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Terminologies 

Circuit: Circuit is a collection of real components, power sources, and signal sources, all connected so current can 

flow in a complete circle.  

Closed circuit: A circuit is closed if the circle is complete, if all currents have a path back to where they came from.  

Open circuit: A circuit is open if the circle is not complete, if there is a gap or opening in the path.  

Short circuit: A short happens when a path of low resistance is connected (usually by mistake) to a component. 

The resistor shown below is the intended path for current, and the curved wire going around it is the short. Current 

is diverted away from its intended path, sometimes with damaging results. The wire shorts out the resistor by 

providing a low-resistance path for current (probably not what the designer intended).  

 

Make or Break: You make a circuit by closing the current path, such as when you close a switch. Breaking a circuit 

is the opposite. Opening a switch breaks the circuit.  

 

Schematic: A schematic is a drawing of a circuit. A schematic represents circuit elements with symbols and 

connections as lines.  

Elements: The term elements means "components and sources." 

Symbols: Elements are represented in schematics by symbols. Symbols for common 2-terminal elements are sh 

own here, 

 

Lines: Connections between elements are drawn as lines, which we often think of as "wires". On a schematic, these 

lines represent perfect conductors with zero resistance. Every component or source terminal touched by a line is at 

the same voltage.  
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Dots: Connections between lines can be indicated by dots. Dots are an unambiguous indication that lines are 

connected. If the connection is obvious, you don't have to use a dot.  

 

(a) and (b) are both good 

(c) no dot indicates no connection 

(d) also indicates no connection; the horizontal wire "hops" over the vertical 

wire. It is very clear but takes extra effort and space to draw. 

(e) for crossing connected lines, it is acceptable, but risks looking too much like 

(c), so (f) is the better practice. 

Reference designator: When you place a component in a schematic you often give it a unique name, known as a 

reference designator. Examples of reference designators are R1, C6, and VBAT. The 1 in R1 is part of the name, and 

does not indicate the resistance value. Reference designators are by definition unique for each schematic. They let 

you identify components by name even if some of them have the same value. It is okay to use reference designators 

in equations. R1 can be assigned a resistance value, R1=4.7 kΩ and it can be used as a variable in expressions, as in 

R2⋅C6=4.7 kΩ⋅2 μF. 

 

Node: A junction where two or more elements connect is called a node. The schematic below shows a single node 

(the black dot) formed by the junction of five elements (abstractly represented by orange rectangles).  

 

Since lines on a schematic represent perfect zero-resistance conductors, there is no rule that says lines from multiple 

elements are required to meet in a single point junction. We can draw the same node as a distributed node like the 

one in the schematic below. These two representations of the node mean exactly the same thing.  
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A distributed node might be all spread out, with lots of line segments, elbows, and dots. Don't be distracted, it is all 

just one single node. Connecting schematic elements with perfect conductors means the voltage everywhere on a 

distributed node is the same. 

Here is a realistic-looking schematic with the distributed nodes labeled: 

 

Branch: Branches are the connections between nodes. A branch is an element (resistor, capacitor, source, etc.). The 

number of branches in a circuit is equal to the number of elements. 

 

 

Loop: A loop is any closed path going through circuit elements. To draw a loop, select any node as a starting point 

and draw a path through elements and nodes until the path comes back to the node where you started. There is only 

one rule: a loop can visit (pass through) a node only one time. It is ok if loops overlap or contain other loops. Some 

of the loops in our circuit are shown here. (You can find others, too. If I counted right, there are six.) 
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Mesh: A mesh is a loop that has no other loops inside it. You can think of this as one mesh for each "open window" 

of a circuit. 

 

Reference Node: During circuit analysis we usually pick one of the nodes in the circuit to be the 

reference node. Voltages at other nodes are measured relative to the reference node. Any node can be 

the reference, but two common choices that simplify circuit analysis are, 

• the negative terminal of the voltage or current source powering the circuit, or 

• the node connected to the greatest number of branches. 

Ground: The reference node is often referred to as ground. The concept of ground has three important 

meanings. Ground is 

• the reference point from which voltages are measured. 

• the return path for electric current back to its source. 

• a direct physical connection to the Earth, which is important for safety. 



6           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-1 / 2020 

 

 

Impedance: Impedance (symbol Z) is a measure of the overall opposition of a circuit to current, in other words: 

how much the circuit impedes the flow of charge. It is like resistance, but it also takes into account the effects of 

capacitance and inductance. Impedance is measured in ohms (Ω). 

Impedance is more complex than resistance because the effects of capacitance and inductance vary with the 

frequency of the current passing through the circuit and this means impedance varies with frequency. The effect 

of resistance is constant regardless of frequency. 

𝒁 = √𝑹𝟐 + 𝑿𝟐 

𝑿 = 𝑿𝑳 − 𝑿𝑪 

 

 

Previous knowledge 

Kirchhoff’s Law and its Applications 

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as 

voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist 

Gustav Kirchhoff. 

Kirchhoff’s First Law – The Current Law, (KCL) 
Kirchhoff’s Current Law or KCL, states that the “total current or charge entering a junction or node is exactly equal 

to the charge leaving the node as it has no other place to go except to leave, as no charge is lost within the node’’. 

In other words the algebraic sum of ALL the currents entering and leaving a node must be equal to zero, 

I(exiting) + I(entering) = 0. This idea by Kirchhoff is commonly known as the Conservation of Charge. 



7           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-1 / 2020 

 

Here, the three currents entering the node, I1, I2, I3 are all positive in value and the two currents leaving the node, I4 

and I5 are negative in value. Then this means we can also rewrite the equation as; 

I1 + I2 + I3 – I4 – I5 = 0 

The term Node in an electrical circuit generally refers to a connection or junction of two or more current carrying 

paths or elements such as cables and components. Also for current to flow either in or out of a node a closed circuit 

path must exist. We can use Kirchhoff’s current law when analyzing parallel circuits. 

 

Kirchhoff’s Second Law – The Voltage Law, (KVL) 
Kirchhoffs Voltage Law or KVL, states that “in any closed loop network, the directional sum of the voltage drops 

in various components in the loop is equal to the directional sum of the e.m.f.’s of the voltage source in the same 

network”. In other words the algebraic sum of all voltages within the loop must be equal to zero. This idea by 

Kirchhoff is known as the Conservation of Energy. 

 

Starting at any point in the loop continue in the same direction noting the direction of all the voltage drops, either 

positive or negative, and returning back to the same starting point. It is important to maintain the same direction 

either clockwise or anti-clockwise or the final voltage sum will not be equal to zero. We can use Kirchhoff’s voltage 

law when analyzing series circuits. 
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Superposition Theorem 

“In any linear network containing impedances and energy sources, the current flowing in any element is the vector 

sum of the currents that are separately caused to flow in that element by each energy source”. 

𝐼 = 𝐼1 + 𝐼2 

 

 

 

Fig. (a) Two mesh network. (b) Two mesh network when 𝐸1, is removed. (c) Two mesh network when 𝐸1 is 

removed. 

Consider the two voltage sources𝐸1, and 𝐸2 and three impedances 𝑍1, 𝑍2 and 𝑍3 as shown in fig. Let 𝐼1 and 𝐼2 be 

the two mesh currents then the mesh equations can be written as  

𝐸1 = (𝑍1 + 𝑍3)𝐼1 + 𝑍3𝐼2 

𝐸2 = 𝑍3𝐼1 + (𝑍2 + 𝑍3)𝐼2 

From equation (2), we have  

𝐸2 − (𝑍2 + 𝑍3)𝐼2 = 𝑍3𝐼1 

𝐼1 =
𝐸2

𝑍3
−

(𝑍2 + 𝑍3)𝐼2

𝑍3
 

(1) 

(2) 
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Substituting the value of 𝐼1 in equation (1), we have  

𝐸1 = (𝑍1 + 𝑍3) [
𝐸2

𝑍3
−

(𝑍2 + 𝑍3)𝐼2

𝑍3
] + 𝑍3𝐼2 

𝐸1 =
(𝑍1 + 𝑍3)𝐸2

𝑍3
−

(𝑍1 + 𝑍3)(𝑍2 + 𝑍3)𝐼2

𝑍3
+ 𝑍3𝐼2 

𝐸1 =
(𝑍1 + 𝑍3)𝐸2

𝑍3
−

(𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3)𝐼2

𝑍3
 

(𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3)𝐼2

𝑍3
=

(𝑍1 + 𝑍3)𝐸2

𝑍3
− 𝐸1 

So,  

𝐼2 =
(𝑍1 + 𝑍3)𝐸2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸1𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

Substituting the value of 𝐼2 in equation (1), and solving it we get the value of 𝐼1, which is given as  

𝐸1 = (𝑍1 + 𝑍3)𝐼1 + 𝑍3 [
(𝑍1 + 𝑍3)𝐸2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸1𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
] 

𝐸1 = (𝑍1 + 𝑍3)𝐼1 +
(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸1𝑍3
2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

(𝑍1 + 𝑍3)𝐼1 = 𝐸1 +
𝐸1𝑍3

2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

= 𝐸1 {1 +
𝑍3

2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
} −

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

= 𝐸1 {
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3 + 𝑍3

2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
} −

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

= 𝐸1 {
𝑍1(𝑍2 + 𝑍3) + 𝑍3(𝑍2 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
} −

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

= 𝐸1 {
(𝑍2 + 𝑍3)(𝑍1 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
} −

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

So 

(a) 
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(𝑍1 + 𝑍3)𝐼1 = 𝐸1 {
(𝑍2 + 𝑍3)(𝑍1 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
} −

(𝑍1 + 𝑍3)𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

 

𝐼1 =
𝐸1(𝑍2 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

 

Now considering the circuit of fig. (b), we have the mesh equations  

𝐸1 = (𝑍1 + 𝑍3)𝐼1′ + 𝑍3𝐼2′ 

0 = 𝑍3𝐼1′ + (𝑍2 + 𝑍3)𝐼2′ 

Solving equations (3) and (4) we have  

𝐼2′ =
(𝑍1 + 𝑍3)𝐸2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸1𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

𝐼2′ = −
𝐸1𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

And 

𝐼1′ =
𝐸1(𝑍2 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

𝐼1′ =
𝐸1(𝑍2 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

Referring to circuit of fig. (c), the mesh equations are  

0 = (𝑍1 + 𝑍3)𝐼1" + 𝑍3𝐼2" 

𝐸2 = 𝑍3𝐼1" + (𝑍2 + 𝑍3)𝐼2" 

Solving these equations, we have  

𝐼2" =
(𝑍1 + 𝑍3)𝐸2

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸1𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

𝐼1" =
𝐸1(𝑍2 + 𝑍3)

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
−

𝐸2𝑍3

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
 

 

From equations (a), (b), (c), (d), (e) and (f), we have  

𝐼1 = 𝐼1′ + 𝐼1” 

And 

𝐼2 = 𝐼2′ + 𝐼2" 

(b) 

(3) 

(4) 

(c) 

(d) 

(e) 

(f) 

(5) 

(6) 
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This proves the theorem.  

 

General Case: In any linear network containing linear impedances and several sources, the voltage across or the 

current through any impedance may be calculated by adding algebraically all the individual voltages or currents 

caused by each source acting alone with all other voltage sources replaced by short circuits and all other current 

sources replaced by open circuits. By the term, 'linear network' we mean that current in all branches is directly 

proportional to the driving voltage or e.m.f. impressed.  

Advantages:  

(1) This theorem permits the solution of networks without setting up a large number of simultaneous equations 

because at a time one generator is used.  

(2) If the new generators are introduced into the system, it is not necessary to solve the network from beginning 

provided the internal impedances of the generators are zero.  

(3) If voltages of different frequencies are introduced, this theorem permits a solution to be obtained for each 

individual frequency. As these solutions are independent of each other, the currents of each frequency flow as if the 

other frequencies were absent. 

 

Problem 1: Use the superposition r theorem to find the current 𝑖𝑥, in branch cd in the following circuit.  

Solution: According to the superposition theorem first we shall calculate 

the current due to voltage source 10V by short circuiting the 5V source. 

Then branches cd and ce will be parallel to each other and in series with 

ac branch; so total resistance is given as  

𝑅𝑇1
=

1 × 3

1 + 3
+ 2 =

3

4
+ 2 =

11

4
 𝛺 

 So, the current generated by 10V, source is  

𝐼1 =
10

11
4

=
40

11
 𝑎𝑚𝑝 

Hence  

𝐼𝑥1
=

40

11
×

3

1 + 3
=

40

11
×

3

4
=

30

11
 𝑎𝑚𝑝 

Nose we shall calculate the current due to 5V source by short circuiting 10V source. We see that branches cd and 

ac are parallel with each other and are in series with ce branch.  

So, 

𝑅𝑇2
=

1 × 2

1 + 2
+ 3 =

2

3
+ 3 =

11

3
 𝛺 

So the current generated by 5V source is  
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𝐼2 =
5

11
3

=
15

11
 𝑎𝑚𝑝 

Hence,  

𝐼𝑥2
=

15

11
×

2

1 + 2
=

15

11
×

2

3
=

10

11
 𝑎𝑚𝑝 

So, total branch current  

𝑖𝑥 = 𝐼𝑥1
+ 𝐼𝑥2

=
30

11
+

10

11
=

40

11
 = 𝟑. 𝟔𝟒 𝒂𝒎𝒑 

 

 

Problem 2: Use the superposition theorem to find the current 𝑖𝑥 in branch ce in the circuit shown in fig.  

Solution: The same procedure will be adopted here for calculating 𝑖𝑥 as 

we have applied in first problem with a with a difference that here we 

open circuit the current sources.  

First open circuit 10 amp. source, then branches ce and ef will be in series 

with each other and in parallel with branch cd. So current 5 amp. will be 

divided at node c in cd and at e in ef branches. Applying the current 

division law at c, we have  

𝑖𝑐𝑒 = −𝑖𝑥1
=

5 × 2

2 + 1 + 3
=

10

6
 𝑎𝑚𝑝 

𝑖𝑥1
= −

10

6
 𝑎𝑚𝑝 

Now open circuit 5 amp. source and calculate current 𝑖𝑥2
 due to 10 amp. source. We apply the  

current division law at e, we have  

𝑖𝑥2
=

10 × 3

2 + 1 + 3
=

30

6
 𝑎𝑚𝑝 

So, total branch current  

𝑖𝑥 = 𝑖𝑥1
+ 𝑖𝑥2

= −
10

6
+

30

6
=

20

6
= 𝟑. 𝟑𝟑 𝒂𝒎𝒑 

 

Problem 3: Apply superposition theorem for finding current through 2Ω resistance of the 

circuit shown in fig.  
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Solution: Considering only 10V source, the equivalent circuit is shown in fig. (a). Here lower 5Ω resistances are in 

parallel. The equivalent resistance is 
5

2
Ω. This 

5

2
Ω resistance is in series 

with 8Ω resistance. So, the equivalent resistance is 
21

2
Ω. Further 2Ω 

resistance and 
21

2
Ω resistance are in parallel. Hence the resistance of the 

portion of this circuit is given by  

1

𝑅′
=

1

2
+

2

21
=

21 + 4

42
=

25

42
 

𝑅′ =
42

25
𝛺 

𝑅′ is in series of 5Ω resistance and hence the total resistance of the circuit is given by  

5 +
42

25
=

167

25
 Ω 

Current  

𝐼1′ =
10

167
25

=
250

167
= 1.49 𝑎𝑚𝑝 

And branch current due to 10V source  

𝐼1 = 1.49 ×
(

21
2 )

(
21
2 + 2)

= 1.25 𝑎𝑚𝑝 

Similarly, for 20V source alone, the circuit is shown in fig. (b). The equivalent resistance of the circuit is given by  

5

2
+

5 × 2

5 + 2
+ 8 

= 8 +
10

7
+

5

2
= 11.93 Ω 

Let 𝐼2′, be the current flowing through this equivalent resistance. Then, 

𝐼2′ =
20

11.93
= 1.68 𝑎𝑚𝑝 

Further current through 2Ω resistor due to 20V source  

𝐼2 = 1.68 ×
5

5 + 2
= 1.20 𝑎𝑚𝑝 

So, total branch current  

𝐼 = 𝐼1 + 𝐼2 = 1.25 + 1.20 = 𝟐. 𝟒𝟓 𝒂𝒎𝒑 

 

 

Fig. (a) 

Fig. (b) 
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Internal Impedance of a Source:  

All electrical energy sources have some internal impedance (or resistance). It is due to 

this internal impedance that the source does not behave ideally. When a voltage source 

supplies power to a load, its terminal voltage (voltage available at its terminals) drops. 

A cell used in a torch has a voltage of 1.5 V across its two electrodes when nothing is 

connected to it. However, when connected to a bulb, its voltage becomes less than 1.5 

V. Such a reduction in the terminal voltage of the cell may be explained as follows. 

Figure 1(a) shows a cell of 1.5 V connected to a bulb. When we say "cell of 1.5 V", 

we mean a cell whose open-circuit voltage is 1.5 V. In the equivalent circuit of Fig. 

1(b), the bulb is replaced by a load resistor RL, (of, say, 0.9 𝛺 ), and the cell is replaced 

by a constant voltage source of 1.5 V in series with the internal resistance Rs (of, say, 

0.1 𝛺. The total resistance in the circuit is now 0.1 + 0.9 = 1.0 𝛺. Since the net voltage 

that sends current into the circuit is 1.5 V, the current in the circuit is  

𝐼 =
𝑉

𝑅
=

1.5

1.0
= 1.5 𝐴 

The terminal voltage (the voltage across the terminals AB) of the cell is same as the 

voltage across the load resistor RL. Therefore,  

𝑉𝐴𝐵 = 𝐼 × 𝑅𝐿 = 1.5 × 0.9 = 1.35 𝑉 

The voltage that drops because of the internal resistance is 

= 1.5 − 1.35 = 0.15 𝑉 

Note this, if the internal resistance of the cell were smaller (compared to the load resistance), voltage drop would 

also have been smaller than 0.15 V. The internal resistance (or impedance in case case of ac source) of a source 

may be due to one or more of the following reasons:  

(i) The resistance of the electrolyte between the electrodes, in case of a cell.  

(ii) The resistance of the armature winding in case of an alternator or a dc generator.  

(iii) The output impedance of the active device like a transistor or vacuum tube in case of an oscillator (or signal 

generator), and rectification-type dc supply.  

 

 

Concept of Voltage Source 

Consider an ac source. Let VS be its open-circuit voltage (i.e., the voltage which exists across its terminals when 

nothing is connected to it), and ZS be its internal impedance. Let it be connected to a load impedance ZL, whose 

value can be varied, as shown in Fig. 1.  

Now, suppose ZL, is infinite. It means that the terminals AB of the source are open-circuited. Under this condition, 

no current can flow. The terminal voltage VT is obviously the same as the emf Vs, since there is no voltage drop 

across ZS. Let us now connect a finite variable load impedance ZL, and then go on reducing its value. As we do this, 

Fig: 1(a) 

Fig: 1(b) 
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the current in the circuit goes on increasing. The voltage drop across ZS also goes on increasing. As a result, the 

terminal voltage VT goes on decreasing.  

 

Fig. 1: A variable load connected to an ac source 

For a given value of ZL, the current in the circuit is given as  

𝐼 =
𝑉𝑆

𝑍𝑆 + 𝑍𝐿
 

Therefore, the terminal voltage of the source, which is the same as the voltage across the load, is  

𝑉𝑇 = 𝐼 × 𝑍𝐿 =
𝑉𝑆

𝑍𝑆 + 𝑍𝐿
× 𝑍𝐿 =

𝑉𝑆

1 +
𝑍𝑆
𝑍𝐿

 

 

From the above equation, we find that if the ratio 
𝑍𝑆

𝑍𝐿
 is small compared to unity, the terminal voltage 𝑉𝑇 remains 

almost the same as the voltage VS. Under this condition, the source behaves as a good voltage source. Even if the 

load impedance changes, the terminal voltage of the source remains practically constant (provided the ratio 
𝑍𝑆

𝑍𝐿
 is 

quite small). Such a source can then be said to be a "good (hut not ideal) voltage source". 

 

 

Ideal Voltage Source 

It would have been ideal, if the terminal voltage of a source remains fixed whatever be the load connected to it. In 

other words, a voltage source should ideally provide a fixed terminal voltage even though the current drain (or load 

resistance) may vary. In Eq. 1, to make the terminal voltage fixed for any value of ZL, the only way is to make the 

internal impedance ZS zero. Thus, we infer that an ideal voltage source must have zero internal impedance. The 

symbolic representation of dc and ac ideal voltage sources are given in Fig. 1. And Figure 2 gives the characteristics 

of an ideal voltage source. The terminal voltage VT is seen to be constant at VS for all values of load current (load 

current varies as the load impedance is changed).  

 

 

(1) 
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Fig. 1: Symbolic representation of an ideal voltage source: (a) DC voltage source (b) AC voltage source 

 

Fig. 2: V-I characteristics of an ideal voltage source. 

 

 

Practical Voltage Source  

An ideal voltage source is not practically possible. There is no source which can attain it terminal voltage constant 

when its terminals are short-circuited. If it could do so, it would mean that it can supply an infinite amount of power 

to a short-circuit. This is not possible. Hence, an ideal voltage source does not exist in practice. However, the 

concept of an ideal voltage source is very helpful in understanding the circuits containing a practical voltage source.  

A practical voltage source can be considered to consist of an ideal voltage source in series with an impedance. This 

impedance is called the internal impedance of the source. The symbolic representation of practical voltage sources 

are shown in Fig. 1.  
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Fig. 1: Practical voltage source: (a) DC voltage source (b) AC voltage source 

It is not possible to reach any other terminal except A and B. These are the terminals available for making external 

connections. In the dc source, since the upper terminal of the ideal voltage source is marked positive, the terminal 

A will be positive with respect to terminal B. In the ac source in Fig.1(b), the upper terminal of the ideal voltage 

source is marked as positive and lower as negative. The marking of positive and negative on an ac source does not 

mean the same thing as the markings on a dc source. Here (in ac), it means that the upper terminal (terminal A) of 

the ideal voltage source is positive with respect to the lower terminal at that particular instant. In the next half-cycle 

of ac, the lower terminal will be positive and the upper negative. Thus, the positive and negative markings on an ac 

source indicate the polarities at a given instant of time. In some books you will find the reference polarities marked 

by, instead of positive and negative signs, an arrow pointing towards the positive terminal.  

The question naturally arises: What should be the characteristics of a source so that it may be considered a good 

enough constant voltage source? An ideal voltage source, of course, must have zero internal impedance. In practice, 

no source can be an ideal one. Therefore, it is necessary to determine how much the value of the internal impedance 

ZS should be, so that it can be called a good practical voltage source.  

Let us consider an example. A dc source has an open-circuit voltage of 2 V, and internal resistance of only 1 Ω. It 

is connected to a load resistance RL as shown in Fig. 2(a). The load resistance can assume any value ranging from 

1 Ω to 10 Ω. Let us now find the variation in the terminal voltage of the source. When the load resistance RL is 1 Ω 

the total resistance in the circuit is 1 Ω + 1 Ω = 2 Ω. The current in the circuit is  

𝐼𝑇 =
𝑉𝑆

𝑅𝑆 + 𝑅𝐿1

=
2

1 + 1
= 1 𝐴 

 

 

Fig. 2: Voltage sources connected to variable loads 
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The terminal voltage is then  

𝑉𝑇1
= 𝐼1 × 𝑅𝐿1

=
𝑉𝑆

𝑅𝑆 + 𝑅𝐿1

× 𝑅𝐿1
 

=
2

1 + 1
× 1 = 1.0 𝑉 

When the load resistance becomes 10 Ω, the total resistance in the circuit becomes 10 Ω + 1 Ω =11 Ω. We can again 

find the terminal voltage as  

𝑉𝑇2
= 𝐼2 × 𝑅𝐿2

=
𝑉𝑆

𝑅𝑆 + 𝑅𝐿2

× 𝑅𝐿2
 

=
2

1 + 10
× 10 = 1.818 𝑉 

Thus, we find that the maximum voltage available across the terminals of the source is 1.818 V. When the load 

resistance varies between its extreme limits—from 1 Ω to 10 Ω, the terminal voltage varies from 1 V to 1.818 V. 

This is certainly a large variation. The variation in the terminal voltage is more than 40 % of the maximum voltage.  

Let us consider another example. A 600 Ω, 2 V ac source is connected to a variable load, as shown in Fig. 2(b). The 

load impedance ZL can vary from 50 KΩ to 500 KΩ, again a variation having the same ratio of 1 : 10, as in the case 

of the first example. We can find the variation in the terminal voltage of the source. When the load impedance is 50 

KΩ, the terminal voltage is  

   

𝑉𝑇1
= 𝐼1 × 𝑍𝐿1

=
𝑉𝑆

𝑍𝑆 + 𝑍𝐿1

× 𝑍𝐿1
 

=
2

600 + 50000
× 50000 = 1.976 𝑉 

When the load impedance is 500 KΩ the terminal voltage is  

𝑉𝑇2
= 𝐼2 × 𝑍𝐿2

=
𝑉𝑆

𝑍𝑆 + 𝑍𝐿2

× 𝑍𝐿2
 

=
2

600 + 500000
× 500000 = 1.997 𝑉 

With respect to the maximum value, the percentage variation in terminal voltage  

=
1.997 − 1.976

1.997
× 100 = 1.05 % 

We can now compare the two examples. In the first case, although the internal resistance of the dc source is only 

1Ω, yet it is not justified to call it a constant voltage source. Its terminal voltage varies by more than 40 %. In the 

second case, although the internal impedance of the ac source is 600 Ω, it may still be called a practical constant 

voltage source, since the variation in its terminal voltage is quite small (only 1.05 %). Thus, we conclude that it is 

not the absolute value of the internal impedance that decides whether a source is a good constant voltage source or 

not. It is the value of the internal impedance relative to the load impedance that is important. The lesser the ratio 
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ZS/ZL (in the first example, this ratio varies from 1 to 0.1, whereas in the second example it varies from 0.012 to 

0.0012), the better is the source as a constant voltage source.  

No practical voltage source can be an ideal voltage source. Thus, no practical voltage source can have the V-I 

characteristic as shown in Fig. before. When the load current increases, the terminal voltage of a practical voltage 

source decreases. The characteristic is then modified to that shown in Fig. 3(a). It is sometimes preferred to take 

voltage on the x-axis and current on the y-axis. The V-I characteristic of a practical voltage source then looks like 

the one shown in Fig. 3(b).  

 

Fig. 3: Two ways of drawing VI characteristics of a practical voltage source 

 

 

Concept of Current Source  

Like a constant voltage source, there may be a constant current source – a source that supplies a constant current to 

a load even its impedance varies. Ideally, the current supplied by it should remain constant, no matter what the load 

impedance is.  

A symbolic representation of such an ideal current source is shown in Fig. 1(a). The arrow inside the circle indicates 

the direction in which current will flow in the circuit when a load is connected to the source. Fig. 1(b) shows the V-

I characteristic of an ideal current source. Let us connect a variable load impedance ZL to a constant current source 

as shown in Fig. 1(c). As stated above, the current supplied by the source should remain constant at is for all values 

of load impedance. 
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Fig.1: (a) Symbol for an ideal current source (b) V-I characteristic of an ideal current source (c) A variable load 

connected to an ideal current source (d) Symbol for a practical current source 

 

It means even if ZL is made infinity, the current through this should remain IS (same). Now, we must see if any 

practical current source could satisfy this condition. The load impedance ZL =  ∞ means no conducting path, 

external to the source, exists between the terminals A and B. Hence, it is a physical impossibility for current to flow 

between terminals A and B. If the source could maintain a current Is through an infinitely large load impedance, 

there would have been an infinitely large voltage drop across the load. It would then have consumed infinite power 

from the source. Of course, no practical source could ever supply infinite power.  

The maximum voltage that the current source can deliver to the load is called compliance voltage. During the 

variation in the load the current source work like ideal source, provides the unlimited resistance but, when the 

voltage value at the output reaches to compliance voltage, then it starts to behave like a real source and provides 

the limited value of resistance. 

A practical current source supplies current IS to a short-circuit (i.e. when ZL= 0). That is why the current IS is called 

short-circuit current. But, when we increase the load impedance, the current falls below IS. When the load impedance 

ZL is made infinite (i.e., the terminals A and B are open-circuited), the load current reduces to zero. It means there 

should be some path (inside the source itself) through which the current IS can flow. When some finite load 

impedance is connected, only a part of this current IS flows through the load. The remaining current goes through 

the path inside the source. This inside path has an impedance ZS, and is called the internal impedance. The symbolic 

representation of such a practical current source is shown in Fig. 1(d).  

Now, if terminals AB are open-circuited (ZL = ∞) in Fig. 1(d), the terminal voltage does not have to be infinite. It 

is now a finite value, VT = IS ZS. It means that the source does not have to supply infinite power! 
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Practical Current Source  

An ideal current source is merely an idea. In practice, an ideal current source cannot exist. Obviously, there cannot 

be a source that can supply constant current even if its terminals are open-circuited. The reason why an actual source 

does not work as an ideal current source is that its internal impedance is not infinite. A practical current source is 

represented by the symbol shown in Fig. 1(d) in previous section. The source impedance ZS is put in parallel with 

the ideal current source IS. Now, if we connect a load across the terminals A and B, the load current will be different 

from the current IS. The current IS now divides itself between two branches—one made of the source impedance ZS 

inside the source itself, and the other made of the load impedance ZL external to the source. 

Let us find the conditions under which a source can work as a good (practical) current source. in Fig. 1(a), a load 

impedance ZL is connected to a current source. Let IS be the short-circuit current of the source, and ZS be its internal 

impedance. The current IS is seen to be divided into two parts—I1 through ZS and IL through ZL. That is,  

𝐼𝑆 = 𝐼1 + 𝐼𝐿 

𝐼1 = 𝐼𝑆 − 𝐼𝐿 

Since the impedance ZS and ZL are in parallel, the voltage drop across each should be equal, i.e.,  

𝐼1𝑍𝑆 = 𝐼𝐿𝑍𝐿 

(𝐼𝑆 − 𝐼𝐿)𝑍𝑆 = 𝐼𝐿𝑍𝐿 

𝐼𝐿 =
𝐼𝑆𝑍𝑆

𝑍𝑆 + 𝑍𝐿
 

𝐼𝐿 =
𝐼𝑆

1 +
𝑍𝐿
𝑍𝑆

 

 

Fig. 1: (a) Practical current source feeding current to a load impedance (b) V-I characteristic of a practical current 

source 

This equation tells us that the load current IL will remain almost the same as the current IS, provided the ratio ZL/ZS 

is small compared to unity. The source then behaves as a good current source. In other words, the larger the value 

of internal impedance ZS (compared to the load impedance ZL), the smaller is the ratio ZL/ZS, and the better it works 

as a constant current source.  

From Eq.1, we see that the current IL = IS, when ZL = 0. But, as the value of load impedance is increased, the current 

IL is reduced. For a given increase in load impedance ZL, the corresponding reduction in load current IL is much 

(1) 
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smaller. Thus, with the increase in load impedance, the terminal voltage (V = ILZL) also increases. The V-I 

characteristic of a practical current source is shown in Fig. 1(b).  

 

𝑉𝑇 =
𝑉𝑆

1 +
𝑍𝑆
𝑍𝐿

 

 

𝐼𝐿 =
𝐼𝑆

1 +
𝑍𝐿
𝑍𝑆

 

If, 

𝑍𝑆 = 50Ω 

𝑍𝐿1
= 1Ω     in this case, the source acts more likely as a voltage source 

𝑍𝐿2
= 1000Ω     in this case, the source acts more likely as a current source 

 

Equivalence Between Voltage Source and Current Source  

Practically, a voltage source is not different from a current source. In fact, a source can either work as a current 

source or as a voltage source. It merely depends upon its working conditions. If the value of the load impedance is 

very large compared to the internal impedance of the source, it proves advantageous to treat the source as a voltage 

source. On the other hand, if the value of the load impedance is very small compared to the internal impedance, it 

is better to represent the source as a current source. From the circuit point of view, it does not matter at all whether 

the source is treated as a current source or a voltage source. In fact, it is possible to convert a voltage source into a 

current source and vice-versa.  
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Conversion of Voltage Source into Current Source and vice versa 

Consider an ac source connected to a load impedance ZL. The 

source can either be treated as a voltage source or a current 

source, as shown in Fig.1. The voltage-source representation 

consists of an ideal voltage source VS in series with a source 

impedance 𝑍𝑆1
. And the current-source representation consists 

of an ideal current source IS in parallel with source impedance 

𝑍𝑆2
. These are the two representations of the same source. Both 

types of representations must appear the same to the externally 

connected load impedance ZL. They, must give the same results.  

In Fig.1(b), if the load impedance ZL is reduced to zero (i.e., the 

terminals A and B are short-circuited), the current through this 

short is given as  

𝐼𝐿(𝑠ℎ𝑜𝑟𝑡 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) =
𝑉𝑆

𝑍𝑆1

 

We want both the representations (voltage-source and current-

source) to give the same results. This means that current source 

in Fig.1(c) must also give the same current (as given by Eq.1) 

when terminals A and B are shorted. But the current obtained 

by shorting the terminals A and B of Fig.1(c) is simply the 

source current IS (the source impedance 𝑍𝑆2
 connected in 

parallel with a short-circuit is as good as not being present). Therefore, we conclude that the current IS of the 

equivalent current source must be the same as that given by Eq.1. Thus  

𝐼𝐿(𝑠ℎ𝑜𝑟𝑡 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) = 𝐼𝑆 =
𝑉𝑆

𝑍𝑆1

 

Again, the two representations of the source must give the same terminal voltage when the load impedance ZL is 

disconnected from the source (i.e., when the terminals A and B are open-circuited. In Fig.1(b), the open-circuit 

terminal voltage is simply VS. There is no voltage drop across the internal impedance 𝑍𝑆1
. Let us find out the open-

circuit voltage in the current-source representation of Fig. 1(c). When the terminals A and B are open-circuited, the 

whole of the current is flows through the impedance 𝑍𝑆2
. The terminal voltage is then the voltage drop across this 

impedance. That is  

𝑉𝑇  (𝑜𝑝𝑒𝑛 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) = 𝐼𝑆𝑍𝑆2
 

Therefore, if the two representations of the source are to be equivalent, we must have  

𝑉𝑇 = 𝑉𝑆 

Using Eqs. 2 and 3, we get  

𝐼𝑆𝑍𝑆1
= 𝐼𝑆𝑍𝑆2

 

                  𝑍𝑆1
= 𝑍𝑆2

= 𝑍𝑆       (𝑠𝑎𝑦) 

Then both Eqs. 2 and 3 reduce to  

Fig.1: A source connected to a load 

(1) 

(2) 

(3) 

(4) 
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𝑉𝑆 = 𝐼𝑆𝑍𝑆 

It may be noted (see Eq. 3) that in both the representations of the source, the source impedance as faced by the load 

impedance at the terminals AB, is the same (impedance ZS). Thus, we have established the equivalence between 

the voltage-source representation and current-source representation of Fig.1, for short-circuits and for open-circuits. 

But we are not sure that the equivalence is valid for any other value of load impedance. To test this, let us check 

whether a given impedance ZL, draws the same amount of current when connected either to the voltage-source 

representation or to the current-source representation.  

In Fig. 1(b), the current through the load impedance is  

𝐼𝐿1
=

𝑉𝑆

𝑍𝑆 + 𝑍𝐿
 

In Fig. 1(c), the current IS divides into two branches. Since the current divides itself into two branches in inverse 

proportion of the impedances, the current through the load impedance ZL is  

𝐼𝐿2
= 𝐼𝑆 ×

𝑍𝑆

𝑍𝑆 + 𝑍𝐿
=

𝐼𝑆𝑍𝑆

𝑍𝑆 + 𝑍𝐿
 

By making use of Eq. 4, the above equation can be written as  

𝐼𝐿2
=

𝑉𝑆

𝑍𝑆 + 𝑍𝐿
 

We now see that the two currents 𝐼𝐿1
 and 𝐼𝐿2

 as given by Eqs. 5 and 6 are exactly the same. Thus, the equivalence 

between the voltage-source and current-source representations of Fig.1 is completely established. We may convert 

a given voltage source into its equivalent current source by using Eq.4. Similarly, any current source may be 

converted into its equivalent voltage source by using the same equation.  

 

Example 1: Figure shows a dc voltage source having an open circuit voltage of 2 V and an 

internal impedance of 1Ω. Obtain its equivalent current-source representation.  

 

 

 

Solution:  

If we short-circuit the terminals A and B of the voltage source, the current supplied by the source is  

𝐼(𝑠ℎ𝑜𝑟𝑡 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) =
𝑉𝑆

𝑅𝑆
 

=
2

1
= 2 𝐴 

(5) 

(6) 
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In the equivalent current-source representation, the current source is of 2 A. The source 

impedance of 1Ω is connected in parallel with this current source. The equivalent 

current source obtained is shown in Fig. next.   

 

 

 

 

Example 2: Obtain an equivalent voltage source of the ac current source shown in Fig.  

 

Solution: The open-circuit voltage across terminals A and B is given as  

𝑉𝑆(𝑜𝑝𝑒𝑛 − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) = 𝐼𝑆𝑍𝑆 

= 0.2 × 100 = 20 𝑉 

This will be the value of the "ideal voltage source" in the equivalent voltage- source representation. The source 

impedance ZS is put in series with the ideal voltage source. Thus, the equivalent voltage-source representation of 

the given current source is as  

 

 

 

 

 

Examples of practical current and voltage source 
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Reduction of Complicated Networks-Equivalent Star and Delta Circuits and their 

Conversions 

Delta Star Conversion Theorem:   

The three elements of a network may he arranged either as 𝑇 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 or a 𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 as shown in fig. (1a) and 

(1b) respectively. Further, the T-section may be redrawn as a 𝑠𝑡𝑎𝑟 or 𝑌 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (fig. 1c) and 𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 as a 

mesh or delta ∆ − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (fig. 1d).  

According to delta star conversion theorems, a 𝑇 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 or 

𝑠𝑡𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 can be interchanged to a 𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 or ∆ − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

and vice versa at any frequency, provided that, certain relations are 

maintained between the elements of two sections.  

Conversion from 𝝅 − 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 to 𝑻 − 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 
Equating the impedances looking between terminals A and C, (Fig.1 

c and d), we have  

𝑍𝐴𝐶 = 𝑍1 + 𝑍2 

1

𝑍𝐴𝐶
=

1

𝑍𝑎
+

1

𝑍𝑏 + 𝑍𝑐
 

=
(𝑍𝑏 + 𝑍𝑐) + 𝑍𝑎

𝑍𝑎(𝑍𝑏 + 𝑍𝑐)
 

𝑍𝐴𝐶 =
𝑍𝑎(𝑍𝑏 + 𝑍𝑐)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
 

So, we can write from above equations  

𝑍1 + 𝑍2 =
𝑍𝑎(𝑍𝑏 + 𝑍𝑐)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
=

𝑍𝑎(𝑍𝑏 + 𝑍𝑐)

𝑍
 

Now equating the impedances looking between terminals C and F, (Fig.1 c and d), we have  

𝑍𝐶𝐹 = 𝑍2 + 𝑍3 

1

𝑍𝐶𝐹
=

1

𝑍𝑐
+

1

𝑍𝑎 + 𝑍𝑏
 

𝑍𝐶𝐹 =
𝑍𝑐(𝑍𝑎 + 𝑍𝑏)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
=

𝑍𝑐(𝑍𝑎 + 𝑍𝑏)

𝑍
 

So, we can write from above equations  

𝑍2 + 𝑍3 =
𝑍𝑐(𝑍𝑎 + 𝑍𝑏)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
=

𝑍𝑐(𝑍𝑎 + 𝑍𝑏)

𝑍
 

Fig. 1 

𝑍𝑎 

𝑍𝑏 𝑍𝑐 

𝑍𝑐 

𝑍𝑎 

𝑍𝑏 

(Fig.1c) 

(Fig.1d) 

(1) 

(2) 

(Fig.1d) 

(Fig.1c) 
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Similarly, equating the impedances looking between terminals A and F, (Fig.1 c and d), we get  

𝑍𝐴𝐹 = 𝑍1 + 𝑍3 

1

𝑍𝐴𝐹
=

1

𝑍𝑏
+

1

𝑍𝑎 + 𝑍𝑐
 

𝑍𝐴𝐹 =
𝑍𝑏(𝑍𝑎 + 𝑍𝑐)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
 

So, we can write from above equations  

𝑍1 + 𝑍3 =
𝑍𝑏(𝑍𝑎 + 𝑍𝑐)

𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐
=

𝑍𝑏(𝑍𝑎 + 𝑍𝑐)

𝑍
 

 

where 𝑍 = 𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐 .  

Adding eqs. (1) and (3) and then subtracting eq. (2), we have  

(𝑍1 + 𝑍2) + (𝑍1 + 𝑍3) − (𝑍2 + 𝑍3) =
𝑍𝑎𝑍𝑏 + 𝑍𝑎𝑍𝑐

𝑍
+

𝑍𝑏𝑍𝑎 + 𝑍𝑏𝑍𝑐

𝑍
−

𝑍𝑐𝑍𝑎 + 𝑍𝑐𝑍𝑏

𝑍
 

2𝑍1 =
2𝑍𝑎𝑍𝑏

𝑍
 

𝑍1 =
𝑍𝑎𝑍𝑏

𝑍
 

Similarly, adding eqs. (1) and (2) and subtracting (3), we get  

(𝑍1 + 𝑍2) + (𝑍2 + 𝑍3) − (𝑍1 + 𝑍3) =
𝑍𝑎𝑍𝑏 + 𝑍𝑎𝑍𝑐

𝑍
+

𝑍𝑐𝑍𝑎 + 𝑍𝑐𝑍𝑏

𝑍
−

𝑍𝑏𝑍𝑎 + 𝑍𝑏𝑍𝑐

𝑍
 

2𝑍2 =
2𝑍𝑎𝑍𝑐

𝑍
 

𝑍2 =
𝑍𝑎𝑍𝑐

𝑍
 

 

Finally, adding eqs. (2) and (3) and subtracting (1), we get  

(𝑍2 + 𝑍3) + (𝑍1 + 𝑍3) − (𝑍1 + 𝑍2) =
𝑍𝑐𝑍𝑎 + 𝑍𝑐𝑍𝑏

𝑍
+

𝑍𝑏𝑍𝑎 + 𝑍𝑏𝑍𝑐

𝑍
−

𝑍𝑎𝑍𝑏 + 𝑍𝑎𝑍𝑐

𝑍
 

2𝑍3 =
2𝑍𝑏𝑍𝑐

𝑍
 

𝑍3 =
𝑍𝑏𝑍𝑐

𝑍
 

 

(3) 

𝑍1 + 𝑍2 =
𝑍𝑎(𝑍𝑏 + 𝑍𝑐)

𝑍
 

𝑍2 + 𝑍3 =
𝑍𝑐(𝑍𝑎 + 𝑍𝑏)

𝑍
 

𝑍1 + 𝑍3 =
𝑍𝑏(𝑍𝑎 + 𝑍𝑐)

𝑍
 

 

(a) 

(b) 

(c) 
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Therefore, if impedances of 𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 are known, then impedances of 𝑇 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 may be calculated using eqs. 

(a), (b) and (c). (2)  

 

 

 

 

 

 

 

Conversion from 𝑻 − 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 to 𝝅 − 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 

Let 𝑍1𝑍2 + 𝑍2𝑍3 + 𝑍3𝑍1 = ∑ 𝑍1𝑍2 

Putting the values of 𝑍1, 𝑍2 and 𝑍3 from eqs. (a), (b) and (c), we get  

𝑍𝑎𝑍𝑏

𝑍

𝑍𝑎𝑍𝑐

𝑍
+

𝑍𝑎𝑍𝑐

𝑍

𝑍𝑏𝑍𝑐

𝑍
+

𝑍𝑏𝑍𝑐

𝑍

𝑍𝑎𝑍𝑏

𝑍
= ∑ 𝑍1𝑍2 

𝑍𝑎
2𝑍𝑏𝑍𝑐

𝑍2
+

𝑍𝑐
2𝑍𝑎𝑍𝑏

𝑍2
+

𝑍𝑏
2𝑍𝑎𝑍𝑐

𝑍2
= ∑ 𝑍1𝑍2 

𝑍𝑎𝑍𝑏𝑍𝑐(𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐)

𝑍2
= ∑ 𝑍1𝑍2 

𝑍𝑎𝑍𝑏𝑍𝑐

𝑍
= ∑ 𝑍1𝑍2 

𝑍1𝑍𝑐 = ∑ 𝑍1𝑍2 

𝑍𝑐 =
∑ 𝑍1𝑍2

𝑍1
 

Similarly,  

𝑍𝑏 =
∑ 𝑍1𝑍2

𝑍2
 

and  

𝑍𝑎 =
∑ 𝑍1𝑍2

𝑍3
 

Therefore, if the impedances of 𝑇 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 are known, then impedances of a 𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 may be calculated using 

eqs. (d), (e) and (f).  

 
https ://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-resistor-circuits /a/ee-delta-wye-resistor-networks 

[∵  𝑍 = 𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐] 

[∵  𝑍1 =
𝑍𝑎𝑍𝑏

𝑍
] 

(d) 

(e) 

(f) 
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Problem1: 1:  Assume we have a Δ circuit with 3 Ω resistors. Derive the Y-equivalent by using the Δ→Y equations. 

Solution:  

  

Example 2: Find the equivalent resistance between the top and bottom terminals. 

 

 

Solution: First, let's redraw the schematic to emphasize we have two Δ connections stacked one on the other. 

𝑅𝑎 

𝑅𝑏 𝑅𝑐 
𝑅1 

𝑅2 𝑅3 
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Now select one of the Δ to convert to a Y. We will perform a Δ→Y transformation and see if it breaks the 

logjam, opening up other opportunities for simplification.  

We go to work on the bottom Δ (an arbitrary choice). Very carefully label the resistors and nodes. To get 

the right answers from the transformation equations, it is critical to keep the resistor names and node 

names straight. Rc must connect between nodes x and y, and so on for the other resistors. Refer to Diagram 

1 above for the labeling convention. 
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Perform the transform yourself before looking at the answer. Check that you select the right set of equations. 

Compute three new resistor values to convert the Δ to a Y, and draw the complete circuit. 
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We proceed through the remaining simplification steps just as we did before in the article on Resistor 

Network Simplification. 

 

 

 

Thevenin’s Theorem 

Any two-terminal linear network containing linear impedances and generators can be replaced with an equivalent 

circuit consisting of a voltage source E' in series with an impedance Z'. The value of E' is the open circuit voltage 

between the terminals of the network, and Z' is the impedance measured between the terminals with all other 

generators being removed, (but not their internal impedances).  

Consider a two terminal network, containing one active mesh and other passive mesh. Let us also assume that load 

impedance ZR is appearing between two terminals as shown in fig. (1a). Figure (1b) represents the Thevenin's 

equivalent network.  
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In fig. (1a) IS and IR represent the loop currents flowing in active and passive network respectively. Our aim is to 

calculate E' and Z' from fig. (1a) and then to show that it is equivalent to a circuit shown in fig. (1b). Applying the 

voltage law equations in mesh 1 and mesh 2 respectively, we have 

𝑍1𝐼𝑆 + (𝐼𝑆 − 𝐼𝑅)𝑍3 = 𝐸 

𝑍1𝐼𝑆 + 𝑍3𝐼𝑆 − 𝑍3𝐼𝑅 = 𝐸 

(𝑍2 + 𝑍3 + 𝑍𝑅)𝐼𝑅 − 𝑍3𝐼𝑆 = 0 

 From eq. (1),  

𝐼𝑆 =
𝐸 + 𝑍3𝐼𝑅

𝑍1 + 𝑍3
 

Or Substituting the value of IS in equation (2), we get  

(𝑍2 + 𝑍3 + 𝑍𝑅)𝐼𝑅 −
𝑍3(𝐸 + 𝑍3𝐼𝑅)

𝑍1 + 𝑍3
= 0 

(𝑍2 + 𝑍3 + 𝑍𝑅)𝐼𝑅 −
𝑍3

2𝐼𝑅

𝑍1 + 𝑍3
=

𝑍3𝐸

𝑍1 + 𝑍3
 

(𝑍2 + 𝑍3 + 𝑍𝑅 −
𝑍3

2

𝑍1 + 𝑍3
) 𝐼𝑅 =

𝑍3𝐸

𝑍1 + 𝑍3
 

𝐼𝑅 =

𝑍3𝐸
𝑍1 + 𝑍3

𝑍2 + 𝑍𝑅 + 𝑍3
𝑍3

2

𝑍1 + 𝑍3

 

𝐼𝑅 =

𝑍3𝐸
𝑍1 + 𝑍3

𝑍2 + 𝑍𝑅 +
𝑍1𝑍3

𝑍1 + 𝑍3

 

 

The two equations (1) and (2) can also be easily solved with the help of Cramer's rule. The current flowing through 

load impedance ZR is given by  

Fig. 1. 

(1) 

(2) 
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(𝑍1 + 𝑍3)𝐼𝑆 − 𝑍3𝐼𝑅 = 𝐸 

−𝑍3𝐼𝑆 + (𝑍2 + 𝑍3 + 𝑍𝑅)𝐼𝑅 = 0 

𝐼𝑅 =
|
(𝑍1 + 𝑍3) 𝐸

−𝑍3 0
|

|
(𝑍1 + 𝑍3) −𝑍3

−𝑍3 (𝑍2 + 𝑍3 + 𝑍𝑅)
|

 

=
𝑍3𝐸

(𝑍1 + 𝑍3)(𝑍2 + 𝑍3 + 𝑍𝑅) − 𝑍3
2 

=

𝑍3𝐸
𝑍1 + 𝑍3

𝑍2 + 𝑍3 + 𝑍𝑅 −
𝑍3

2

𝑍1 + 𝑍3

 

𝐼𝑅 =

𝑍3𝐸
𝑍1 + 𝑍3

𝑍2 + 𝑍𝑅 +
𝑍1𝑍3

𝑍1 + 𝑍3

 

This is the value of load current. By inspection of fig. (1a) the open circuit voltage at ab terminals is  

𝐸′ = 𝐸 (
𝑍3

𝑍1 + 𝑍3
) = (

𝐸

𝑍1 + 𝑍3
) 𝑍3 

and the impedance of the network measured between ab terminals with all emfs generators short circuited is  

𝑍′ = 𝑍2 +
𝑍1𝑍3

𝑍1 + 𝑍3
 

From equations (3), (4) and (5), it can be easily seen that  

𝐼𝑅 =
𝐸′

𝑍′ + 𝑍𝑅
 

Now from fig. (1b), we see that  

𝐼𝑅 =
𝐸′

𝑍′ + 𝑍𝑅
 

Equations (6) and (7) are the same, hence theorem has been proved for networks containing one generator. It may 

be generalized to any number of generators by the application of superposition theorem permitting each generator 

and associated circuit to be considered separately. 𝐸′ and 𝑍′ as given by equations (4) and (5) are known as 

Thevenin's components.  

 

 

(1’) 

(2’) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Problem 1: Find the open circuit voltage and Thevenin resistance of the two-terminal 

network shown in fig.  

Solution: We have E = 100 V, Z1 = 20Ω. Z2 = 0, Z3 = 30 Ω. Then by Thevenin components 

we have open circuited voltage as  

𝐸′ = 𝐸 (
𝑍3

𝑍1 + 𝑍3
) 

= 100 (
30

20 + 30
) = 60 𝑉 

and  

𝑍′ =
𝑍1𝑍3

𝑍1 + 𝑍3
 

=
30 × 20

30 + 20
= 12 𝛺 

Hence 𝐸′ = 60 𝑉 and Z' = 12 𝛺.  

 

 

Problem 2: Find the short circuit current and Thevenin resistance of the two-terminal 

network shown in fig.  

Solution: As given in question, short circuit ab by connecting terminals ab with 

resistanceless wire, then applying current division law, we have  

𝐼𝑎𝑏 =
6

6 + 2
× 8 = 6 𝑎𝑚𝑝. 

This is the short circuit current. Now for finding out Z', make current source as open circuit then  

𝑍′ =  2 +  6 =  8 Ω 

Hence, short circuit current is 6 amp. and 𝑍′ = 8 Ω.  

 

Problem 3: Obtain Thevenin's equivalent circuit for the network shown in fig.(a) 
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Solution: We shall first calculate the open-circuited voltage between A and B as follows: The loop eq. for big 

closed mesh may be written as  

10 𝐼 + 6 𝐼 + 2 𝐼 = 3 − 3 = 0 

 𝐼 = 0 

Hence (i) current across 1Ω resistor will also be zero and (ii) voltage drop (= r x 1) across 6 Ω resistor and along 

1Ω resistor will evidently be zero. Therefore, the voltage across A and B will be same as across 12 Ω resistor i.e., 

= 3 volt.  

Now if each battery is replaced by zero resistance, as required for Thevenin's equivalent circuit. then given circuit 

reduces to that shown in fig. b(A). In this, it is evident that 12 Ω resistor becomes short circuited and so becomes 

ineffective. Therefore, the equivalent resistance across A and B may he computed as follows: 10 Ω and 2 Ω resistor 

may be supposed as connected in series and 6 Ω as in parallel with them. Hence effective resistance of these will 

be as given by  

1

𝑅′
=

1

10 + 2
+

1

6
 

𝑅′ =
12

3
= 4 Ω 

and further since 1 Ω resistor may be taken as connected in series with this, hence total resistance across A and B = 

1 + 4 = 5 Ω. Therefore, Thevenin's equivalent circuit for given network may be shown as in fig. b (B) above. 

 

 

 

Problem 4: Using Thevenin's theorem, calculate the current in RL in the 

given circuit (fig.).  

 

Solution: First of all, we shall calculate the open circuited voltage E' 

across A and B in the absence of RL. The loop equation is  

10 𝐼 + 5𝐼 = 10 

𝐼 =
10

15
=

2

3
 𝐴 

As no current flows through the resistor (10 Ω) near point A. hence voltage across it is zero. The voltage across AB 

is the same as voltage across 5 Ω resistor i.e.,  

Voltage across AB = Voltage across 5 Ω resistor = current x resistance = 
2

3
× 5 = 

10

3
 V.  

Now we shall calculate the impedance across AB, when the voltage source is replaced by zoo resistance as shown 

in fig. (b). As viewed across AB, 10 Ω and 5 Ω resistances are parallel then 10 Ω resistor is in series. Hence the 

impedance Z' between A and B is  
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𝑍′ = 10 +
10 × 5

10 + 5
=

40

3
Ω 

The Thevenin's circuit is shown in fig. (c). The current in the load, when connected across RL is given by  

𝐼𝐿 =
Voltage 

Resistance 
=

10
3

40
3 + 100

=
1

34
𝐴 

 

Problem 5: Find the open-circuit voltage across AB of the two-terminal network 

own in fig. Also draw its Thevenin's equivalent circuit and calculate the current 

through a load impedance of 12.75 Ω when connected across A and B.  

Solution:  

In the given circuit, the resistances 3 Ω, 4 Ω and 5 Ω are in series while 6 Ω resistance is in parallel with them. 

Hence the resultant resistance is given by  

1

𝑅
=

1

6
+

1

12
=

3

12
 

𝑅 =  4 Ω 

Now current 𝐼 =  
100

4
 =  25 𝐴. The current I2 through the series combination 3 Ω, 4 Ω and 5 Ω is  

𝐼2 =
6

6 + 3 + 4 + 5
× 𝐼 =

6

18
× 25 =

25

3
 𝐴 

Potential difference across AB  

𝐸′ = 𝐼2(4 + 5) =
25

3
× 9 = 75 𝑉 

By short circuiting the source, the impedance across AB is given by  

𝑍′ =
3(4 + 5)

3 + (4 + 5)
= 2.25 Ω  

Here, the resistance 6 Ω has been short circuited. The Thevenin's equivalent circuit is: 

 

When a load of 12.75 is connected across AB, then the current through the load is given by  

𝐼𝐿 =
75 

2.25 + 12.75 
=

75

15
= 5 𝐴 

 

Problem 6: In the D.C. circuit shown in fig. three resistors, R1 = 1 Ω, R2 = 5 Ω and R3 = 10 

Ω, are connected in turns to terminals AB. Determine the power delivered to each resistor.  
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Solution: The Thevenin equivalent circuit is shown in fig.  

Total current, 𝐼 =
20−15

5+15
= 0.5 𝐴  

Voltage-drop across 5 Ω resistor =  𝐼 ×  5 =  0.5 ×  5 =  2.5 𝑉. Now  

𝐸𝐴𝐵 = 𝐸′ = 10 +  2.5 = 12.5 𝑉 

The impedance Z' across AB is a parallel combination of 5 Ω and 15 Ω. Therefore, 

𝑍′ =
5 × 15

5 + 15
=

75

20
= 3.75 Ω 

Now connecting each of the three resistors at terminal AB, the powers delivered are: 

with RL = 1 Ω, 𝐼1 =
12.5

3.75+1
= 2.63 𝐴 

∴   𝑃1 = 𝐼1
2 × 𝑅𝐿 = 2.632  × 1 = 6.91 𝒘𝒂𝒕𝒕.  

with RL = 5 Ω, 𝐼2 =
12.5

3.75+5
= 1.43 𝐴 

∴   𝑃2 = 𝐼2
2 × 𝑅𝐿 = 1.432  × 5 = 10.2 𝒘𝒂𝒕𝒕.  

with RL = 10 Ω, 𝐼3 =
12.5

3.75+10
= 0.91 𝐴 

∴   𝑃3 = 𝐼3
2 × 𝑅𝐿 = 0.912  × 10 = 8.28 𝒘𝒂𝒕𝒕.  

 

Problem 7: Determine the current in 1 Ω resistor across AB of the network shown 

in fig. using superposition and Thevenin's theorem.  

 

Solution:  

Here the open circuited voltage can be calculated with the help of superposition 

theorem. There are two sources and each is considered separately. Considering only 1 Amp. source. the equivalent 

circuit is shown in fig.1. Total resistance of loop PQRS  

=
3 × 2

3 + 2
=

6

5
Ω 

Now 𝐸1
′ =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ×  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  1 × 

6

5
 =  1.2 𝑉.  

No current flows through the lower loop containing two 2 Ω resistor. Further 

considering only 1 volt source, the equivalent circuit is shown in fig. (2 a and b). 

Applying Kirchhoff’s voltage law to two loops of fig. 2(b), we get  

𝑖1(2 + 2) = 1          𝑜𝑟    𝑖1 =
1

4
  

𝑖2(2 + 3) = 1          𝑜𝑟    𝑖2 =
1

5
 

Fig.1 
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∴ Voltage at X =  3 ×  
1

5
 =  0.6 𝑉 

and voltage at Y =  2 × 
1

4
 =  0.5 𝑉  

Voltage across XY=  0.6 −  0.5 = 0.1 𝑉 

Now  𝐸" =  1.2 + 0.1 =  1.3 𝑉  

 

The value of Z" can be calculated with the help of fig. (3).  

𝑍𝐴𝐵 =
2 × 3

2 + 3
+

2 × 2

2 + 2
=

6

5
+ 1 = 2.2 Ω 

 

 

The Thevenin's equivalent circuit is shown in fig. (4). The current flowing through 

1 Ω resistor is given by  

𝐼𝐴𝐵 =
1.3

2.2 + 1
= 0.406 𝐴 = 406 𝑚𝐴 

 

 

 

Admittance: admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined 

as the reciprocal of impedance, analogous to how conductance & resistance are defined. The SI unit of admittance 

is the siemens; the older, synonymous unit is mho, and its symbol is ℧. 

 

Norton's Theorem 

This theorem states that, any two-terminal network consisting of linear impedances and generators can be replaced 

by an equivalent circuit containing a current source 𝐼′ in parallel with an admittance 𝑌′. The value of 𝐼′ is the short-

circuited current between the terminals of the network, and 𝑌′ is the admittance measured between the terminals 

with all generators removed (but not their admittances).  

This theorem may be easily proved by considering a Thevenin's equivalent network shown in fig. (a). The load 

impedance ZR is appearing between two terminals a and b. Now this Thevenin's equivalent circuit may be easily 

converted into a circuit containing current source 𝐼′ in parallel with 𝑌′ and YR appearing between two terminals a 

and b as shown in fig. (b).  

 

 

 

Fig.2 

Fig.3 

Fig.4 
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The value of IR from fig 1(a) is given by 

𝐼𝑅 =
𝐸′

𝑍′ + 𝑍𝑅
=

𝐸′

1
𝑌′

+
1
𝑌𝑅

=
𝐸′𝑌′𝑌𝑅

𝑌𝑅 + 𝑌′
 

Why 𝑌′ and 𝑌𝑅 are the reciprocal of 𝑍′ and 𝑍𝑅 respectively, known as admittances. 

Applying the current division law in fig. 1(b), we have 

𝐼𝑅′ =
𝐼′𝑌𝑅

𝑌′ + 𝑌𝑅′
 

The load current 𝐼𝑅′ can be made equal to 𝐼𝑅. Then comparison of equations (1) and (2) gives  

𝐼′ = 𝐸′𝑌′ =
𝐸′

𝑍′
 

Equation (3) clearly indicates that circuits 1(a) and 1(b) are the same. Thus, we observe that fig.1(b) is equivalent 

to fig.1(b) and fig.1(a) is equivalent to the figure of Thevenin’s equivalent circuit 

Thus, we see that interchange of voltage and current sources with the help of Thevenin’s and Norton’s theorems 

gives a method of circuit analysis. As described earlier, voltage source is removed from a circuit by short circuiting 

its e.m.f. whereas a current source is removed by opening its circuit.  

 

Problem 1: Convert the following linear network into Thevenin’s equivalent network and then into Norton’s 

equivalent network and show that power delivered to the load RL in each case is same.  

Solution: For converting this network into Thevenin’s equivalent, we have to 

find out the Thevenin’s components given as 

𝐸′ =
𝐸𝑍3

𝑍1 + 𝑍3
 

=
12 × 6

3 + 6
= 8 𝑣𝑜𝑙𝑡 

 

And  

𝑍′ = 𝑍2 +
𝑍1𝑍3

𝑍1 + 𝑍3
 

= 7 +
3 × 6

3 + 6
= 9 Ω 

Hence, the Thevenin’s equivalent circuit is shown in fig. b and power delivered to 

the load is  

Fig.1 

fig. b 

fig. a 
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𝑃𝐿1
= (𝐼2)2𝑅𝐿 = (

8

9+𝑅𝐿
)

2
𝑅𝐿 

Now applying Norton’s theorem in fig. a, we have 

𝐼′ = 𝐸′𝑌′ =
𝐸′

𝑍′
=

8

9
  𝐴𝑚𝑝 

And  

𝑌′ =
1

𝑍′
=

1

9
 𝑚ℎ𝑜 =

1

9
 ℧  

Hence the Norton’s equivalent circuit is shown in fig. c. Now the power delivered to the load is calculated by 

applying current division law. The current through YL is given by  

𝐼𝐿 =
8

9

𝑌𝐿

1
9

+ 𝑌𝐿

 

So, the power, 

𝑃𝐿2
= (𝐼𝐿)2𝑅𝐿 = (𝐼𝐿)2

1

𝑌𝐿
 

= (
8

9

𝑌𝐿

1
9

+ 𝑌𝐿

)

2

1

𝑌𝐿
 

= (
8

9

1
𝑅𝐿

1
9

+
1

𝑅𝐿

)

2

𝑅𝐿 

= (
8

9

1
𝑅𝐿

𝑅𝐿 + 9
9𝑅𝐿

)

2

𝑅𝐿 = (
8

9

9𝑅𝐿

(𝑅𝐿 + 9)𝑅𝐿
)

2

𝑅𝐿 

= (
8

9 + 𝑅𝐿
)

2

𝑅𝐿 

From eqn. 1 and 2 we see that in each cases power delivered to the load is the same and hence we conclude that 

both Thevenin’s and Norton’s circuits are equivalent to the original circuit.  

 

Problem 2: Draw the Thevenin’s and Norton's equivalent circuits for the following circuit. Calculate the current in 

the load in each case.  

Solution: First of all, we shall calculate the open circuited 

voltage across AB. The current I flowing in the   

loop is given by  

(1) 

fig. c 

(2) 
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0.6𝐼 + 𝑂8𝐼 + 0.2𝐼 =  24    𝑖. 𝑒., 𝐼 =  15 𝐴 

The voltage. across AB is the same as voltage across CD. 

i.e.,  

𝐸′ =  𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝐶𝐷 

 =  15 𝐴 × 0.8 Ω =  12 𝑉𝑜𝑙𝑡 

Now we shall calculate impedance across AB. For this purpose, the battery is removed but not its internal resistance. 

The circuit now becomes as shown in fig. (1a).  

As viewed from points A and B, the resistors 0.2 Ω and 0.6 Ω are in series. Their equivalent resistance is 0.8 Ω. The 

resistor 0.8 Ω between C and D is in parallel. Hence equivalent resistance is given by 

 
1

𝑅
=

1

0.8
 +

1

0.8
=

1

0.4
 

i.e.  𝑅 =  0.4 Ω 

Now resistor 0.8 Ω between C and A is in series. Hence the impedance = 0.8 + 0.4 = 1.2 Ω. The Thevenin's equivalent 

circuit is shown in fig. (1b). The current in load RL when connected between AB is given by  

𝐼𝐿 =
12𝑉

1.2Ω + 3.2Ω
= 2.73 𝐴 

The Norton's equivalent circuit may be found from Thevenin's equivalent circuit. The short-circuited current found 

by shorting the terminals A and B together is  

𝐼𝐴𝐵 =
12𝑉

1.2Ω
= 10 𝐴 

The Norton's equivalent circuit is shown in fig. (2).  

When the load RL= 3.2 Ω is connected across AB, the current in the load is given by  

𝐼𝐿 =
1.2 Ω

1.2Ω + 3.2Ω
× 10 𝐴 = 2.73 𝐴 

 

Problem 3: Find the current flowing through resistor RL in the network shown in fig. 

using Norton's theorem.  

Solution: The impedance ZAB between terminals AB can be obtained with the help of 

fig.  

𝑍𝐴𝐵 =
3 × 3

3 + 3
= 1.5 𝛺 

The current I drawn from voltage source can be found out by short circuiting AB. The given 

circuit now reduces as shown in fig. a 

𝐼 =
9

2 +
2 × 2
2 + 2

=
9

3
= 3 𝐴 

fig. 1 

fig. 2 

Fig. a 
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The current I' through short circuit is given by  

𝐼′ = 𝐼 (
𝑅2

𝑅2 + 𝑅3
) = 3 (

2

2 + 2
) = 1.5 𝐴 

The Norton's equivalent circuit is shown in fig. b. The current IL, flowing through RL is given by  

𝐼𝐿 = 𝐼′ (
1.5

𝑅𝐿 + 1.5
) = 1.5 (

1.5

1.5 + 1.5
) = 0.75 𝐴 

 

 

Problem 4: Find the open circuit voltage and Thevenin's resistance of the two-terminal 

network shown in fig. and then reduce the network into Norton’s equivalent circuit, 

and find the current through load resistance ZR = 2 Ω. Find also the power delivered to 

the load.  

Solution: The Thevenin's resistance 7 can be calculated by short circuiting df branch. 

In that case cd and cf will be parallel to each other; and de and fe will be parallel to 

each other and both will he in series then  

𝑍′ =
𝑅𝑐𝑑 × 𝑅𝑐𝑓

𝑅𝑐𝑑 + 𝑅𝑐𝑓
+

𝑅𝑑𝑒 × 𝑅𝑒𝑓

𝑅𝑑𝑒 + 𝑅𝑒𝑓
 

𝑍′ =
3 × 7

3 + 7
+

1 × 9

1 + 9
= 3 Ω 

Now we have to calculate the open circuited voltage between terminals a and b. We see from fig. a that the voltage 

drop between ab is same as at c and e points. The current generated from the source in each branch is voltage 

divided by the total resistance, i.e.  

100

10
 =  10 𝐴 

Potential difference across 𝑐𝑑 = − 30 𝑣𝑜𝑙𝑡, Potential difference across 𝑑 𝑒 =

100 𝑣𝑜𝑙𝑡, Potential difference across 𝑐𝑒 = − 20 𝑣𝑜𝑙𝑡. Calculating potential 

difference across cf and fe we would get potential difference across ce as − 20 𝑣𝑜𝑙𝑡.  

𝐸′ =  −20 𝑣𝑜𝑙𝑡 𝑎𝑛𝑑 𝑍′ =  3 Ω 

Now the circuit reduces into the Thevenin's equivalent as shown in fig. b. Now we have to convert this network 

into Norton's equivalent circuits. For this let us find out 𝐼’, 𝑌’ and 𝑌𝑅.  

𝑌′ =
1

𝑍′
=

1

3
 ℧  

𝑌𝑅 =
1

𝑍𝑅
=

1

2
 ℧ 

𝐼’ = 𝐸′ 𝑌′ = −20 ×
1

3
 = −

20

3
 

Fig. b 

Fig. a 

Fig. b 
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So, the Norton's circuit is as shown in fig. c. Current through the load is given by 

𝐼𝑅 =
𝐼′𝑌𝑅

𝑌′ + 𝑌𝑅
= −

20
3

×
1
2

1
3

+
1
2

= − 4 𝐴 

This is in ba direction, hence current in ab direction is 4 A. Therefore, power delivered to the load is  

𝑃𝐿 =
𝐼2

𝑌𝑅
=

42

1
2

= 32 𝑊 

 

 

 

 

 

 

 

 

The Maximum Power Transfer Theorem 

This theorem states that, the maximum power will be delivered by a network to a load 

impedance 𝑍𝑅, if the impedance of 𝑍𝑅 is the complex conjugate of the impedance 𝑍′ of the 

network measured looking back into the terminals of the network. i.e., 

𝑍𝑅 = 𝑍′∗ 

𝑍𝑅 = 𝑍′∗ 

 



45           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-1 / 2020 

The maximum power will be consumed by a network from another circuit connected to its two terminals when the 

impedance of the receiving network is varied to make the impedance looking into the network at its two terminals 

as conjugate to each other. 

Let us consider a two terminal active linear network connected to a two terminal passive 

linear network. In fig. 𝑍𝑅 represents the equivalent impedance of a passive linear network 

and the network at the left of a, b terminals represent the Thevenin's equivalent active 

network.  

The impedance of the active network 𝑍′ is equal to the ohmic resistance 𝑅′ plus the 

resistance 𝑋′.  i.e., 

       𝑍′ = 𝑅′ + 𝑗𝑋′ 

Similarly  

𝑍𝑅 = 𝑅𝑅 + 𝑗𝑋𝑅 

We have to prove that 𝑍′ and 𝑍𝑅 arc conjugate to each other in order to transfer the maximum power to load. i.e. 

𝑍𝑅 = 𝑅′ − 𝑗𝑋′ 

 For this, we proceed as follows:  

Let 𝐼 be the current flowing in the network, then   

𝐼 =
𝐸′

𝑍′ + 𝑍𝑅
 

𝐼 =
𝐸′

(𝑅′ + 𝑗𝑋′) + (𝑅𝑅 + 𝑗𝑋𝑅)
 

=
𝐸′

(𝑅′ + 𝑅𝑅) + 𝑗(𝑋′ + 𝑋𝑅)
 

=
𝐸′

√(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2
 

The passer delivered to the load is  

𝑃𝐿 = 𝐼2𝑅𝑅 =
(𝐸′)2

(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2
𝑅𝑅 

If 𝑋𝑅 is varying, the maximum power will be calculated by putting 
𝜕𝑃

𝜕𝑋𝑅
= 0. From equation 4, we get  

𝜕𝑃𝐿

𝜕𝑋𝑅
=

𝜕

𝜕𝑋𝑅
{

(𝐸′)2

(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2
𝑅𝑅} = 0 

⇒
𝜕

𝜕𝑋𝑅

[(𝐸′)2𝑅𝑅{(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2}−1] = 0 

⇒ −(𝐸′)2𝑅𝑅{(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2}−2. 2(𝑋′ + 𝑋𝑅). 1 = 0 

a 

b 

(1) 

(2) 

(4) 

(5) 

(3) 
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⇒
−(𝐸′)2𝑅𝑅 . 2(𝑋′ + 𝑋𝑅). 1

{(𝑅′ + 𝑅𝑅)2 + (𝑋′ + 𝑋𝑅)2}2
= 0 

⇒ (𝑋′ + 𝑋𝑅) = 0 

⇒ 𝑋′ = −𝑋𝑅 

Substituting equation (6) in equation (5), we get  

(𝑃𝐿)𝑚𝑎𝑥 =
(𝐸′)2𝑅𝑅

(𝑅′ + 𝑅𝑅)2
 

Now suppose 𝑅𝑅 is also varying, then maximum power will be calculated by putting from equation (7)  

𝜕𝑃𝐿

𝜕𝑅𝑅
=

𝜕

𝜕𝑅𝑅
{

(𝐸′)2𝑅𝑅

(𝑅′ + 𝑅𝑅)2} = 0 

⇒
(𝑅′ + 𝑅𝑅)2(𝐸′)2. 1 − (𝐸′)2𝑅𝑅 . 2(𝑅′ + 𝑅𝑅). 1

(𝑅′ + 𝑅𝑅)4
= 0 

⇒ (𝑅′ + 𝑅𝑅)2(𝐸′)2 = (𝐸′)2𝑅𝑅 . 2(𝑅′ + 𝑅𝑅) 

⇒ (𝑅′ + 𝑅𝑅) = 2𝑅𝑅 

⇒ 𝑅′ = 𝑅𝑅 

Using equations (6) and (8), we can write 

𝑍𝑅 = 𝑅𝑅 + 𝑗𝑋𝑅 = 𝑅′ − 𝑗𝑋′ = 𝑍′∗ 

Now from eqn. (7) and (8) the maximum power delivered to the load is  

(𝑃𝐿)𝑚𝑎𝑥 =
(𝐸′)2𝑅𝑅

(𝑅𝑅 + 𝑅𝑅)2
=

(𝐸′)2

4𝑅𝑅
 

Corollary: If only the absolute magnitude and not the angle of 𝑍𝑅 be varied, then the greatest power output be 

delivered from the network if the absolute magnitude of 𝑍𝑅 is made equal to the absolute magnitude of 𝑍′. 

 

Problem 1. Find the value of RL which will absorb maximum power and 

determine this maximum power in the following network.  

Solution: For finding out RL, short circuit 50V source and open circuit the 1 amp. 

We see atonce that 𝑅𝐿 = 10 Ω. Hence 𝑅𝐿 = 10 Ω will absorb maximum power 

from source.   

For determining the maximum power absorbed by RL we shall calculate the current 

flowing through RL. We can find current through RL by superposition theorem.  

(i) Let 𝑖𝑔  =  0, then 𝑖𝑥1
=

50

10+10
= 2.5 𝑎𝑚𝑝 

(ii) Now let, 𝐸𝑔 = 0,  then 𝑖𝑥2
=

10

10+10
× 1 = 0.5 𝑎𝑚𝑝 

(6) 

[True power] (7) 

(8) 
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Hence 𝑖𝑥 = 𝑖𝑥1
+ 𝑖𝑥2

= 2.5 + 0.5 = 3 𝑎𝑚𝑝. Hence power absorbed by RL is 𝑃𝑚𝑎𝑥 = 𝑖𝑥
2𝑅 = 32 × 10 = 90 𝑤𝑎𝑡𝑡.  
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