## B. Sc. (Hons) Part-II Practical Course: Zool. H. 211 Experiment 1 Detection of glucose/sugar in a test sample

### Introduction

- Sugar is a mixture of fructose and glucose.
- Glucose in urine is called *glucosuria*.
- Glucose in urine or blood indicates *Diabetes mellitus* (DM) in patients;
- The presence of glucose in urine or a test sample is easily detected by Benedict's reagent (or Benedict's solution) which is clear blue in colour;
- Polysaccharides such as starches do not react with Benedict's reagent.

#### Stanley Rossiter Benedict (1884-1936):

- > American chemist;
- Best known for discovering Benedict's reagent;
- > a solution that detects reducing sugars like glucose, lactose & fructose;
- > Benedict was born in Cincinnati, and went to the University of Cincinnati, USA;
- In 1909 he published a paper in *J. Biol. Chem*.

#### **Composition of Benedict's reagent**

One litre of Benedict's reagent is prepared as follows:

| NaCO <sub>3</sub> (anhydrous)                                                  | = 100g   |
|--------------------------------------------------------------------------------|----------|
| Sodium citrate (Na <sub>3</sub> C <sub>6</sub> H <sub>5</sub> O <sub>7</sub> ) | = 173g   |
| Copper sulphate (CuSO <sub>4</sub> , 5H <sub>2</sub> O)                        | = 17.3g  |
| Distilled water (DH <sub>2</sub> O)                                            | = 1000mL |
|                                                                                |          |

**Note:** The chemical test by Benedict's reagent is a *semi-quantitative test*\_because the colour of the precipitation only gives an idea about the quantity of sugar (*e.g.* trace, low, moderate and high) present in the sample.

#### **Materials and Methods**

The following apparatus and chemicals are required:

- 1. A test tube
- 2. A test tube holder
- 3. A dropper
- 4. A spirit lamp
- 5. Benedict's reagent
- 6. Test sample(s)

#### **Procedures for Benedict's test**

- Take 5 mL of Benedict's reagent in a test tube;
- Add 8-10 drops of the sample solution to it;
- Boil the mixture over a spirit lamp for 2-3 min;
- Allow to cool down the solution;
- Finally, observe the colour of the solution.



Fig. 1 Procedures for Benedict's test



# 2) BENEDICT'S TEST

**Fig. 2** Blue colour of the Benedict's solution is due to the presence of CuSO<sub>4</sub>; Brick-red colour is due to the presence of CuO

| Amount of glucose<br>mg/dL | Test results                | Colours of the test soln. |
|----------------------------|-----------------------------|---------------------------|
| 0                          | Negative (-)                | Blue                      |
| 30                         | Positive<br>(trace)         | Green<br>(no ppt)         |
| 100                        | Positive<br>(low +)         | Yellow                    |
| 300                        | Positive<br>(moderate ++)   | Orange-red                |
| 1000                       | Positive<br>(high +++)      | Brick-red                 |
| >1000                      | Positive<br>(too high ++++) | Deep brick-red            |

Table 1 Colour of the test tube solution according to the amount of glucose in mg/dL

#### **Results/Observations**



Fig. 3 Colours of the test solution

## Conclusion/Inference

1. The presence or absence of glucose/sugar in the supplied sample is indicated by the colour of the heated solution;

2. If the same blue colour persists after heating, no glucose/sugar is present in the sample;

3. If the colour of the solution changed to green, yellow, orange-red, brick-red or deep brick-red, the presence of glucose/sugar in the sample is confirmed.



Prepared and presented by Prof. Dr. M. Saiful Islam Department of Zoology, RU June 2021