Mendelian crosses and ratios

Contents: Contrasting characters that Mendel studied (1857-65); Monohybrid crosses; Dihybrid crosses; Trihybrid crosses; Methods of analyses; Determination of phenotypic ratios; Determination of genotypic ratios; Formulae for calculating different parameters; Suggested reading.

Contrasting characters that Mendel studied (1857-1865)

For his experiments with garden peas, Mendel chose seven contrasting characters that were well-defined and easily recognizable. The characters included length of the stem (tall or dwarf), form of the ripe seed (round or wrinkled), colour of the seed cotyledons (yellow or green), form of the ripe pods (inflated or constricted), colour of the seed coat (grey or white), colour of the unripe pods (green or yellow), and position of the flower (axial or terminal). The traits mentioned in the parentheses are dominants and recessives, respectively.

Monohybrid crosses: Crosses between two parents that differ in only one contrasting heritable character under consideration. A few examples from plants and animals are described below.

1. TT (Tall plant) $\times \mathrm{tt}$ (dwarf plant) in garden peas
2. BB (Black hair) $\times \mathrm{bb}$ (white hair) in guinea pigs
3. ++ (Grey body) $\times \mathrm{bb}$ (black body) in fruit flies

A monohybrid cross in garden peas Pisum sativum
P: お才 Tall plant (TT) $\times \quad$ \& q dwarf plant (tt)
G: T t
$\mathrm{F}_{1}: \quad \mathrm{Tt}$ (all Tall plants)

$\mathrm{G}:$	T, t			T, t
$\mathrm{F}_{1} \times \mathrm{F}_{1}:$		$\mathrm{Tt} \quad \times \quad \mathrm{Tt}$		

$\mathrm{F}_{2}: \quad \mathrm{TT}: \quad \mathrm{Tt}: \quad \mathrm{tt}$
Phenotypes: Tall Tall dwarf
Genotypic ratio: 1 (homo): 2 (hetero): 1 (homo)

Phenotypic ratio: 3 Tall: 1 dwarf $=4$ types of offspring

Fig 2.1 Monohybrid cross in garden peas and its phenotypic ratio in F_{2}

A monohybrid cross in guinea pigs Cavia porcellus

P：ふ欠 Black hair（BB）$\times \quad$ \＆\uparrow white hair（bb）
G：
B
b
F_{1} ：
Bb （all Black hair）
G：
B，b
B，b
$\mathrm{F}_{1} \times \mathrm{F}_{1}$ ：
$\mathrm{Bb} \times \mathrm{Bb}$
F_{2} ：
Phenotypes：
BB
Bb ：
Black
Black bb

Genotypic ratio： 1 （homo）： 2 （hetero）： 1 （homo）
Phenotypic ratio： 3 Black： 1 white $=4$ types of offspring
Punnett square（checkerboard）：

$\hat{0} \hat{1} / 9$ 里	\mathbf{B}	\mathbf{b}
B	BB	Bb
b	Bb	bb

Fig 2．2 Monohybrid cross in guinea pigs and its phenotypic ratio in F_{2}

A monohybrid cross in fruit flies Drosophila melanogaster

P：ô ${ }^{\lambda}$ Grey body（＋＋）$\times \quad$ q q black body（bb）
G：$+\quad$ b
F_{1}
＋b（all Grey）
G：$\quad+, \mathrm{b} \quad+, \mathrm{b}$
$\mathrm{F}_{1} \times \mathrm{F}_{1}: \quad+\mathrm{b} \quad \times \quad+\mathrm{b}$
$\mathrm{F}_{2}: \quad++: \quad+\mathrm{b}: \quad \mathrm{bb}$
Phenotypes：Grey Grey black
Genotypic ratio： 1 （homo）： 2 （hetero）： 1 （homo）
Phenotypic ratio： 3 Grey： 1 black $=4$ types of offspring
Punnett square（checkerboard）：

	+	b
+	++	+b
b	+b	bb

Fig 2.3 Monohybrid cross in Drosophila and its phenotypic ratio in F_{2}
Dihybrid crosses: Crosses between individuals differing in two contrasting heritable characters under consideration. Examples of such crosses from plants and animals are narrated below.

TTRR (Tall-Round) \times tt (dwarf-wrinkled) in garden peas
BBSS (Black-Short) \times bbss (white-long) in guinea pigs
$++++($ Grey-Long $) \times$ bbvgvg (black-vestigial) in fruit flies

A dihybrid cross in garden peas

P: ふ〇Tall-Round (TTRR) $\times \quad$ \& q dwarf-wrinkled (ttrr)
G: TR tr
$\mathrm{F}_{1}: \quad \operatorname{TtRr}$ (all Tall-Round)
$\mathrm{F}_{1} \times \mathrm{F}_{1}: \quad \mathrm{TtRr} \quad \times \quad \mathrm{TtRr}$
G: TR, Tr, tR, tr
TR, Tr, tR, tr
F2: 9T-R-: 3T-rr: 3ttR-: 1ttrr
Phenotypes: 9Tall-Round: 3Tall-wrinkled: 3dwarf-Round: 1dwarf-wrinkled Punnett square: $4 \times 4=16$ types

	TR	Tr	tR	tr
TR	TTRR	TTRr	TtRR	TtRr
Tr	TTRr	Ttrr	TtRr	Ttrr
tR	TtRR	TtRr	ttRR	ttRr
tr	TtRr	Ttrr	ttRr	ttrr

A dihybrid cross in guinea pig

P: ơ ${ }^{\top}$ Black-Short (BBSS) $\times \quad$ \& q white-long (bbss)
G: BS bs
$\mathrm{F}_{1}: \quad$ BbSs (all Black-Short)
$\mathrm{F}_{1} \times \mathrm{F}_{1}$:
BbSs
$\times \quad \mathrm{BbSs}$

G: BS, Bs, bS, bs BS, Bs, bS, bs
$\mathrm{F}_{2}: \quad 9 \mathrm{~B}-\mathrm{S}-: \quad 3 \mathrm{~B}$-ss: 3bbS-: 1bbss
Phenotypes: 9Black-Short: 3Black-long: 3white-Short: 1white-long
Punnett square: $4 \times 4=16$ types

$\hat{\text { ofo}}$ /우	BS	Bs	bS	bs
BS	BBSS	BBSs	BbSS	BbSs
Bs	BBSs	BBss	BbSs	Bbss
bS	BbSS	BbSs	bbSS	bbSs
bs	BbSs	Bbss	bbSs	bbss

F_{1} :

Black-Short (BBSS)

white-long (bbss)
$\mathrm{F}_{1} \times \mathrm{F}_{1}$:

Fig 2.4 Dihybrid cross in guinea pigs and its phenotypes in F_{2}

A dihybrid cross in D. melanogaster

P : $\delta^{\lambda} \delta^{\lambda}$ Grey-Long (++++) \times \& Oblack-vestigial (bbvgvg)
G: ++ bvg
F_{1} :
$+b+v g$ (all Grey-Long)
$\mathrm{F}_{1} \times \mathrm{F}_{1}$:
$+b+v g \quad \times \quad+b+v g$
G:
$++,+v g, b+$, bvg $++,+v g, b+$, bvg
F_{2}
9+-+-: 3+-vgvg:
3bb+-: 1bbvgvg
Phenotypes: 9Grey-Long: 3Grey-vestigial: 3black-Long: 1black-vestigial

Fig 2.4 Black-vestigial (left) and grey-long parents of Drosophila

Punnett square for a dihybrid cross in Drosophila showing 16 types of progenies in F_{2}.

©̂d/q워	++	$+v g$	$b+$	$b v g$
++	++++	$+++v g$	$+b++$	$+b+v g$
$+v g$	$+++v g$	$++v g v g$	$+b+v g$	$+b v g v g$
$b+$	$+b++$	$+b+v g$	$b b++$	$b b+v g$
$b v g$	$+b+v g$	$+b v g v g$	$b b+v g$	bbvgvg

Trihybrid cross: A cross between individuals differing in three contrasting heritable characters under consideration, e.g. TTRRYY \times ttrryy. Example of a trihybrid cross in garden peas is described below.

A trihybrid cross in garden peas

P: ơ ${ }^{\top}$ Tall-Round-Yellow (TTRRYY)
$\times \quad$ \& q dwarf-wrinkled-green (ttrryy)

G:
TRY
F_{1} :
TtRr Yy (all Tall-Round-Yellow)
$\mathrm{F}_{1} \times \mathrm{F}_{1}$: TtRrYy $\quad \times \quad \mathrm{TtRrYy}$
G: TRY, TRy, TrY, Try, tRY, tRy, trY, try;TRY, TRy, TrY, Try, tRY, tRy, trY, try Punnett square: $8 \times 8=64$ types

	TRY							
TRY	TTRRY	TRRY		Rryy		RRY	RrY	Yy
TRy	TTRRYy	TTRRyy	TT	y	Tt	y	TtRrYy	y
TrY	TTRrYY							
Try	TtRRYy	Ttrry						
tRY	TtRRYY							
tRy	TtRRYy							
trY	TtRrYY							
try	TtRrYy	TtRryy	TtrrYy	Ttrry	ttRrYy	ttRryy	ttrrYy	ttrryy

$\mathrm{F}_{2}: \quad$ 27T-R-Y-: 9T-R-yy: 9T-rr-Yy: 3T-rryy: 9ttR-Y-: 3 ttR -yy: 3ttrrY-: 1ttrryy
Phenotypes: 27 Tall-Round-Yellow; 9 Tall-Round-green; 9 Tall-wrinkled-Yellow; 3 Tall-wrinkled-green; 9 short-Round-Yellow; 3 short-Round-green; 3 short-wrinkled-Yellow; 1 short-wrinkled-green $=64$ types of offspring.

Mendelian crosses: Methods of Analyses

There are two common methods of analyses for Mendelian crosses. These include:

1. Punnett square method (examples in Burns, 1980)
2. Forked-line method (examples in Gardner et al., 1991)

The Punnett square method has been described in earlier examples. Here, the forked-line method of analysis is shown below.

Forked-line method (dihybrid cross):
P:
F_{1} :
TTRR $\times \mathrm{ttrr}$
TtRr
$\mathrm{F}_{1} \times \mathrm{F}_{1}: \quad \mathrm{TtRr} \times \mathrm{TtRr}$

Forked-line method (trihybrid cross):

Determination of phenotypic and genotypic ratios

Phenotypic ratios

Monohybrid crosses: 3:1 =4 types of offspring
Dihybrid crosses: $\quad 3: 1 \times 3: 1=9: 3: 3: 1 \quad=16$ types of offspring
Trihybrid crosses: $\quad 3: 1 \times 3: 1 \times 3: 1=27: 9: 9: 3: 9: 3: 3: 1=64$ types of offspring

Genotypic ratios

Monohybrid crosses: 1:2:1 = 4 types of offspring
Dihybrid crosses: $\quad 1: 2: 1 \times 1: 2: 1=1: 2: 1: 2: 4: 2: 1: 2: 1 \quad=16$ types of offspring
Trihybrid crosses: $\quad 1: 2: 1 \times 1: 2: 1 \times 1: 2: 1=1: 2: 1: 2: 4: 2: 1: 2: 1: 2: 4: 2: 4: 8: 4: 2: 4:$
2: 1: 2: 1: 2: 4: 2: 1: 2: 1 $=64$ types of offspring

Formulae for calculating different parameters in Mendelian crosses

Parameters like number of gamete genotypes, numbers of progeny phenotypes and genotypes and total number of progeny types are calculated by simple formulae shown in the table below:

Pairs of contrasting characters	Number of gamete genotypes	Number of progeny phenotypes	Number of progeny genotypes	Total number of Progeny types
$\begin{gathered} 1 \\ (\mathrm{TT} \times \mathrm{tt}) \end{gathered}$	2	$\begin{gathered} 2 \\ (3: 1) \end{gathered}$	$\begin{gathered} 3 \\ (1: 2: 1) \end{gathered}$	$\begin{gathered} 4 \\ (3+1) \end{gathered}$
$\begin{gathered} 2 \\ \text { (TTRR×ttrr) } \end{gathered}$	4	$\begin{gathered} 4 \\ (9: 3: 3: 1) \end{gathered}$	$\begin{gathered} 9 \\ (1: 2: 1: 2: 4: 2: 1: 2: 1) \end{gathered}$	$\begin{gathered} 16 \\ (9+3+3+1) \end{gathered}$
3 (TTRRYY×ttrryy)	8	$\begin{gathered} 8 \\ (27: 9: 9: 3: 9: 3: 3: 1) \end{gathered}$	$\frac{27}{(1: 2: 1: 2: 4: 2: 1: 2: 1 \ldots: 1)}$	$\begin{gathered} 64 \\ (27+9+\ldots+1) \end{gathered}$
n	2 n	2 n	$3 n$	4 n

Ref: G. W. Burns (1980)

Suggested reading:

Ayala \& Kiger, 1980. Modern Genetics.
Burns, GW. 1980. The Science of Genetics.
Gardner et al. 1991. Principles of Genetics (8th edn)
Islam, MS. 2018. Selected Lectures on Genetics. LAP Lambert Academic Publishing, Germany.
Sinnott et al. 1973. Principles of Genetics (5th edn)
Stansfield, WD. 1991. Theory and Problems of Genetics (3rd edn)
Strickberger, MW. 1976. Introduction to Genetics.
Winchester, AM. 1966. Genetics.
ইসলাম, ম.সা., খান, হা.সা. ও রানা, ম.হা.তা. ২০১৭। জেনেটিক্স: মিল ও অমিলের বিজ্ঞান। অন্যপ্রকাশ, ঢাকা।

