.
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves.
- offers same security with smaller bit sizes.



Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521
	Table 1 : NIST Recommended Key Sizes	

Table 1: NIST Recommended Key Sizes

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Elliptic Curve Cryptography

- ECC use the two fields of EC ,prime i.e Z_P and 2 power of positive integer i.e GF(2^{*m*}) and also use two
 - EC operation point addition and point doubling operation.
- Affine point: point present in EC
- **O point** : point of infinity(not present in EC)
- Generator point, G: point of the curve generate a secrete subgroup by repeating addition of G.
- Ord(G),n: number of point in the subgroup
- Cofactor, h:# of point in EC divided by number of point in subgroup.
- Its ideally 1 (i.e fields is prime).

Real Elliptic Curves

- An elliptic curve is defined by an equation in two variables x & y, with coefficients.
- consider a cubic elliptic curve of form

$$> y^2 = x^3 + ax + b$$

- where x,y,a,b are all real numbers
- also define zero point O

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite integers.
- have two families commonly used:
 - prime curves E_p (a, b) defined over Z_p (Finite fields)

•
$$y^2 \mod p = (x^3 + ax + b) \mod p$$

- use integers modulo a prime for both variables and coeff
- Example: P=(3,10), Q=(9,7), in $E_{23}(1,1)$
 - P+Q = (17,20)
 - 2P = (7,12)

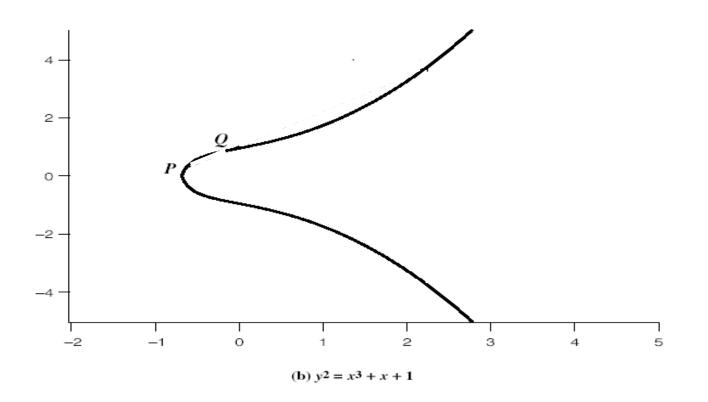
43

Real Elliptic Addition

Example: Points P=(3,10), and Q (9,7) in E_{23} (1,1)

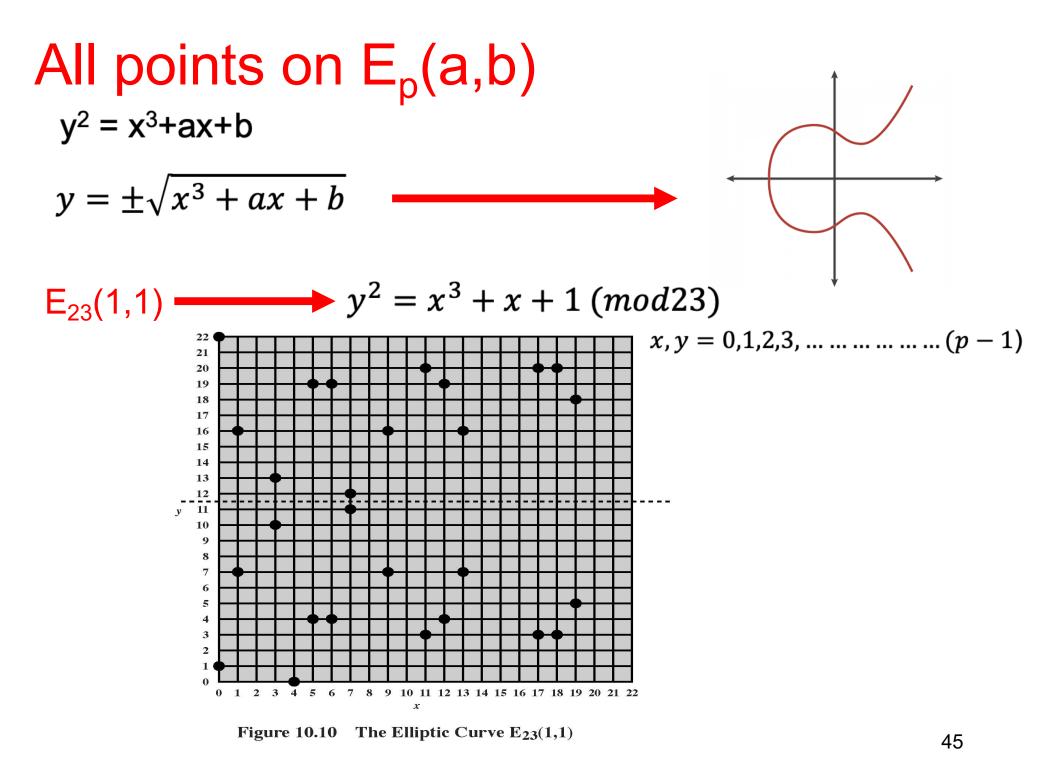
Then, $E_p(a, b) | y^2 = x^3 + ax + b \pmod{p}$ will be

 $E_{23}(1,1) \mid y^2 = x^3 + x + 1 \pmod{23}$



44

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU



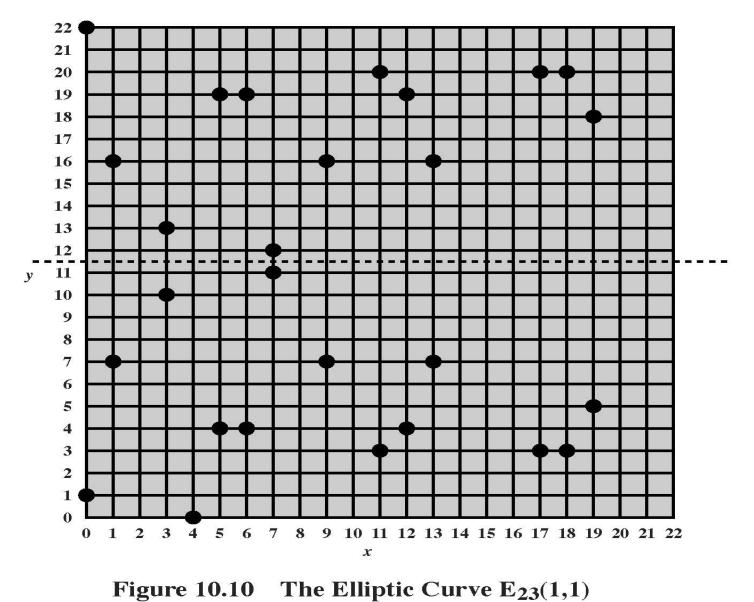
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

All points on E

				-
x	RHS		у	LHS
0	1		0	0
1	3		1	1
2			2	4
3	8		3	9
4	0		4	16
5	16		5	2
6	16		6	13
7	6		7	3
8	15	•	8	18
9	3		9	12
10	22	•	10	8
11	9		11	6
12	16		12	6
13	3		13	8
14	22	•	14	12
15	10		15	18
10	19	•	16	3
17	9		17	13
18	9		18	2
19	2		19	16
20	17	•	20	9
21	14	•	21	4
22	22	•	22	1
	•			

n E ₂₃ (1,1)	
$E_{23}(1,1) \longrightarrow 3$	HS RHS $y^2 = x^3 + x + 1 \pmod{23}$
(0,1) (0,22) (1,7) (1,16)	$x, y = 0, 1, 2, 3, \dots \dots \dots \dots (p - 1)$
(4,0) (5,19) (5,4) (6,19) (6,4) (7,11) (7,12) (9,7) (9,16) (11,20) (11,3) (12, 19) (12,4) (13,7)(13,16)	
(17,3) (17,20) (18,20) (18,3) (19,5) (19,18)	0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 <i>x</i> Figure 10.10 The Elliptic Curve E ₂₃ (1,1)

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE-4221/ Key Management and Elliptic Curve Cryptography (ECC)



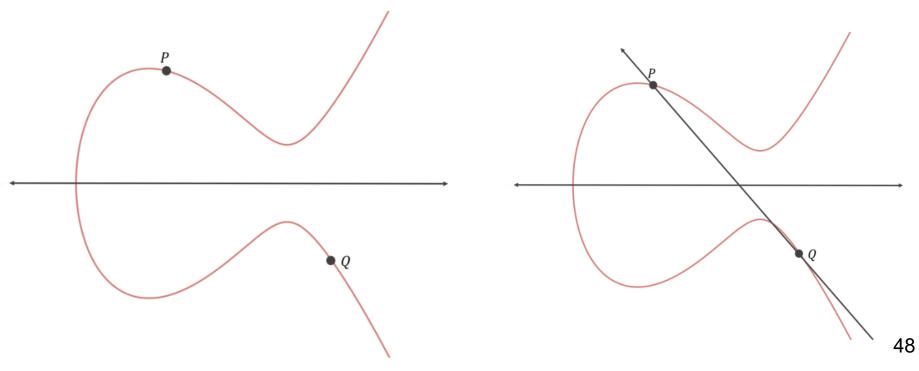
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE-4221/ Key Management and Elliptic Curve Cryptography (ECC)

47

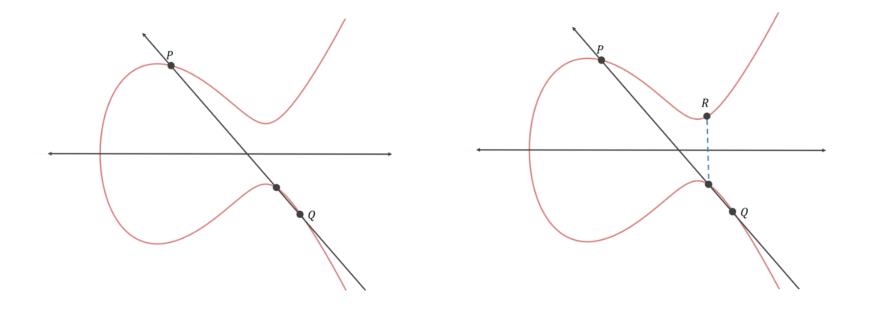
Point addition

- You can add two points on an elliptic curve together to get a third point on the curve.
- To add two points on an elliptic curve together, you first find the line that goes through those two points.

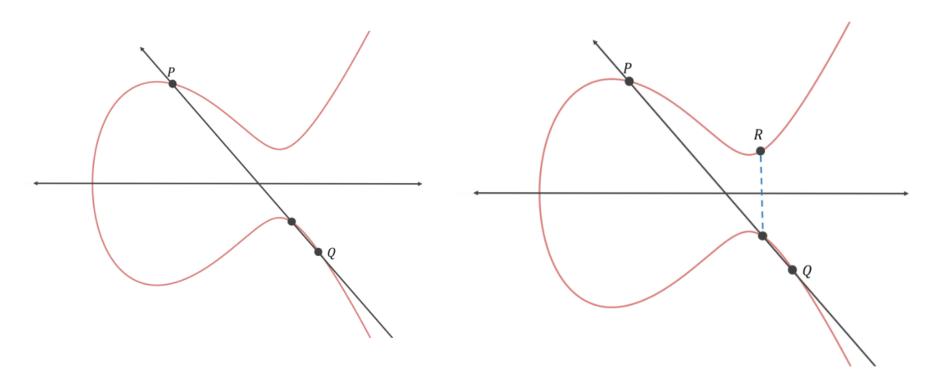


© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

- Then you determine where that line intersects the curve at a third point.
- Then you reflect that third point across the x-axis (i.e. multiply the y-coordinate by -1) and whatever point you get from that is the result of adding the first two points together.



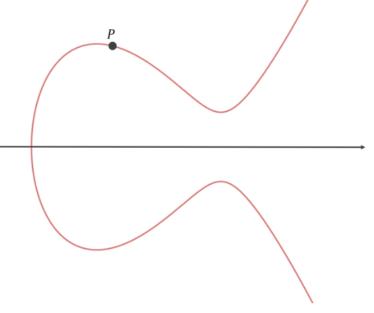
49



- Then you reflect that point across the x-axis.
- Therefore, P+Q=R.

50

- To do elliptic curve cryptography properly, rather than adding two arbitrary points together, we specify a base point on the curve and only add that point to itself.
- For example, let's say we have the following curve with base point P:



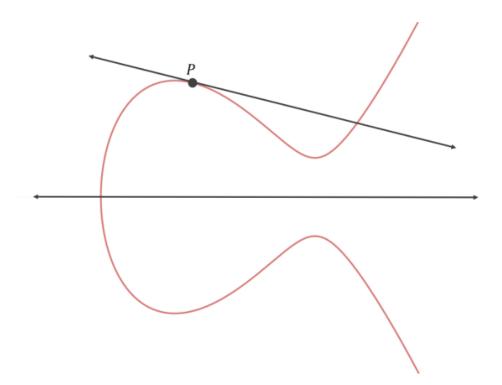
• Initially, we have P, or 1•P.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

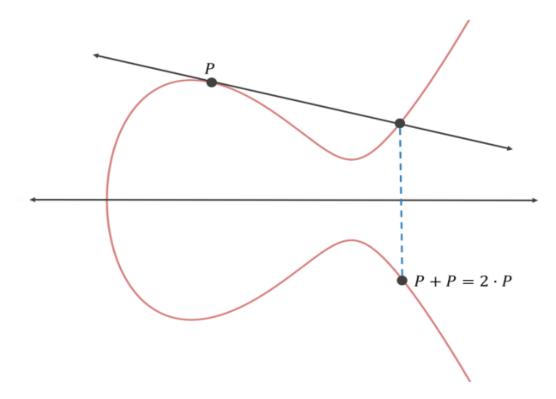
ICE-4221/ Key Management and Elliptic Curve Cryptography (ECC)

51

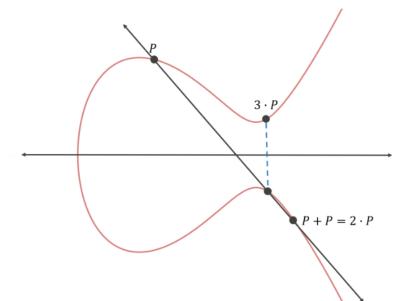
- Now let's add P to itself.
- First, we have to find the equation of the line that goes through P and P.
- There are infinite such lines! In this special case, we opt for the tangent line.



- Now we find the "third" point that this line intersects and reflect it across the x-axis.
- Thus P added to itself, or P+P, equals 2•P.

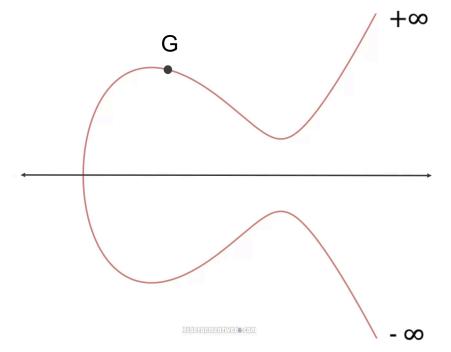


- If we add P to itself again, we'll be computing P added to itself added to itself, or P+P+P. The result will be 3•P.
- To compute 3•P, we can just add P and 2•P together.



 We can continue to add P to itself to compute 4•P and 5•P and so on.

Subgroup Generation

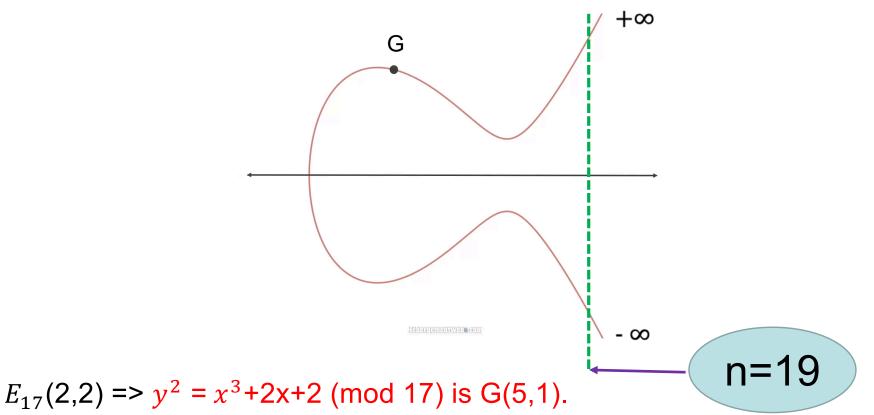


Generator point, G: For example, $E_{17}(2,2) \Rightarrow y^2 = x^3 + 2x + 2 \pmod{17}$ is G(5,1).

55

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Subgroup Generation



The subgroup of G calculated by repeated addition is Given below

G = (5,1)6G = (16,13)11G = (13,10)16G = (10,11)2G = (6,3)7G = (0,6)12G = (0,11)17G = (6,14)3G = (10,6)8G = (13,17)13G = (16,4)18G = (5,16)4G = (3,1)9G = (7,6)14G = (9,1)19G = O5G = (9,16)10G = (7,11)15G = (3,16)56

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

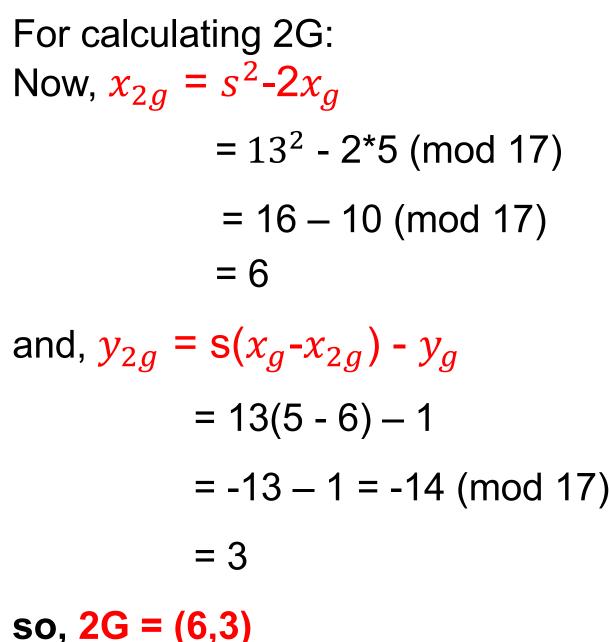
How to calculate 2G, 3G?

Generator point, G: For example, $E_{17}(2,2) \Rightarrow y^2 = x^3 + 2x + 2 \pmod{17}$ is G(5,1). G = (5,1) = (x_g , y_g); (a, b) \equiv (2,2)

- <u>2G = G+G (called point doubling operation)</u>=(x_{2g} , y_{2g}) $\gg x_{2g} = \left(\frac{3x_g^2 + a}{2y_g}\right)^2 - 2x_g$ $\gg y_{2g} = \left(\frac{3x_g^2 + a}{2y_g}\right)(x_g - x_{2g}) - y_g$
- <u>3G = G+2G (called point addition operation)</u>= (x_{3g}, y_{3g}) $\succ x_{3g} = \left(\frac{y_{2g}-y_g}{x_{2g}-x_g}\right)^2 - x_g - x_{2g}$ $\succ y_{3g} = \left(\frac{y_{2g}-y_g}{x_{2g}-x_g}\right)(x_g - x_{2g}) - y_g$ ₅₇

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

How to calculate 2G, 3G?



Let $s = \frac{3x_g^2 + a}{2y_g}$ $= \frac{3 \cdot 5^2 + 2}{2(1)}$ $= 77 \cdot (\text{mod } 17)$ $= 9^*9 \pmod{17}$ = 13

$$x_{2g} = \left(\frac{3x_g^2 + a}{2y_g}\right)^2 - 2x_g$$
$$= s^2 - 2x_g$$
$$(3x_g^2 + a) ($$

$$y_{2g} = \left(\frac{3x_g^2 + a}{2y_g}\right) \left(x_g - x_{2g}\right) - y_g$$
$$= s(x_g - x_{2g}) - y_g$$

58

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

How to calculate 2G, 3G?

For calculating 3G: 3G = G + 2G = (5,1) + (6,3)

now,
$$x_{3g} = s^2 - x_g - x_{2g}$$

= $2^2 - 5 - 6$
= -7 (mod 17)
= 10

and,

$$y_{3g} = s (x_g - x_{3g}) - y_g$$

= 2 (5 - 10) - 1
= -11 (mod 17)
= 6
so, 3G = (10,6)

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Let $s = \frac{y_{2g} - y_g}{x_{2g} - x_g}$ $=\frac{3-1}{6-5}$ $x_{3g} = \left(\frac{y_{2g} - y_g}{x_{2g} - x_g}\right)^2 - x_g - x_{2g}$ $= s^2 - x_g - x_{2g}$ $y_{3g} = \left(\frac{y_{2g} - y_g}{x_{2g} - x_g}\right) (x_g - x_{2g}) - y_g$ = $s(x_g - x_{2g}) - y_g$ 59

Quick Task 1

Given, G = (5,1), 2G = (6,3), 3G = (10,6).

Find out the value of 4G using $E_{17}(2,2)$

We can do that by any of the following operations:

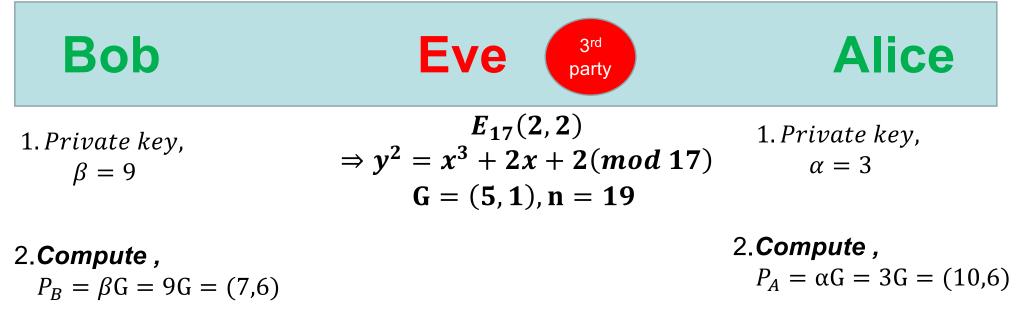
Point Doubling Operation 4G = 2G+2G. $s = \frac{3x_{2g}^2 + a}{2y_{2g}}$ $x_{4g} = s^2 - 2x_{2g}$ $y_{4g} = s(x_{2g} - x_{4g}) - y_{2g}$

Point Addition Operation 4G = 3G+G. $s = (y_{3g}-y_g)/(x_{3g}-x_g)$ $x_{4g} = s^2 - x_g - x_{3g}$ $y_{4g} = s(x_g-x_{4g}) - y_g$

4G = (3,1).

Key Exchange Using ECC						
Bob	Global Public Elements	Alice				
1. Private key, β	$y^2 = x^3 + ax + b$	1. Private key, α				
$1 \le \beta \le n - 1$	G, n Point on ECC whose order is large value	$1 \le \alpha \le n - 1$				
2.Compute PU, $P_B = \beta G$	a, b	2. Compute PU, $P_A = \alpha G$				
3. Receives,		3. Receives,				
$P_A = \alpha G = (x_{P_A}, y_{P_A})$		$P_{B} = \beta G = (x_{P_{B}}, y_{P_{B}})$				
4.Computes,	P _A , P _B	4. Computes,				
Key = $\beta(P_A)$	Key = ? Secret	Key = $\alpha(P_B)$				
	Key	61				
© Dr. Md. Golam Rashed, Assoc. Professor	, Dept. of ICE, RU ICE-4221/ Key Man	agement and Elliptic Curve Cryptography (ECC)				

Key Exchange Using ECC Example



3.**Recevies**,

 $P_A = (10,6)$

 $P_B = (7, 6),$ $P_A = (10, 6)$ 3.**Recevies,** $P_B = (7,6)$

4.**Computes,** $K = \beta P_A = \beta \alpha G = 9(3G)$ = 9(10,6) = (13,17)

 $\alpha = P_A/G=Infeasible$ $\beta = P_B/G=Infeasible$ So, K=??? 4.**Computes,** $K = \alpha P_B = \alpha \beta G = 3(9G)$ = 3(7,6) = (13,17)

Why ECC is more secure?

- Consider the equation Q = kP where $Q, P \in E_p(a,b)$ and k < p.
- It is relatively easy to calculate Q given k and P, but it is way too much hard to determine k given Q and P.
- This is called the discrete logarithm problem for elliptic curves.
- Example: Consider the group E_{23} (9,17). This is the group defined by the equation $y^2 \mod 23 = (x^3+9x+17) \mod 23$.
- Find out the value of k given Q = (4,5) and the base P = (16,5)
- The brute-force method is to compute multiples of P until Q is found. Thus,
- P = (16,5); 2P = (20,20); 3P = (14,14); 4P = (19,20); 5P = (13,10); 6P = (7,3); 7P = (8,7); 8P = (12,17); 9P = (4,5) = Q.
- In a real application, k would be so large as to make the bruteforce attack infeasible.

How to encrypt or decrypt using ECC?

- The first task in this system is to encode the plaintext message m to be sent as an x-y point P_m .
- It is the point P_m that will be encrypted as a cipher text and subsequently decrypted.
- Note that, we cannot simply encode the message as the x or y coordinate of a point, because not all such coordinates are in E_k(a,b).

Encryption & Decryption using ECC

• To encrypt and send a message P_m to B, A chooses a random positive integer α and produces the ciphertext C_m consisting the pair of points:

$$C_m = \{\alpha G, P_m + \alpha P_B\}$$

- Note that, A has used B's public key P_B .
- To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key β and subtracts the result from the second point:

$$\mathsf{P}_{\mathsf{m}} + \alpha \mathsf{P}_{\mathsf{B}} - \beta(\alpha \mathsf{G}) = \mathsf{P}_{\mathsf{m}} + \alpha(\beta \mathsf{G}) - \beta(\alpha \mathsf{G}) = \mathsf{P}_{\mathsf{m}}$$

Encryption & Decryption using ECC

- Example: $E_{17}(2,2) \Rightarrow y^2 \equiv x^3 + 2x + 2 \pmod{17}$ and G(5,1)
- We consider (6,3) point on the EC as P_m .
- A selects α = 2. B selects β = 3,
- Thus, $P_B = \beta G = 3G = (10,6)$.
- We have $\alpha G = 2G = (6,3)$, and $\{P_m + \alpha P_B\} = \{(6,3)+2(10,6)\}$ $= \{(6,3)+(16,13)\} = (13,7).$
- Thus A sends the cipher text

 $C_m = \{(6,3), (13,7)\}$

Quick task 2: Decrypt C_m and Check if it is P_m

ECC Encryption/Decryption

Quick task 2: Decrypt C_m and Check if it is P_m

67