Mendelian crosses and ratios

Contents: Contrasting characters that Mendel studied (1857-65); Monohybrid crosses; Dihybrid crosses; Trihybrid crosses; Methods of analyses; Determination of phenotypic ratios; Determination of genotypic ratios; Formulae for calculating different parameters; Suggested reading.

Contrasting characters that Mendel studied (1857-1865)

For his experiments with garden peas, Mendel chose seven contrasting characters that were well-defined and easily recognizable. The characters included length of the stem (tall or dwarf), form of the ripe seed (round or wrinkled), colour of the seed cotyledons (yellow or green), form of the ripe pods (inflated or constricted), colour of the seed coat (grey or white), colour of the unripe pods (green or yellow), and position of the flower (axial or terminal). The traits mentioned in the parentheses are dominants and recessives, respectively.

Monohybrid crosses: Crosses between two parents that differ *in only one contrasting heritable character* under consideration. A few examples from plants and animals are described below.

- 1. TT (Tall plant) \times tt (dwarf plant) in garden peas
- 2. BB (Black hair) \times bb (white hair) in guinea pigs
- 3. ++ (Grey body) \times bb (black body) in fruit flies

A monohybrid cross in garden peas Pisum sativum

P: dd Tall pla	nt (TT) \times	$\bigcirc \bigcirc \bigcirc$ dwarf p	olant (tt)
G: T		t	
F ₁ :	Tt (all Tall p	plants)	
G: T, t		T, t	
$F_1 \times F_1$:	Tt ×	Tt	
F ₂ :	TT:	Tt:	tt
Phenotypes:	Tall	Tall	dwarf
Genotypic ratio:	1 (homo):	2 (hetero):	1 (homo)
Phenotypic ratio:	3 Tall: 1 dw	varf =4 ty	pes of offspring

Fig 2.1 Monohybrid cross in garden peas and its phenotypic ratio in F₂

A monohybrid cross	in guinea	pigs	Cavia porcelli	us
P: $\partial \partial$ Black hai	$r(BB) \times$		$\bigcirc \bigcirc$ white hai	r (bb)
G: B			b	
F ₁ :	Bł	b (all	Black hair)	
G: B, b			B, b	
$F_1 \times F_1$:	Bb ×		Bb	
F ₂ :	BB:		Bb:	bb
Phenotypes:	Black		Black	white
Genotypic ratio:	1 (homo):	:	2 (hetero):	1 (homo)
Phenotypic ratio:	3 Black:		1 white =4 typ	es of offspring
Punnett square (check	erboard):			

Fig 2.2 Monohybrid cross in guinea pigs and its phenotypic ratio in $\ensuremath{\mathsf{F}_2}$

A monohybrid cross in fruit flies Drosophila melanogaster

		· · · · · · · · · · · · · · · · · · ·	8
P: dd Grey bod	ly (++) ×	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} black boo$	ly (bb)
G: +		b	
F ₁ :	+b (all	Grey)	
G: +, b		+, b	
$F_1 \times F_1$:	$+b \times$	+b	
F ₂ :	++:	+b:	bb
Phenotypes:	Grey	Grey	black
Genotypic ratio:	1 (homo):	2 (hetero):	1 (homo)
Phenotypic ratio:	3 Grey:	1 black	=4 types of offspring
Punnett square (check	(terboard):		

33155	+	b
+	++	+b
b	+b	bb

Grey-bodied (++) black bodied

Fig 2.3 Monohybrid cross in Drosophila and its phenotypic ratio in F₂

Dihybrid crosses: Crosses between individuals differing in *two contrasting heritable characters* under consideration. Examples of such crosses from plants and animals are narrated below.

3

TTRR (Tall-Round) × tt (dwarf-wrinkled) in garden peas BBSS (Black-Short) × bbss (white-long) in guinea pigs ++++ (Grey-Long) × bbvgvg (black-vestigial) in fruit flies

A dihybrid cross in garden peas

റ്റ്Tall-Round (TTRR) P: \bigcirc dwarf-wrinkled (ttrr) × G: TR tr F_1 : TtRr (all Tall-Round) $F_1 \times F_1$: TtRr TtRr × G: TR, Tr, tR, tr TR, Tr, tR, tr F2: 9T-R-: 3T-rr: 3ttR-: 1ttrr Phenotypes: 9Tall-Round: 3Tall-wrinkled: 3dwarf-Round: 1dwarf-wrinkled Punnett square: $4 \times 4 = 16$ types

33/55	TR	Tr	tR	tr
TR	TTRR	TTRr	TtRR	TtRr
Tr	TTRr	Ttrr	TtRr	Ttrr
tR	TtRR	TtRr	ttRR	ttRr
tr	TtRr	Ttrr	ttRr	ttrr

A dihybrid cross in guinea pig

P: $\partial \partial Black$ -Short (BBSS) × $Q Q$ white-long	(bbss)
G: BS bs	
F ₁ : BbSs (all Black-Short)	
$F_1 \times F_1$: BbSs × BbSs	
G: BS, Bs, bS, bs BS, Bs, bS, bs	
F ₂ : 9B-S-: 3B-ss: 3bbS-: 1b	bss

Phenotypes: 9Black-Short: 3Black-long: 3white-Short: 1white-long Punnett square: $4 \times 4 = 16$ types

33/22	BS	Bs	bS	bs
BS	BBSS	BBSs	BbSS	BbSs
Bs	BBSs	BBss	BbSs	Bbss
bS	BbSS	BbSs	bbSS	bbSs
bs	BbSs	Bbss	bbSs	bbss

×

Black-Short (BbSs)

Black-Short (BBSS)

white-long (bbss)

 F_1 : $F_1 \times F_1$:

P:

	BbSs x BbSs					
5	BS	Bs	bS	bs		
BS	BBSS	BBSs	BbSS	BbSs		
Bs	BBSs	BBss	BbSs	Bbss		
bS	BbSS	BbSs	bbSS	bbSs		
bs	BbSs	Bbss	bbSs	bb ss		

Fig 2.4 Dihybrid cross in guinea pigs and its phenotypes in $\ensuremath{F_2}$

A dihybrid cross in *D. melanogaster*

P: ♂♂Grey-Lo	ong (++++	-) ×	$^{\bigcirc}_{\bigcirc}^{\bigcirc}$ black-vestigial	(bbvgvg)
G:	++		bvg	
F ₁ :	+b+vg (a	ll Grey-Long	g)	
$F_1 \times F_1$:	+b+vg	×	+b+vg	
G:	++, +vg,	b+, bvg	++, +vg, b-	+, bvg
F ₂ :	9+-+-:	3+-vgvg:	3bb+-:	1bbvgvg
Phenotypes: 9	Grey-Lon	g: 3Grey-ves	stigial: 3black-Long:	1black-vestigial

Fig 2.4 Black-vestigial (left) and grey-long parents of Drosophila

Punnett square for a dihybrid cross in *Drosophila* showing 16 types of progenies in F₂.

33/22	++	+vg	b+	bvg
++	++++	+++vg	+b++	+b+vg
+vg	+++vg	++vgvg	+b+vg	+bvgvg
b+	+b++	+b+vg	bb++	bb+vg
bvg	+b+vg	+bvgvg	bb+vg	bbvgvg

Trihybrid cross: A cross between individuals differing in *three contrasting heritable characters* under consideration, *e.g.* TTRRYY \times ttrryy. Example of a trihybrid cross in garden peas is described below.

A trihybrid cross in garden peas

| 33/22 | TRY |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| TRY | TTRRYY |

F₂: 27T-R-Y-: 9T-R-yy: 9T-rr-Yy: 3T-rryy: 9ttR-Y-: 3ttR-yy: 3ttrrY-: 1ttrryy

Phenotypes: 27 Tall-Round-Yellow; 9 Tall-Round-green; 9 Tall-wrinkled-Yellow; 3 Tall-wrinkled-green; 9 short-Round-Yellow; 3 short-Round-green; 3 short-wrinkled-Yellow; 1 short-wrinkled-green =64 types of offspring.

Mendelian crosses: Methods of Analyses

There are two common methods of analyses for Mendelian crosses. These include:

- **1. Punnett square method** (examples in Burns, 1980)
- 2. Forked-line method (examples in Gardner *et al.*, 1991)

The Punnett square method has been described in earlier examples. Here, the forked-line method of analysis is shown below.

		Forked-lin	ne method (dihybrid cross):
P:		TTRR \times tt	rr
F ₁ :		TtRr	
$F_1 \times F_1$:	TtRr	× TtRr	
F ₂ :	3 Tall<	3 Round 1 wrinkled	=9 Tall-Round =3 Tall-wrinkled
	1 short<	3 Round 1 wrinkled	=3 short-Round =1 short-wrinkled

=16 types of offspring

	Forked-line method (trihybrid cross):							
$F_1 \times F_1$:	TtRrY	y ×	TtRrYy					
F ₂ :	3 Tall<	3 Round <	3 Yellow 1 green	=27Tall-Round-Yellow =9Tall-Round-green				
		1wrinkled <	3 Yellow 1 green	=9Tall-wrinkled-yellow =3Tall-wrinkled-green				
	1 short<	3 Round <	3 Yellow 1 green	=9short-Round-Yellow =3short-Round-green				
	1wrinkled <	3 Yellow	1 green	=3short-wrinkled-Yellow =1short-wrinkled-green				

= 64 types of offspring

Determination of phenotypic and genotypic ratios

Phenotypic ratios		
Monohybrid crosses:	3: 1	= 4 types of offspring
Dihybrid crosses:	3: 1 × 3: 1= 9: 3: 3: 1	= 16 types of offspring
Trihybrid crosses:	3: 1 × 3: 1 × 3: 1 = 27: 9: 9: 3: 9: 3: 3: 1	= 64 types of offspring
Genotypic ratios		
Monohybrid crosses:	1: 2: 1	= 4 types of offspring
Dihybrid crosses:	1: 2: 1×1 : 2: $1 = 1$: 2: 1 : 2: 4: 2: 1 : 2: 1	= 16 types of offspring
Trihybrid crosses:	1: 2: 1×1 : 2: 1×1 : 2: $1=1$: 2: 1: 2: 4: 2: 1:	2: 1: 2: 4: 2: 4: 8: 4: 2: 4:
2: 1: 2: 1: 2: 4: 2: 1: 2	: 1	= 64 types of offspring

Formulae for calculating different parameters in Mendelian crosses

Parameters like number of gamete genotypes, numbers of progeny phenotypes and genotypes and total number of progeny types are calculated by simple formulae shown in the table below:

Pairs of contrasting characters	Number of gamete genotypes	Number of progeny phenotypes	Number of progeny genotypes	Total number of Progeny types
1	2	2	3	4
(TT×tt)		(3: 1)	(1: 2: 1)	(3+1)
2	4	4	9	16
(TTRR×ttrr)		(9: 3: 3: 1)	(1:2:1:2:4:2:1:2:1)	(9+3+3+1)
3	8	8	27	64
(TTRRYY×ttrryy)		(27:9:9:3:9:3:3:1)	(1:2:1:2:4:2:1:2:1:1)	(27+9++1)
n	2n	2n	3n	4n

Ref: G. W. Burns (1980)

Suggested reading:

Ayala & Kiger, 1980. Modern Genetics. Burns, GW. 1980. The Science of Genetics. Gardner et al. 1991. Principles of Genetics (8th edn) Islam, MS. 2018. Selected Lectures on Genetics. LAP Lambert Academic Publishing, Germany. Sinnott et al. 1973. Principles of Genetics (5th edn) Stansfield, WD. 1991. Theory and Problems of Genetics (3rd edn) Strickberger, MW. 1976. Introduction to Genetics. Winchester, AM. 1966. Genetics. ইসলাম, ম.সা., খান, হা.সা. ও রানা, ম.হা.তা. ২০১৭ ৷ জেনেটিক্স: মিল ও অমিলের বিজ্ঞান ৷ অন্যপ্রকাশ, ঢাকা ৷