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Two-port network  

A two-port network (a kind of four-terminal network or quadripole) is an 

electrical network (circuit) or device with two pairs of terminals to connect to 

external circuits. Two terminals constitute a port if the currents applied to them 

satisfy the essential requirement known as the port condition: the electric current 

entering one terminal must equal the current emerging from the other terminal on 

the same port. The ports constitute interfaces where the network connects to other 

networks, the points where signals are applied or outputs are taken. In a two-port 

network, often port 1 is considered the input port, and port 2 is considered the 

output port. 

The two-port network model is used in mathematical circuit analysis techniques 

to isolate portions of larger circuits. A two-port network is regarded as a "black 

box" with its properties specified by a matrix of numbers. This allows the response 

of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages 

and currents in the network. It also allows similar circuits or devices to be compared easily. For example, transistors 

are often regarded as two-ports, characterized by their h-parameters (see below) which are listed by the 

manufacturer. Any linear circuit with four terminals can be regarded as a two-port network provided that it does not 

contain an independent source and satisfies the port conditions. 

Examples of circuits analyzed as two-ports are filters, matching networks, transmission lines, transformers, and 

small-signal models for transistors (such as the hybrid-pi model). The analysis of passive two-port networks is an 

outgrowth of reciprocity theorems first derived by Lorentz. 

In two-port mathematical models, the network is described by a 2 by 2 square matrix of complex numbers. The 

common models that are used are referred to as z-parameters, y-parameters, h-parameters, g-parameters, and 

ABCD-parameters, each described individually below. These are all limited to linear networks since an underlying 

assumption of their derivation is that any given circuit condition is a linear superposition of various short-circuit 

and open-circuit conditions. They are usually expressed in matrix notation, and they establish relations between the 

variables 

    V1 , voltage across port 1 

    I1, current into port 1 

    V2 , voltage across port 2 

    I2, current into port 2 

which are shown in figure 1. The difference between the various models lies in which of these variables are regarded 

as the independent variables. These current and voltage variables are most useful at low-to-moderate frequencies. 

At high frequencies (e.g., microwave frequencies), the use of power and energy variables is more appropriate, and 

the two-port current-voltage approach is replaced by an approach based upon scattering parameters.  

The port conditions  

The port condition is that a pair of poles of a circuit is considered a port if and only if the current flowing into one 

pole from outside the circuit is equal to the current flowing out of the other pole into the external circuit. 

Equivalently, the algebraic sum of the currents flowing into the two poles from the external circuit must be zero 

Figure 1: Example two-port 

network with symbol definitions. 

Notice the port condition is 

satisfied: the same current flows 

into each port as leaves that port. 
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General properties 

There are certain properties of two-ports that frequently occur in practical networks and can be used to greatly 

simplify the analysis. These include: 

Reciprocal networks 

A network is said to be reciprocal if the voltage appearing at port 2 due to 

a current applied at port 1 is the same as the voltage appearing at port 1 

when the same current is applied to port 2. Exchanging voltage and current 

results in an equivalent definition of reciprocity. A network that consists 

entirely of linear passive components (that is, resistors, capacitors and 

inductors) is usually reciprocal, a notable exception being passive 

circulators and isolators that contain magnetized materials. In general, it 

will not be reciprocal if it contains active components such as generators 

or transistors. 

Reciprocity in electrical networks is a property of a circuit that relates 

voltages and currents at two points. The reciprocity theorem states that the 

current at one point in a circuit due to a voltage at a second point is the 

same as the current at the second point due to the same voltage at the first. 

The reciprocity theorem is valid for almost all passive networks. 

Symmetrical networks 

A network is symmetrical if its input impedance is equal to its output impedance. Most often, but not necessarily, 

symmetrical networks are also physically symmetrical. Sometimes also antimetrical networks are of interest. These 

are networks where the input and output impedances are the duals of each other. 

Lossless network 

A lossless network is one, that contains no resistors or other dissipative elements. 

 

Attenuation 

Attenuation in an electrical system is the loss or reduction in the amplitude or strength of a signal as it passes along 

its length or some electric network. As the signal travels through the copper wire conductor some of the signals will 

be absorbed. 

Attenuation is a result of resistance in the conductor and associated dielectric losses which are exaggerated by longer 

run lengths and higher frequency signals. By improving the dielectric properties of the insulation and increasing the 

conductor size it will reduce the attenuation. 

Attenuation, an amplitude loss, usually measured in dB, experienced by a signal after passing through a filter. Filter 

attenuation is the ratio, at a given frequency, of the signal amplitude at the output of the filter over the signal 

amplitude at the input of the filter, defined as 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 10 𝑙𝑜𝑔10
𝑃0
𝑃𝑖
 𝑑𝐵 = 20 𝑙𝑜𝑔10

𝑉0
𝑉𝑖
 𝑑𝐵 
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Cut of Frequency 

The cutoff frequency, corner frequency, or break frequency is a boundary in a 

system's frequency response at which energy flowing through the system begins to 

be reduced (attenuated or reflected) rather than passing through. 

Typically, in electronic systems such as filters and communication channels, cutoff 

frequency applies to an edge in lowpass, highpass, bandpass, or band-stop 

characteristic – a frequency characterizing a boundary between a passband and a 

stopband. It is sometimes taken to be the point in the filter response where a transition 

band and passband meet, for example, as defined by a half-power point (a frequency 

for which the output of the circuit is −3 dB of the nominal passband value). 

Alternatively, a stopband corner frequency may be specified as a point where a 

transition band and a stopband meet: a frequency for which the attenuation is larger 

than the required stopband attenuation, which for example may be 30 dB or 100 

dB. 

In the case of a waveguide or an antenna, the cutoff frequencies correspond to the lower and upper cutoff 

wavelengths. 

 

 

Characteristic Impedance 

When two series arms of a T network are equal or the shunt arms of a 𝜋 network are equal, the network is said to 

be symmetrical. For a symmetrical network the image impedances are equal to each other and the image impedance 

is then called the characteristic impedance or the iterative impedance.  

It is defined as the particular value of the load impedance which can produce an input impedance with the value 

as same as the value of the load impedance. In the two-port system when it is connected at the one end then it 

produces equal impedance when looking at each other. 

Image Impedance 

Consider a T section of impedances interposed between a generator having 

internal impedance 𝑍1𝑖 and a load of impedance 𝑍2𝑖, as in. It is desired that the 

impedance at the 1,1 terminals, into which the generator supplies power, be 

equal to the generator impedance, and that the impedance looking into the 2,2 

terminals be equal to the load 𝑍2𝑖. Under these conditions the impedance at 1,1 

looking in one direction is the image of the impedance looking in the other 

direction, and 𝑍1𝑖 is called an image impedance of the network. Likewise, at 2,2 

the impedance looking in one direction is the same as that looking in the other, 

so that 𝑍2𝑖 is also an image impedance at the 2,2 terminals. The network is then 

said to be matched on an image basis.  

 

Magnitude transfer function of a 

bandpass filter with lower 3 dB 

cutoff frequency f1 and upper 3 dB 

cutoff frequency f2 
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The values of the image impedances of the T section may be computed. The impedance 𝑍1𝑖𝑛 at the 1,1 terminals is 

required to be 𝑍1𝑖 and is  

𝑍1𝑖𝑛 = 𝑍1𝑖 = 𝑍1 +
𝑍3(𝑍2 + 𝑍2𝑖)

𝑍3 + 𝑍2 + 𝑍2𝑖
 

Likewise, the impedance looking into the 2,2 terminals is required to be 𝑍2𝑖, and is  

𝑍2𝑖 = 𝑍2 +
𝑍3(𝑍1 + 𝑍1𝑖)

𝑍3 + 𝑍1 + 𝑍1𝑖
 

 

In general, the image impedances of ports 1 and 2 will not be equal unless the network is symmetrical (or anti-

symmetrical) with respect to the ports. For a symmetrical network, 𝑍1𝑖 = 𝑍2𝑖 = 𝑍0 = 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒. 

Propagation Constant/Transmission Function/Propagation Function/Transmission 

Parameter 

The propagation constant, symbol 𝛾, for a given system is defined by the ratio of the complex amplitude at the 

source of the wave to the complex amplitude at some distance x, such that, 

𝐴0
𝐴𝑥

= 𝑒𝛾𝑥 

Since the propagation constant is a complex quantity, we can write:  

𝛾 = 𝛼 + 𝑗𝛽 

Where,  

• α, the real part, is called the attenuation constant (
𝐴0

𝐴𝑥
= 𝑒𝛼𝑥) 

 

• β, the imaginary part, is called the phase constant  (𝛽 =
2𝜋

𝜆
) 

 

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the 

amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the 

voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation 

constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port 

networks and their cascades, propagation constant measures the change undergone by the source quantity as it 

propagates from one port to the next. 

The propagation constant's value is expressed logarithmically, almost universally to the base e, rather than the more 

usual base 10 that is used in telecommunications in other situations. The quantity measured, such as voltage, is 

expressed as a sinusoidal phasor. The phase of the sinusoid varies with distance which results in the propagation 

constant being a complex number, the imaginary part being caused by the phase change. 
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Filter Circuit:  

Filters are electrical networks used to separate alternating from direct current components or to separate a group of 

A.C. components included within a particular frequency range from those lying outside this range. So a filter can 

be defined as a network that in its ideal form has at least one range of frequency in which the attenuation is zero 

(pass hand) and at least one range of frequency in which the attenuation is infinite (attenuation band). The 

frequencies which separate a pass band and attenuation hand are called cut-off frequencies. To achieve the desired 

effect, the filter is designed to provide a low attenuation for frequency components within a particular pass band 

range and a high attenuation at frequencies within other stop band ranges. The networks provide a uniform response 

over a wide range of frequencies than that obtained with resonant circuits. Filters are commonly classified in 

accordance with their selectivity characteristics as below : 

(a) A low pass filter. It transmits all frequencies below a limiting frequency 𝑓𝑐. known as cut-off frequency. and 

stops all these above this frequency. 

(b) A high pass filter. It passes frequencies above the cut-off frequency and stops all those below this frequency. 

(c) A band pass filter. It passes frequencies in a particular hand between two cut-off frequencies and stops those 

above and below this band limit.  

(d) A band elimination filter. It stops frequencies within a specified band and passes those above and below the 

units of this hand.  

 

 



7           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-2 / 2020 

Hyperbolic Function 

It is assumed that the student is familiar with some of the properties of hyperbolic functions, 

at least for real angles. Hyperbolic angles also have geometric meaning, being related to a 

hyperbola in the same way that trigonometric functions are related to a circle. This is 

illustrated in Fig.1, wherein the hyperbola is the locus for the radius 𝑟, and 

 𝑠𝑖𝑛ℎ 𝑢 =
𝑎

𝑟
,   𝑐𝑜𝑠ℎ 𝑢 =

𝑏

𝑟
,   𝑡𝑎𝑛ℎ 𝑢 =

𝑎

𝑏
 

As they will be used here, hyperbolic functions simplify the writing of certain exponential 

relations, and knowledge of their limits is particularly useful. A few properties are here 

summarized and extended to the case of complex angles: the so-called “imaginary” angles which are called 

“hyperbolic” in contrast with ordinary “real” angles which are called “circular,” combinations of these two kinds of angles are called “general” 

or “complex.” 

𝑠𝑖𝑛ℎ 𝑢 =
𝑒𝑢 − 𝑒−𝑢

2
 

𝑐𝑜𝑠ℎ 𝑢 =
𝑒𝑢 + 𝑒−𝑢

2
 

𝑡𝑎𝑛ℎ 𝑢 =
𝑠𝑖𝑛ℎ 𝑢

𝑐𝑜𝑠ℎ 𝑢
=
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
 

𝑐𝑜𝑠ℎ2 𝑢 − 𝑠𝑖𝑛ℎ2 𝑢 = 1 

 

   

 

values of the functions at the limits 𝑢 =  0, and 𝑢 = ∞  are  

Fig. 1 
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 𝑢 =  0 𝑢 = ∞ 

𝑠𝑖𝑛ℎ 𝑢 0 ∞ 

𝑐𝑜𝑠ℎ 𝑢 1 ∞ 

𝑡𝑎𝑛ℎ 𝑢 0 1 

 

For u large, 𝑠𝑖𝑛ℎ 𝑢 = 𝑐𝑜𝑠ℎ 𝑢. If a is imaginary or 𝑢 =  𝑗𝑤, then  

𝑠𝑖𝑛ℎ 𝑗𝑤 =
𝑒𝑗𝑤 − 𝑒−𝑗𝑤

2
= 𝑗 𝑠𝑖𝑛 𝑤 

𝑐𝑜𝑠ℎ 𝑗𝑤 =
𝑒𝑗𝑤 + 𝑒−𝑗𝑤

2
= 𝑐𝑜𝑠 𝑤 

 

Expressions for complex angles, where 𝑢 = 𝑎 + 𝑗𝑏, can be obtained by expansions: 

𝑠𝑖𝑛ℎ(𝑎 + 𝑗𝑏) = 𝑠𝑖𝑛ℎ 𝑎 𝑐𝑜𝑠ℎ 𝑗𝑏 + 𝑐𝑜𝑠ℎ 𝑎 𝑠𝑖𝑛ℎ 𝑗𝑏 

                          = 𝑠𝑖𝑛ℎ 𝑎 𝑐𝑜𝑠 𝑏 + 𝑗 𝑐𝑜𝑠ℎ 𝑎 𝑠𝑖𝑛 𝑏 

𝑐𝑜𝑠ℎ(𝑎 + 𝑗𝑏) = 𝑐𝑜𝑠ℎ 𝑎 𝑐𝑜𝑠ℎ 𝑗𝑏 + 𝑠𝑖𝑛ℎ 𝑎 𝑠𝑖𝑛ℎ 𝑗𝑏 

                          = 𝑐𝑜𝑠ℎ 𝑎 𝑐𝑜𝑠 𝑏 + 𝑗 𝑐𝑜𝑠ℎ 𝑎 𝑠𝑖𝑛 𝑏 

 

A few useful half-angle identities, which can be proved from the above are:  

𝑠𝑖𝑛ℎ
𝑢

2
= √

1

2
(𝑐𝑜𝑠ℎ 𝑢 − 1) 

𝑐𝑜𝑠ℎ
𝑢

2
= √

1

2
(𝑐𝑜𝑠ℎ 𝑢 + 1) 

𝑠𝑖𝑛ℎ 𝑢 = 2 𝑠𝑖𝑛ℎ
𝑢

2
𝑐𝑜𝑠ℎ

𝑢

2
 

A considerable number of hyperbolic functions will prove useful in the sections to follow.  

𝑠𝑖𝑛 𝑥 =
𝑒𝑗𝑥 − 𝑒−𝑗𝑥

2𝑗
 

𝑐𝑜𝑠 𝑥 =
𝑒𝑗𝑥 + 𝑒−𝑗𝑥

2
 

𝑡𝑎𝑛 𝑥 =
𝑒𝑗𝑥 − 𝑒−𝑗𝑥

𝑗(𝑒𝑗𝑥 + 𝑒−𝑗𝑥)
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Elementary Filter Theory  

The network consisting of sections each with an impedance Z1 in the series arm 

and Z2 in the shunt arm constitute the electric wave filter. Z1 and Z2 can either 

be inductances or capacitances or a combination of both.  

Because of the wave nature of voltages and currents, their evaluation in 

different elements by the application of Kirchhoff’s law would be very 

laborious. For a simple treatment. we proceed in a different way making use of 

the recurrent nature of the elements.  

Let us consider a uniform filter, consisting of a chain of similar sections as shown in fig., which are repeated 

indefinitely forming an infinite chain. If a generator is applied at some point earlier in the chain, currents will flow 

in various sections. Let the currents in successive sections be 𝑖𝑛−1, 𝑖𝑛, 𝑖𝑛+1. Application of Kirchhoff’s law to the 

central section gives the following expression: 

𝑍1𝑖𝑛 + 𝑍2(𝑖𝑛 − 𝑖𝑛+1) − 𝑍2(𝑖𝑛−1 − 𝑖𝑛) = 0 

−𝑍2𝑖𝑛−1 + (𝑍1 + 2𝑍2)𝑖𝑛 − 𝑍2𝑖𝑛+1 = 0 

We must write 𝑖𝑛 = 𝑎 𝑖𝑛−1. where 𝑎 is a real or complex number which is the attenuation constant. Then in an 

infinite chain where we cannot distinguish between sections, we must have 𝑖𝑛+1 = 𝑎 𝑖𝑛 = 𝑎
2 𝑖𝑛−1.  

Then equation (1) gives  

−𝑍2𝑖𝑛−1 + (𝑍1 + 2𝑍2)𝑎 𝑖𝑛−1 − 𝑍2𝑎
2 𝑖𝑛−1 = 0 

−𝑍2 + (𝑍1 + 2𝑍2)𝑎 − 𝑍2𝑎
2  = 0 

1 + (
𝑍1
−𝑍2

− 2)𝑎 + 𝑎2  = 0 

𝑎2 − 2(
𝑍1

2𝑍2
+ 1)𝑎 + 1 = 0 

The equation determines the attenuation constant a. We shall confine to the case where 
𝑍1

𝑍2
 is real. 

Which corresponds to 𝑍1 and 𝑍2, being both pure resistances or pure reactances. Then 𝑎 can be 

either real or complex, but not a purely imaginary quantity. The roots will be real when 
𝑍1

4𝑍2
 lies 

outside the range 0 𝑡𝑜 − 1. We consider separately the three cases where it is greater than 0, 

between 0 and -1, and less than -1.  

 

The discriminant of this equation is  

𝐷 = 4(
𝑍1
2𝑍2

+ 1)
2

− 4 

= 4
𝑍1

2

4𝑍2
2 + 4.2.

𝑍1
2𝑍2

+ 4 − 4 

(1) 

[Dividing by −𝑍2] 

(2) 
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=
𝑍1

2

𝑍2
2 + 4

𝑍1
𝑍2

 

 

Case-1: 𝑍1

4𝑍2

> 0.  𝒂 is real and positive. 

Since the network does not contain power generating elements, the currents must decrease as we move away from 

the generator attached to one end of the filter. The significance of the positive sign of a is that the wave is attenuated 

without change of phase. If we write 𝑎 = 𝑒− 𝛼, where i 𝛼 is the attenuation constant per section, equation (2) 

becomes  

𝑒− 2𝛼 − 2(
𝑍1
2𝑍2

+ 1)𝑒− 𝛼 + 1 = 0 

𝑒− 2𝛼 + 1

2𝑒− 𝛼
 = (

𝑍1
2𝑍2

+ 1) 

𝑒− 𝛼 + 𝑒𝛼

2
 = 1 +

𝑍1
2𝑍2

 

𝑐𝑜𝑠ℎ 𝛼  = 1 +
𝑍1
2𝑍2

 

Case-2: 0 >
𝑍1

4𝑍2

> −1.  𝒂 is a complex with modulus unity. 

So that we may write 𝑎 = 𝑒−𝑗𝛽. The wave is not attenuated at all, but suffers a change of phase by an angle 𝛽 in 

each section, where, 

𝑒−𝑗2𝛽 − 2(
𝑍1
2𝑍2

+ 1)𝑒−𝑗𝛽 + 1 = 0 

𝑒−𝑗2𝛽 + 1

2𝑒−𝑗𝛽
 = (

𝑍1
2𝑍2

+ 1) 

𝑒−𝑗𝛽 + 𝑒𝑗𝛽

2
 = 1 +

𝑍1
2𝑍2

 

𝑐𝑜𝑠 𝛽  = 1 +
𝑍1
2𝑍2

 

Case-3: 𝑍1

4𝑍2

< 0.    𝑎  a is then real and negative. 

So that the wave is attenuated with a phase change of 𝜋 in successive sections. If we write 𝑎 = −𝑒−𝛼.  equation (1) 

becomes  

𝑒− 2𝛼 + 2(
𝑍1
2𝑍2

+ 1)𝑒− 𝛼 + 1 = 0 

𝑒− 2𝛼 + 1

2𝑒− 𝛼
 = −(

𝑍1
2𝑍2

+ 1) 
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−
𝑒− 𝛼 + 𝑒𝛼

2
 = 1 +

𝑍1
2𝑍2

 

−𝑐𝑜𝑠ℎ 𝛼  = 1 +
𝑍1
2𝑍2

 

Characteristic Impedance and Propagation Constant of 𝑻 Sections 

The iterative impedance is the value of the impedance measured at one pair of terminals of the network when the 

other pair of terminals is terminated with an impedance of the same value. For 

example, the impedance looking into input terminals is 100 Ω when output 

terminals arc terminated at 100 Ω and the impedance looking into output terminals 

is 200 Ω when input terminals are terminated at 200 Ω. So, every asymmetrical 

four-terminal network has two iterative impedances. In a symmetrical network, 

these two impedances are equal. The common value is known as characteristic 

impedance.  

The symmetrical 𝑇 network is shown in fig. (1). The series arm consists of an impedance 𝑍1 and the shunt arm an 

impedance 𝑍2. If the output terminals of 𝑇 section are closed through an impedance 𝑍𝑇. the impedance across the 

input terminals is,  

𝑍𝑖𝑛 =
𝑍1
2
+
𝑍2 (

𝑍1
2 + 𝑍𝑇)

𝑍2 +
𝑍1
2 + 𝑍𝑇

 

If 𝑍𝑖𝑛 = 𝑍𝑇 = 𝑍𝑘 then,  

𝑍𝑘 =
𝑍1
2
+
𝑍2 (

𝑍1
2
+ 𝑍𝑘)

𝑍2 +
𝑍1
2
+ 𝑍𝑘

 

𝑍𝑘 (𝑍2 +
𝑍1
2
+ 𝑍𝑘) =

𝑍1
2
(𝑍2 +

𝑍1
2
+ 𝑍𝑘) + 𝑍2 (

𝑍1
2
+ 𝑍𝑘) 

𝑍𝑘𝑍2 +
𝑍𝑘𝑍1
2

+ 𝑍𝑘
2 =

𝑍1𝑍2
2

+
𝑍1

2

4
+
𝑍1𝑍𝑘
2

+
𝑍2𝑍1
2

+ 𝑍2𝑍𝑘 

𝑍𝑘
2 = 𝑍1𝑍2 +

𝑍1
2

4
 

𝑍𝑘 = √𝑍1𝑍2 +
𝑍1

2

4
 

𝑍𝑘 is termed as the characteristic or iterative impedance of T-section. If 

the values of 𝑍1 and 𝑍2 are known, the value of 𝑍𝑘 can be calculated. 

To find out an expression for the propagation constant, we terminate 

the T section by its characteristic impedance 𝑍𝑘 . Now the input 

impedance 𝑍𝑖𝑛 will also be equal to 𝑍𝑘. So, if we connect the generator 

of e.m.f. E with internal impedance 𝑍𝑘 at the input and terminate the 

Fig. 1 

Fig. 2 

(1) 

(2) 



12           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-2 / 2020 

output with 𝑍𝑘 , the section will be properly matched. This gives the maximum power output to the load. As shown 

in fig. 2, let the input and output currents be 𝐼1 and 𝐼2 respectively. Applying Kirchhoff’s second law to mesh 2, we 

get  

𝐼2
𝑍1
2
+ 𝐼2𝑍𝑘 − (𝐼1 − 𝐼2)𝑍2 = 0 

𝐼2
𝑍1
2
+ 𝐼2𝑍𝑘 = 𝐼1𝑍2 − 𝐼2𝑍2 

𝐼1
𝐼2
=

𝑍1
2 + 𝑍𝑘 + 𝑍2

𝑍2
 

 

We know that 
𝐼1

𝐼2
= 𝑒𝛾 where 𝛾 is known as propagation constant. Hence, 

𝑒𝛾 =

𝑍1
2 + 𝑍𝑘 + 𝑍2

𝑍2
 

𝑒𝛾 = 1 +
𝑍1
2𝑍2

+
𝑍𝑘
𝑍2

 

𝛾 = 𝑙𝑛 (1 +
𝑍1
2𝑍2

+
𝑍𝑘
𝑍2
) 

Also  

𝑒−𝛾 =
1

1 +
𝑍1
2𝑍2

+
𝑍𝑘
𝑍2

 

= {(1 +
𝑍1
2𝑍2

) +
𝑍𝑘
𝑍2
}
−1

 

= (1 +
𝑍1
2𝑍2

) −
𝑍𝑘
𝑍2
+⋯…. 

 

𝑒−𝛾 ≈ 1 +
𝑍1
2𝑍2

−
𝑍𝑘
𝑍2

 

From eqs. (3) and (4), we get 

𝑐𝑜𝑠ℎ 𝛾 =
𝑒𝛾 + 𝑒−𝛾

2
=
1 +

𝑍1
2𝑍2

+
𝑍𝑘
𝑍2
+ 1 +

𝑍1
2𝑍2

−
𝑍𝑘
𝑍2

2
 

𝑐𝑜𝑠ℎ 𝛾 = 1 +
𝑍1
2𝑍2

 

And  

(3) 

(4) 

(5) 
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𝑠𝑖𝑛ℎ 𝛾 =
𝑒𝛾 − 𝑒−𝛾

2
=
1 +

𝑍1
2𝑍2

+
𝑍𝑘
𝑍2
− 1 −

𝑍1
2𝑍2

+
𝑍𝑘
𝑍2

2
=
𝑍𝑘
𝑍2

 

𝑠𝑖𝑛ℎ 𝛾 =
𝑍𝑘
𝑍2

 

 Thus if 𝑍𝑘 and 𝛾 are given, the values of 𝑍1 and 𝑍2 can be calculated with the help of eqs. (5) and (6). 

 

Characteristic Impedance and Propagation Constant of 𝝅 Sections 

The π network is shown in fig.1. If the output terminals of the π section are closed through an 

impedance 𝑍𝜋, the impedance across the input terminals is  

𝑍𝑖𝑛 =
2𝑍2 (𝑍1 +

2𝑍2𝑍𝜋
2𝑍2 + 𝑍𝜋

)

2𝑍2 + 𝑍1 +
2𝑍2𝑍𝜋
2𝑍2 + 𝑍𝜋

 

If  𝑍𝑖𝑛 = 𝑍𝜋 = 𝑍′𝑘 

𝑍′𝑘 =
2𝑍2 (𝑍1 +

2𝑍2𝑍′𝑘
2𝑍2 + 𝑍′𝑘

)

2𝑍2 + 𝑍1 +
2𝑍2𝑍′𝑘
2𝑍2 + 𝑍′𝑘

 

𝑍′𝑘2𝑍2 + 𝑍′𝑘𝑍1 +
2𝑍2𝑍′𝑘

2

2𝑍2 + 𝑍′𝑘
= 2𝑍2𝑍1 +

4𝑍2
2𝑍′𝑘

2𝑍2 + 𝑍′𝑘
 

𝑍′𝑘2𝑍2(2𝑍2 + 𝑍′𝑘) + 𝑍′𝑘𝑍1(2𝑍2 + 𝑍′𝑘) + 2𝑍2𝑍′𝑘
2
= 2𝑍2𝑍1(2𝑍2 + 𝑍′𝑘) + 4𝑍2

2𝑍′𝑘 

4𝑍2
2𝑍′𝑘 + 2𝑍2𝑍′𝑘

2
+ 2𝑍1𝑍2𝑍′𝑘 + 𝑍1𝑍′𝑘

2
+ 2𝑍2𝑍′𝑘

2
= 4𝑍1𝑍2

2 + 2𝑍1𝑍2𝑍′𝑘 + 4𝑍2
2𝑍′𝑘 

𝑍1𝑍′𝑘
2
+ 4𝑍2𝑍′𝑘

2
= 4𝑍1𝑍2

2 

(𝑍1 + 4𝑍2)𝑍′𝑘
2
= 4𝑍1𝑍2

2 

𝑍′𝑘 = √
4𝑍1𝑍2

2

𝑍1 + 4𝑍2
 

𝑍′𝑘 = √
𝑍1𝑍2

1 +
𝑍1
4𝑍2

 

𝑍′𝑘 is called the iterative impedance of 𝜋 section. In order to find out the propagation constant of 𝜋 -section. we 

connect a generator of e.m.f. E with internal impedance 𝑍′𝑘 at input terminals and terminate the 𝜋 -section by the 

characteristic impedance 𝑍′𝑘 as shown in fig. (2). Let 𝐼1 and 𝐼2 he the input and output currents. Applying 

Kirchhoff’s second law to mesh 3. we get  

(6) 

Fig. 1 

(1) 
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𝐼2𝑍′𝑘 − (𝐼 − 𝐼2)2𝑍2 = 0 

𝐼2𝑍′𝑘 − 2𝐼𝑍2 + 2𝐼2𝑍2 = 0 

𝐼2 =
2𝐼𝑍2

𝑍′𝑘 + 2𝑍2
 

Applying Kirchhoff’s second law to mess 2, we have  

𝐼𝑍1 + (𝐼 − 𝐼2)2𝑍2 − (𝐼1 − 𝐼)2𝑍2 = 0 

𝐼𝑍1 + 2𝐼𝑍2 − 2𝐼2𝑍2 − 2𝐼1𝑍2 + 2𝐼𝑍2 = 0 

𝐼𝑍1 + 4𝐼𝑍2 − 2𝐼2𝑍2 − 2𝐼1𝑍2 = 0 

Applying eqn.3 we get, 

𝐼𝑍1 + 4𝐼𝑍2 −
4𝐼𝑍2

2

𝑍′𝑘 + 2𝑍2
− 2𝐼1𝑍2 = 0 

𝐼(𝑍1𝑍′𝑘 + 2𝑍1𝑍2 + 4𝑍2𝑍′𝑘 + 8𝑍2
2 − 4𝑍2

2)

𝑍′𝑘 + 2𝑍2
= 2𝐼1𝑍2 

𝐼1 =
𝐼{2𝑍1𝑍2 + 4𝑍2

2 + (𝑍1 + 4𝑍2)𝑍′𝑘}

2𝑍2(𝑍′𝑘 + 2𝑍2)
 

From eqn. 3 and 4 we can write  

  
𝐼1
𝐼2
=

𝐼{2𝑍1𝑍2 + 4𝑍2
2 + (𝑍1 + 4𝑍2)𝑍′𝑘}

2𝑍2(𝑍′𝑘 + 2𝑍2)
2𝐼𝑍2

𝑍′𝑘 + 2𝑍2

 

  
𝐼1
𝐼2
=
2𝑍1𝑍2 + 4𝑍2

2 + (𝑍1 + 4𝑍2)𝑍′𝑘

4𝑍2
2  

= 1 +
𝑍1
2𝑍2

+
(𝑍1 + 4𝑍2)𝑍′𝑘

4𝑍2
2  

= 1 +
𝑍1
2𝑍2

+
(𝑍1 + 4𝑍2)

4𝑍2
2

√
4𝑍1𝑍2

2

𝑍1 + 4𝑍2
 

= 1 +
𝑍1
2𝑍2

+
1

𝑍2
√
(𝑍1 + 4𝑍2)

24𝑍1𝑍2
2

(4𝑍2)
2(𝑍1 + 4𝑍2)

 

= 1 +
𝑍1
2𝑍2

+
1

𝑍2
√
(𝑍1 + 4𝑍2)𝑍1

4
 

Fig. 2 

(3) 

(4) 
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= 1 +
𝑍1
2𝑍2

+
1

𝑍2
√𝑍1𝑍2 +

𝑍1
2

4
 

= 1 +
𝑍1
2𝑍2

+
𝑍𝑘
𝑍2

 

∴              𝑒𝛾𝜋 = 𝑒𝛾𝑇  

Hence the propagation constant of 𝜋 -section is the same as that of a T-section.  

 

 

Filter Fundamentals: Pass and Stop Bands  

Ideally, it is desired that a filter network transmits or passes the desired frequency band without loss, whereas it 

should stop or completely attenuate all undesired frequencies. The propagation constant 𝛾 = 𝛼 + 𝑗𝛽, being a 

function of frequency, can supply information on the ability of the filter to perform as desired. If 𝛼 = 0 or 𝐼1 = 𝐼2 

then there is no attenuation, only a phase shift, in transmitting a signal through the filter, and operation is in a pass 

band of frequencies. When 𝛼 has a positive value, then 𝐼2 is smaller in magnitude than 𝐼1, attenuation has occurred 

and operation is in attenuation or stop band of frequencies.  

We know the formula    

𝑠𝑖𝑛ℎ
𝛾

2
= √

1

2
(𝑐𝑜𝑠ℎ 𝛾 − 1) 

Using the value of 𝑐𝑜𝑠ℎ 𝛾 previous section, 𝑐𝑜𝑠ℎ 𝛾 = 1 +
𝑍1

2𝑍2
, we can write  

𝑠𝑖𝑛ℎ
𝛾

2
= √

1

2
(1 +

𝑍1
2𝑍2

− 1) 

𝑠𝑖𝑛ℎ
𝛾

2
= √

𝑍1
4𝑍2

 

It will first be assumed that the network contains only pure reactances, and thus 
𝑍1

4𝑍2
 will be real, and either positive 

or negative, depending on the type of reactance used for 𝑍1 and 𝑍2. Expanding gives  

𝑠𝑖𝑛ℎ
𝛼 + 𝑗𝛽

2
= 𝑠𝑖𝑛ℎ (

𝛼

2
+
𝑗𝛽

2
) = √

𝑍1
4𝑍2

 

𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠ℎ (

𝑗𝛽

2
) + 𝑐𝑜𝑠ℎ (

𝛼

2
) 𝑠𝑖𝑛ℎ (

𝑗𝛽

2
) = √

𝑍1
4𝑍2

 

(5) 
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𝒔𝒊𝒏𝒉(
𝜶

𝟐
) 𝒄𝒐𝒔 (

𝜷

𝟐
) + 𝒋 𝒄𝒐𝒔𝒉(

𝜶

𝟐
) 𝒔𝒊𝒏 (

𝜷

𝟐
) = √

𝒁𝟏
𝟒𝒁𝟐

 

as an equation containing much information.  

 

If 𝒁𝟏 and 𝒁𝟐 are the same type of reactance then 
𝑍1

4𝑍2
> 0, or the ratio 

𝑍1

4𝑍2
 is positive and real. This requires that 

𝑠𝑖𝑛ℎ
𝛾

2
  be real, which means that the imaginary term in Eq. 1 must equal zero and that  

  

 

(a) 𝑐𝑜𝑠ℎ (
𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) = 0  

(b) 𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) = √

𝑍1

4𝑍2
 

are simultaneously satisfied. From (a),  𝑠𝑖𝑛 (
𝛽

2
) = 0    

𝛽

2
= 𝑛𝜋 

where n = 0, 1, 2, . .  

From (b), since 𝑐𝑜𝑠 (
𝛽

2
) = 1, then  𝑠𝑖𝑛ℎ (

𝛼

2
) = √

𝑍1

4𝑍2
  

and the attenuation will be given by  

𝛼 = 2 𝑠𝑖𝑛ℎ−1√
𝑍1
4𝑍2

 

Thus, the condition that  
𝑍1

4𝑍2
> 0  implies a stop or attenuation band of frequencies. 

 

If 𝒁𝟏 and 𝒁𝟐 are opposite types of reactance then 
𝑍1

4𝑍2
 is negative, 

𝑍1

4𝑍2
< 0, and the radical of Eq. 1 is imaginary. 

The real term in Eq. 1 must then be zero, so that 

(c) 𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) = 0  

(d) 𝑐𝑜𝑠ℎ (
𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) = √

𝑍1

4𝑍2
 

must be satisfied. Two conditions are possible from the above:  

i.  𝑠𝑖𝑛ℎ (
𝛼

2
) = 0;      𝛼 = 0;         therefore 𝑐𝑜𝑠ℎ (

𝛼

2
) = 1 

(1) 

[∵ 𝑐𝑜𝑠ℎ−10 = 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 ] 

(2) 
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So, from (d),        𝑠𝑖𝑛 (
𝛽

2
) = √

𝑍1

4𝑍2
 

This condition leads to a pass band, or region of zero attenuation, which is limited by the upper limit on the sine, or 

by 𝑠𝑖𝑛 (
𝛽

2
) = 1, or it is required that  

−1 <
𝑍1
4𝑍2

< 0 

The phase angle in this pass band will be given by  

      𝛽 = 2 𝑠𝑖𝑛−1√
𝑍1
4𝑍2

 

 

ii. 𝑐𝑜𝑠 (
𝛽

2
) = 0;        𝛽 = (2𝑛 − 1)𝜋;         therefore 𝑠𝑖𝑛 (

𝛽

2
) = ±1 

So, from (d),         𝑐𝑜𝑠ℎ (
𝛼

2
) = √

𝑍1

4𝑍2
 

This condition leads to a stop or attenuation band- since 𝛼 ≠ 0. The phase angle is 𝜋, and the attenuation is given 

by  

        𝛼 = 2 𝑐𝑜𝑠ℎ−1√
𝑍1
4𝑍2

 

Because the hyperbolic cosine has no value below unity, it appears that the region in which condition ii applies is a 

stop band where  

𝑍1
4𝑍2

< −1 

Values of 
𝑍1

4𝑍2
 can then be classified into three regions, with corresponding values of 𝛼 and 𝛽, these regions 

being bounded by  
𝑍1

4𝑍2
  values of +∞, 0,−1 and −∞ as given below:  

𝒁𝟏
𝟒𝒁𝟐

= +∞   𝒕𝒐     𝟎 𝟎    𝒕𝒐  − 𝟏 −𝟏    𝒕𝒐   − ∞ 

Reactance type Same Opposite Opposite 

Band Stop Pass Stop 

𝜶 2 𝑠𝑖𝑛ℎ−1√
𝑍1
4𝑍2

 0 2 𝑐𝑜𝑠ℎ−1√
𝑍1
4𝑍2

 

𝜷 𝜋 2 𝑠𝑖𝑛−1√
𝑍1
4𝑍2

 𝜋 

(3) 

[∵ 𝑤𝑒 𝑎𝑟𝑒 𝑖𝑛 
𝑍1
4𝑍2

< 0 𝑟𝑒𝑔𝑖𝑜𝑛 ] 

(4) 
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The frequencies at which the network changes from a pass network to a stop network, or vice versa, are called 

cutoff frequencies. These frequencies occur when  

𝒁𝟏
𝟒𝒁𝟐

= 𝟎        𝒐𝒓        𝒁𝟏 = 𝟎   

𝒁𝟏
𝟒𝒁𝟐

= −𝟏        𝒐𝒓         𝒁𝟏 = −𝟒𝒁𝟐 

where 𝑍1 and 𝑍2 are opposite types of reactance. Since 𝑍1 and 𝑍2 may have several configurations, as L and C 

elements, or as parallel and series combinations, a variety of types of performance are possible. The elements 

considered above were assumed pure reactances, and design is ordinarily carried out on this basis. Measurements 

of actual performance are then made and adjustments are introduced into the design to compensate for deviation of 

the results from the ideal. In addition to minimizing the losses of physical elements, it is also necessary to reduce 

stray electric and magnetic couplings between elements to obtain more nearly the predicted performance. 

 

The Constant-K Low-Pass Filter 

 If 𝑍1 and 𝑍2 of a reactance network are 

unlike reactance arms, then  

𝑍1𝑍2 = 𝑘
2 

Where 𝑘 is a constant independent of 

frequency. Networks or filter sections for 

which this relation holds are called constant-

k filters. As a special case, let 𝑍1 = 𝑗𝜔𝐿 and 

𝑍2 =
1

𝑗𝜔𝐶
=

−𝑗

𝜔𝐶
, then the product  

𝑍1𝑍2 = 𝑗𝜔𝐿
−𝑗

𝜔𝐶
=
𝐿

𝐶
= 𝑅𝑘

2 

The term 𝑅𝑘 is used since 𝑘 must be real if 𝑍1 

and 𝑍2 are of the opposite type. A T section 

so designed would appear as Fig. 1 (a). 

 

The reactance of 𝑍1 and 𝑍2  will vary with 

frequency as sketched at (b), Fig. 1. The curve 

representing −4𝑍2, maybe drawn and 

compared with the curve for 𝑍1. We know that a pass band starts at the frequency at which 𝑍1 = 0 and runs to the 

frequency at which 𝑍1 = −4𝑍2. Thus, the reactance curves show that a pass band starts at 𝑓 =  0 and continues to 

some higher frequency 𝑓𝑐. All frequencies above 𝑓𝑐 lie in a stop, or attenuation, band. Thus, the network is called a 

low-pass filter. The cutoff frequency 𝑓𝑐 maybe readily determined, since at that point  

𝑍1 = −4𝑍2 

(5) 

(6) 

Fig. 1: (a) Low-pass filter section; (b) reactance curves 

demonstrating that (a) is a low-pass section or has a pass band 

between 𝑍1 = 0 and 𝑍1 = −4𝑍2. 

(1) 
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𝑗𝜔𝑐𝐿 = 4
𝑗

𝜔𝑐𝐶
 

𝜔𝑐 = √
4

𝐿𝐶
 

2𝜋𝑓𝑐 = √
4

𝐿𝐶
 

𝑓𝑐 =
1

𝜋√𝐿𝐶
 

 

This expression may be used to develop certain relations applicable to the low-pass network. Then  

𝑠𝑖𝑛ℎ
𝛾

2
 may be evaluated as  

𝑠𝑖𝑛ℎ
𝛾

2
= √

𝑍1
4𝑍2

= √
𝑗𝜔𝐿

4
−𝑗
𝜔𝐶

= √−
𝜔2𝐿𝐶

4
= 𝑗

𝜔√𝐿𝐶

2
= 𝑗

2𝜋𝑓√𝐿𝐶

2
 

and in view of Eq. 2 this is  

𝑠𝑖𝑛ℎ
𝛾

2
= 𝑗

𝑓

𝑓𝑐
 

𝑠𝑖𝑛ℎ (
𝛼

2
+
𝑗𝛽

2
) = 𝑗

𝑓

𝑓𝑐
 

𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠ℎ (

𝑗𝛽

2
) + 𝑐𝑜𝑠ℎ (

𝛼

2
) 𝑠𝑖𝑛ℎ (

𝑗𝛽

2
) = 𝑗

𝑓

𝑓𝑐
 

𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) + 𝑗 𝑐𝑜𝑠ℎ (

𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) = 𝑗

𝑓

𝑓𝑐
 

∴            𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) = 0 

𝑎𝑛𝑑     𝑐𝑜𝑠ℎ (
𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) =

𝑓

𝑓𝑐
 

Then if the frequency 𝑓 is in the pass band, then 𝛼 = 0. So that −1 <
𝑍1

4𝑍2
< 0,     i.e.,    1 >

𝑓

𝑓𝑐
> 0,      then from 

eqn. (4) 

 

𝑠𝑖𝑛 (
𝛽

2
) =

𝑓

𝑓𝑐
 

𝛽 = 2 𝑠𝑖𝑛−1 (
𝑓

𝑓𝑐
) 

(2) 

−1 <
𝑍1
4𝑍2

< 0 

−1 < (𝑗
𝑓

𝑓𝑐
)
2

< 0 

−1 < −(
𝑓

𝑓𝑐
)
2

< 0 

1 > (
𝑓

𝑓𝑐
)
2

> 0 

1 >
𝑓

𝑓𝑐
> 0 

(5) 

(3) 

(4) 
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Whereas if frequency 𝑓 is in the attenuation band, then 𝛼 ≠ 0. So that 
𝑍1

4𝑍2
< −1,  or 

𝑓

𝑓𝑐
> 1, then from eqn. (3) 

𝑐𝑜𝑠 (
𝛽

2
) = 0;    

𝛽

2
=
𝜋

2
;        𝛽 = 𝜋         

and using this in eqn. (4) 

𝑐𝑜𝑠ℎ (
𝛼

2
) =

𝑓

𝑓𝑐
 

𝛼 = 2 𝑐𝑜𝑠ℎ−1 (
𝑓

𝑓𝑐
) 

thereby allowing determination of 𝛼 and 𝛽. The variation of 𝛼 and 𝛽 is plotted in Fig. 2 as a function of 
𝑓

𝑓𝑐
. This 

method shows that the attenuation 𝛼 is zero throughout the pass hand but rises gradually from the cutoff frequency 

at 
𝑓

𝑓𝑐
= 1 to a value of ∞ at infinite frequency. The phase shift 𝛽 is zero at zero frequency and increases gradually 

through the pass hand, reaching 𝜋 at 𝑓𝑐 and remaining at 𝜋 for all higher frequencies.  

 

Fig. 3: Variation of 𝛼, 𝛽 and real part of ZT with frequency for the low-pass filter. 

 

The characteristic impedance of a T section was obtained as  

Fig. 2: Variation of 𝛼 and 𝛽 with frequency for the 

low-pass section 

(6) 
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𝑍𝑇 = √𝑍1𝑍2 +
𝑍1

2

4
= √𝑍1𝑍2 (1 +

𝑍1
4𝑍2

) 

𝑍𝑇 = √𝑗𝜔𝐿 (
−𝑗

𝜔𝐶
){1 +

𝑗𝜔𝐿

4 (
−𝑗
𝜔𝐶)

} 

𝑍𝑇 = √
𝐿

𝐶
(1 −

𝜔2𝐿𝐶

4
) 

𝑍𝑇 = √
𝐿

𝐶
(1 − 𝜋2𝑓2𝐿𝐶) 

𝑍𝑇 = √
𝐿

𝐶
(1 −

𝑓2

𝑓𝑐
2) 

𝑍𝑇 = 𝑅𝑘√1 − (
𝑓

𝑓𝑐
)
2

 

It may be seen that 𝑍𝑇 varies throughout the pass band, reaching a value of zero at cutoff, then becomes imaginary 

in the attenuation band, rising to infinite reactance at infinite frequency.  The characteristic impedance 𝑍𝑇 is real if 

𝑓 < 𝑓𝑐 and imaginary if 𝑓 > 𝑓𝑐.  

 

The Constant-K High-Pass Filter  

If 𝑍1 and 𝑍2 of a reactance network are unlike 

reactance arms, then  

𝑍1𝑍2 = 𝑘
2 

Where 𝑘 is a constant independent of frequency. 

Networks or filter sections for which this 

relation holds are called constant-k filters. As a 

special case, let𝑍1 =
1

𝑗𝜔𝐶
=

−𝑗

𝜔𝐶
 and 𝑍2 = 𝑗𝜔𝐿, 

then the product  

𝑍1𝑍2 =
−𝑗

𝜔𝐶
𝑗𝜔𝐿 =

𝐿

𝐶
= 𝑅𝑘

2 

and the filter design obtained will be of the 

constant-k type. The T section will then appear as Fig. 1(a). The reactance of 𝑍1 and 𝑍2  are sketched as functions 

of frequency in Fig.1(b) and 𝑍1 is compared with − 4𝑍2  showing a cutoff frequency at the point at which 𝑍1 =

−4𝑍2 , with a pass band from that frequency to infinity where 𝑍1 = 0. The network is thus a high-pass filter. All 

[𝑈𝑠𝑖𝑛𝑔 𝑒𝑞𝑛. 2 (𝑓𝑐
2 =

1

𝜋2𝐿𝐶
)] 

(1) 

Fig.1: (a) High-pass filter section; (b) reactance curves 

demonstrating that (a) is a high-pass section or lists a pas band 

between 𝑍1 = 0  and  𝑍1 = −4𝑍2  
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frequencies below 𝑓𝑐 lie in an attenuation, 

or stop, band. The cutoff frequency is 

determined as the frequency at which 

𝑍1 = −4𝑍2   

𝑗

𝜔𝑐𝐶
= 4𝑗𝜔𝑐𝐿 

𝜔𝑐 = √
1

4𝐿𝐶
 

2𝜋𝑓𝑐 = √
1

4𝐿𝐶
 

𝑓𝑐 =
1

4𝜋√𝐿𝐶
 

This expression may be used to develop certain relations applicable to the low-pass network. Then  

𝑠𝑖𝑛ℎ
𝛾

2
 may be evaluated as  

𝑠𝑖𝑛ℎ
𝛾

2
= √

𝑍1
4𝑍2

= √
−𝑗
𝜔𝐶
4𝑗𝜔𝐿

= √−
1

4𝜔2𝐿𝐶
= 𝑗

1

2𝜔√𝐿𝐶
= 𝑗

1

4𝜋𝑓√𝐿𝐶
 

and in view of Eq. 2 this is  

𝑠𝑖𝑛ℎ
𝛾

2
= 𝑗

𝑓𝑐
𝑓

 

𝑠𝑖𝑛ℎ (
𝛼

2
+
𝑗𝛽

2
) = 𝑗

𝑓𝑐
𝑓

 

𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠ℎ (

𝑗𝛽

2
) + 𝑐𝑜𝑠ℎ (

𝛼

2
) 𝑠𝑖𝑛ℎ (

𝑗𝛽

2
) = 𝑗

𝑓𝑐
𝑓

 

𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) + 𝑗 𝑐𝑜𝑠ℎ (

𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) = 𝑗

𝑓𝑐
𝑓

 

∴            𝑠𝑖𝑛ℎ (
𝛼

2
) 𝑐𝑜𝑠 (

𝛽

2
) = 0 

𝑎𝑛𝑑     𝑐𝑜𝑠ℎ (
𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) =

𝑓𝑐
𝑓

 

Then if the frequency 𝑓 is in the pass band, then 𝛼 = 0. So that −1 <
𝑍1

4𝑍2
< 0,     i.e.,     1 >

𝑓𝑐

𝑓
> 0,     then from 

eqn. (4) 

 

(2) 

−1 <
𝑍1
4𝑍2

< 0 

−1 < (𝑗
𝑓𝑐
𝑓
)
2

< 0 

−1 < −(
𝑓𝑐
𝑓
)
2

< 0 

1 > (
𝑓𝑐
𝑓
)
2

> 0 

1 >
𝑓𝑐
𝑓
> 0 

(5) 

(3) 

(4) 
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𝑠𝑖𝑛 (
𝛽

2
) =

𝑓𝑐
𝑓

 

𝛽 = 2 𝑠𝑖𝑛−1 (
𝑓𝑐
𝑓
) 

Whereas if frequency 𝑓 is in the attenuation band, then 𝛼 ≠ 0. So that 
𝑍1

4𝑍2
< −1,  or 

𝑓𝑐

𝑓
> 1, then from eqn. (3) 

𝑐𝑜𝑠 (
𝛽

2
) = 0;    

𝛽

2
=
𝜋

2
;        𝛽 = 𝜋         

and using this in eqn. (4) 

𝑐𝑜𝑠ℎ (
𝛼

2
) =

𝑓𝑐
𝑓

 

𝛼 = 2 𝑐𝑜𝑠ℎ−1 (
𝑓𝑐
𝑓
) 

 

 

 

 

 

 

 

The region in which 
𝑓𝑐

𝑓
< 1 is a pass band, so that the variation of 𝛾 inside and outside the pass band will be identical 

with the values for the low-pass filter, and the curves of Fig. 2 of the previous section will apply if the abscissa be 

considered as calibrated in terms of 
𝑓𝑐

𝑓
, except that the phase angle 𝛽 will be negative, changing from 0 at the infinite 

frequency or 
𝑓𝑐

𝑓
= 0, to −𝜋 at cutoff or 

𝑓𝑐

𝑓
= 1.  

 

The characteristic impedance of a T section was obtained as  

𝑍𝑇 = √𝑍1𝑍2 +
𝑍1

2

4
= √𝑍1𝑍2 (1 +

𝑍1
4𝑍2

) 

𝑍𝑇 = √(
−𝑗

𝜔𝐶
) 𝑗𝜔𝐿 {1 +

(
−𝑗
𝜔𝐶)

4𝑗𝜔𝐿
} 

(6) 
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𝑍𝑇 = √
𝐿

𝐶
(1 −

1

4𝜔2𝐿𝐶
) 

𝑍𝑇 = √
𝐿

𝐶
(1 −

1

16𝜋2𝑓2𝐿𝐶
) 

𝑍𝑇 = √
𝐿

𝐶
(1 −

𝑓𝑐
2

𝑓2
) 

𝑍𝑇 = 𝑅𝑘√1 − (
𝑓𝑐
𝑓
)
2

 

It may be seen that 𝑍𝑇 varies throughout the pass band, reaching a value of zero at cutoff, then becomes imaginary 

in the attenuation band, rising to infinite reactance at infinite frequency.  The characteristic impedance 𝑍𝑇 is real if 

𝑓 > 𝑓𝑐 and imaginary if 𝑓 < 𝑓𝑐.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[𝑈𝑠𝑖𝑛𝑔 𝑒𝑞𝑛. 2 (𝑓𝑐
2 =

1

16𝜋2𝐿𝐶
 )] 
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𝑋𝑆𝑒𝑟𝑖𝑒𝑠 = 𝜔𝐿 −
1

𝜔𝐶
     

𝑋𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝜔𝐿 (−

1
𝜔𝐶
)

𝜔𝐿 + (−
1
𝜔𝐶
)
=

−
𝐿
𝐶

𝜔𝐿 −
1
𝜔𝐶

 

 

Let, 𝐿 = 2𝐻,    𝜔 = 4𝐻𝑧,       𝐶 =
1

32
𝐹;     [𝜔𝐿 =

1

𝜔𝐶
] 

  

 

𝝎 1 2 3 4 5 6 7 

X 2.1 5.3 13.7 ∞ -17.8 -9.6 -6.8 
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Band Pass Filter 

A band pass filter transmits a certain range of frequencies and attenuates 

all others. Occasionally it is desirable to pass a band of frequencies and 

to attenuate frequencies on both sides of the pass band. The action might 

be thought of as that of low-pass and high-pass filters in series, in which 

the cutoff frequency of the low-pass filter is above the cutoff frequency 

of the high-pass filter, the overlap thus allowing only a band of 

frequencies to pass. Although such a design would function, it is more 

economical to combine the low- and high-pass functions into a single 

filter section.  

Consider the circuit of Fig. 1(a), with a series-resonant series arm and 

an antiresonant shunt arm. In general, the reactance curves show that 

two pass bands might exist. If, however, the antiresonant frequency of 

the shunt arm is made to correspond to the resonant frequency of the 

series arm, the reactance curves become as shown in Fig. 2 and only one 

pass band appears. For this condition of equal resonant frequencies,  

𝜔0𝐿1 =
1

𝜔0𝐶1
 

𝜔0𝐿2 =
1

𝜔0𝐶2
 

𝜔0
2𝐿1𝐶1 = 1 

𝜔0
2𝐿2𝐶2 = 1 

𝜔0
2𝐿1𝐶1 = 1 = 𝜔0

2𝐿2𝐶2 

𝐿1𝐶1 = 𝐿2𝐶2 

The impedances of the arms are  

𝑍1 = 𝑗𝜔𝐿1 −
𝑗

𝜔𝐶1
= 𝑗 (

𝜔2𝐿1𝐶1 − 1

𝜔𝐶1
) 

 

𝑍2 =
𝑗𝜔𝐿2 (−

𝑗
𝜔𝐶2

)

𝑗𝜔𝐿2 + (−
𝑗
𝜔𝐶2

)
= (

𝐿2
𝐶2

𝑗 (𝜔𝐿2 −
1
𝜔𝐶2

)
) = −𝑗 (

𝜔𝐿2
𝜔2𝐿2𝐶2 − 1

) 

 

That a network such as, Fig. 1(a) is still a constant-k filter is easily shown as  

𝑍1𝑍2 = −𝑗 (
𝜔2𝐿1𝐶1 − 1

𝜔𝐶1
) 𝑗 (

𝜔𝐿2
𝜔2𝐿2𝐶2 − 1

) 

= (
𝜔2𝐿1𝐶1 − 1

𝜔𝐶1
) (

𝜔𝐿2
𝜔2𝐿2𝐶2 − 1

) 

Fig. 1: Band-pass filter network; (b) reactance 

curves showing possibility of two bands. 

Fig. 2: Reactance curves for the band-pass 

network when resonant and antiresonant 

frequencies are properly adjusted.  

(1) 

(2) 

(3) 

[
1

𝑗𝜔𝐶2
=

𝑗

𝑗2𝜔𝐶2
] 
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And if 𝐿1𝐶1 = 𝐿2𝐶2, then from above equation 

𝑍1𝑍2 =
𝐿2
𝐶1
=
𝐿1
𝐶2
= 𝑅𝑘

2 

Now we calculate 

𝑍1
𝑍2
=

𝑗 (
𝜔2𝐿1𝐶1 − 1

𝜔𝐶1
)

−𝑗 (
𝜔𝐿2

𝜔2𝐿2𝐶2 − 1
)
 

= −
(𝜔2𝐿1𝐶1 − 1)(𝜔

2𝐿2𝐶2 − 1)

𝜔2𝐿2𝐶1
 

= −
(
𝜔2

𝜔0
2 − 1)(

𝜔2

𝜔0
2 − 1)

𝜔2𝐿2𝐶1
 

= −
(
𝜔2

𝜔0
2 − 1)

2

𝜔2𝐿2𝐶1
 

Thus, the previously developed theory still applies. At the cutoff frequencies,  

𝑍1
4𝑍2

= 0 

And  
𝑍1
4𝑍2

= −1 

If we consider 
𝑍1

4𝑍2
= 0, then 𝑍1 = 𝑗𝜔𝐿1 −

𝑗

𝜔𝐶1
= 0, which is only possible at the resonance frequency. So, 𝜔 = 𝜔0, 

which cannot be critical frequency.  

If we consider 
𝑍1

4𝑍2
= −1, then, 

1

4

(
𝜔2

𝜔0
2 − 1)

2

𝜔2𝐿2𝐶1
= 1 

𝜔4

𝜔0
4
− 2

𝜔2

𝜔0
2
+ 1 = 4𝜔2𝐿2𝐶1 

𝜔4

𝜔0
4
− 2

𝜔2

𝜔0
2
+ 1 =

4𝜔2𝐿2𝐶2𝐶1
𝐶2

 

𝜔4

𝜔0
4
− 2

𝜔2

𝜔0
2
+ 1 =

4𝜔2𝐶1
𝜔0

2𝐶2
 

𝜔4 − 2𝜔2𝜔0
2 (1 +

2𝐶1
𝐶2
) + 𝜔0

4 = 0 

(4) 

[∵ 𝜔0
2 =

1

𝐿1𝐶1
=

1

𝐿2𝐶2
] 

(5) 

(6) 
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The equation gives the critical frequencies:  

𝜔2 =

2𝜔0
2 (1 +

2𝐶1
𝐶2
) ± √4𝜔0

4 (1 +
2𝐶1
𝐶2
)
2

− 4𝜔0
4

2
 

𝜔 = 𝜔0√(1 +
2𝐶1
𝐶2
) ± √(1 +

2𝐶1
𝐶2
)
2

− 1 

If the roots of this equation is 𝜔1 and 𝜔2 then  

𝜔1 = 𝜔0√(1 +
2𝐶1
𝐶2
) + √(1 +

2𝐶1
𝐶2
)
2

− 1 

𝜔2 = 𝜔0√(1 +
2𝐶1
𝐶2
) − √(1 +

2𝐶1
𝐶2
)
2

− 1 

Multiplying the above equations, we get  

𝜔1𝜔2 = 𝜔0
2√{(1 +

2𝐶1
𝐶2
) + √(1 +

2𝐶1
𝐶2
)
2

− 1}{(1 +
2𝐶1
𝐶2
) − √(1 +

2𝐶1
𝐶2
)
2

− 1} 

𝜔1𝜔2 = 𝜔0
2√(1 +

2𝐶1
𝐶2
)
2

− {(1 +
2𝐶1
𝐶2
)
2

− 1} 

𝜔1𝜔2 = 𝜔0
2 

𝜔0 = √𝜔1𝜔2 

Hence, the resonance frequency is the geometric mean of two cut off frequencies. The cut off angular frequencies 

are given by equations (7) and (8). 

 

 

 

(7) 

(8) 

Fig. 3: Representing the behavior of 𝛽, real part of ZT  and 𝛼 
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Band-elimination filters  

If the series- and parallel-tuned arms of the 

band-pass filter are interchanged, the result 

is the band-elimination filter shown at fig.1 

(a). That this circuit does eliminate or 

attenuate a given frequency band is shown 

by the reactance curves for 𝑍1 and −4𝑍2 at 

fig.1 (b). The action may be thought of as 

that of a low-pass filter in parallel with a 

high-paw; section, in which the, cut-off 

frequency of the low-pass filter is below 

that of the high-pass filter,  

As for the band-pass filter, the series and 

shunt arms are made antiresonant and 

resonant at the same frequency 𝑓0.  

If 𝑍1 represents the total series arm impedance and 𝑍2, total shunt arm impedance then,  

 

𝑍1 =
𝑗𝜔𝐿1

1
𝑗𝜔𝐶1

𝑗𝜔𝐿1 +
1

𝑗𝜔𝐶1

 

=

𝐿1
𝐶1

𝑗 (
𝜔2𝐿1𝐶1 − 1

𝜔𝐶1
)

 

𝑍1 =
𝜔𝐿1

𝑗(𝜔2𝐿1𝐶1 − 1)
 

 

𝑍2 = 𝑗𝜔𝐿2 +
1

𝑗𝜔𝐶2
 

𝑍2 = 𝑗 (
𝜔2𝐿2𝐶2 − 1

𝜔𝐶2
) 

 

Now,  

𝑍1𝑍2 =
𝜔𝐿1

𝑗(𝜔2𝐿1𝐶1 − 1)
𝑗 (
𝜔2𝐿2𝐶2 − 1

𝜔𝐶2
) 

=
𝐿1
𝐶2
=
𝐿2
𝐶1
= 𝑅𝑘

2 

Fig. 1: (a) Band-elimination filter; (b) reactance curves showing action of 

band-elimination section.  

 

(1) 

(2) 

(3) 

[∵  𝐿1𝐶1 = 𝐿2𝐶2] 



30           
Md. Saifur Rahman, Lecturer, Department of Physics, University of Rajshahi / 3H / Chapter-2 / 2020 

The arrangement in this type of filter is also same as in band pass filter, i.e., constant 𝑘 filter.  

Now we calculate 

𝑍1
𝑍2
=

𝜔𝐿1
𝑗(𝜔2𝐿1𝐶1 − 1)

𝑗 (
𝜔2𝐿2𝐶2 − 1

𝜔𝐶2
)

 

= −

𝜔𝐿1
(𝜔2𝐿1𝐶1 − 1)

(
𝜔2𝐿2𝐶2 − 1

𝜔𝐶2
)

 

= −

𝜔2𝐿1𝐶1𝐶2
𝐶1

(𝜔2𝐿1𝐶1 − 1)
2

 

= −

𝜔2𝐶2
𝜔0

2𝐶1

(
𝜔2

𝜔0
2 − 1)

2  

 

Thus, the previously developed theory still applies. At the cutoff frequencies,  

𝑍1
4𝑍2

= 0 

And  
𝑍1
4𝑍2

= −1 

If we consider 
𝑍1

4𝑍2
= 0, then 𝑍1 =

𝜔𝐿1

𝑗(𝜔2𝐿1𝐶1−1)
= 0, which is only possible at the resonance frequency. So, 𝜔 = 0.  

If we consider 
𝑍1

4𝑍2
= −1, then, 

1

4

𝜔2𝐶2
𝜔0

2𝐶1

(
𝜔2

𝜔0
2 − 1)

2 = 1 

𝜔2𝐶2
𝜔0

2𝐶1
= 4(

𝜔4

𝜔0
4
− 2

𝜔2

𝜔0
2
+ 1) 

4
𝜔4

𝜔0
4
− 8

𝜔2

𝜔0
2
+ 4 −

𝜔2𝐶2
𝜔0

2𝐶1
= 0 

𝜔4 − 2𝜔2𝜔0
2 +𝜔0

4 −
𝜔2𝜔0

2𝐶2
4𝐶1

= 0 

[∵ 𝜔0
2 =

1

𝐿1𝐶1
=

1

𝐿2𝐶2
] 

(4) 

[∵  𝐿1𝐶1 = 𝐿2𝐶2] 
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𝜔4 − 2𝜔2𝜔0
2 (1 +

𝐶2
8𝐶1

) + 𝜔0
4−= 0 

The equation gives the critical frequencies:  

𝜔2 =

2𝜔0
2 (1 +

𝐶2
8𝐶1

) ± √4𝜔0
4 (1 +

𝐶2
8𝐶1

)
2

− 4𝜔0
4

2
 

𝜔 = 𝜔0√(1 +
𝐶2
8𝐶1

) ± √(1 +
𝐶2
8𝐶1

)
2

− 1 

If the roots of this equation are 𝜔1 and 𝜔2 then  

𝜔1 = 𝜔0√(1 +
𝐶2
8𝐶1

) − √(1 +
𝐶2
8𝐶1

)
2

− 1 

𝜔2 = 𝜔0√(1 +
𝐶2
8𝐶1

) + √(1 +
𝐶2
8𝐶1

)
2

− 1 

Multiplying above equations, we get  

𝜔1𝜔2 = 𝜔0
2√{(1 +

𝐶2
8𝐶1

) − √(1 +
𝐶2
8𝐶1

)
2

− 1}{(1 +
𝐶2
8𝐶1

) + √(1 +
𝐶2
8𝐶1

)
2

− 1} 

𝜔1𝜔2 = 𝜔0
2√(1 +

𝐶2
8𝐶1

)
2

− {(1 +
𝐶2
8𝐶1

)
2

− 1} 

𝜔1𝜔2 = 𝜔0
2 

𝜔0 = √𝜔1𝜔2 

Hence, the resonance frequency is the geometric mean of two cut off frequencies. The cut off angular frequencies 

are given by equations (6) and (7). Thus, the frequencies lying between 𝜔1 𝑎𝑛𝑑 𝜔2 are stopped while those lying 

outside this band are allowed to pass. 

            

 

 

 

(5) 

(6) 

(7) 

Fig. 2: Representing the behavior of real part of 𝛼 and ZT . 
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Filter Design 

Low-Pass Filter Design 

The design of a low-pass filter may be readily carried out. From the relation that at cutoff  

𝑍1  = —4𝑍2  

For low pass filter, 𝑍1arm is inductive and 𝑍2 arm is capacitive. Then it is seen that  

𝜔𝑐𝐿 =
4

𝜔𝑐𝐶
 

2𝜋𝑓𝑐𝐿 =
4

2𝜋𝑓𝑐𝐶
 

𝜋2𝑓𝑐
2𝐿𝐶 = 1 

Where 𝑓𝑐  is the cutoff frequency. 

We know for constant k filters, 

𝑅𝑘
2 =

𝐿

𝐶
, which gives for the value 

of the arms. Inserting the value of C 

in equation 1 we get  

𝜋2𝑓𝑐
2𝐿

𝐿

𝑅𝑘
2 = 1 

𝐿 =
𝑅𝑘
𝜋𝑓𝑐

 

By similar methods, the capacitance is obtained as 

𝜋2𝑓𝑐
2𝐶𝐶𝑅𝑘

2 = 1 

𝐶 =
1

𝜋𝑓𝑐𝑅𝑘
 

Since the design is based on an impedance match at zero frequency only, power transfer to a matched load will drop 

at higher pass-band frequencies.  

 

 

High-Pass Filter Design 

 

The high-pass filter may be designed by again choosing a resistive load 𝑅 equal to 𝑅𝑘 such that  

𝑅𝑘
2 =

𝐿

𝐶
, 

From the relation that at cutoff  

𝑍1  = —4𝑍2  

(1) 

(2) 

(3) 

Fig. 1: (a) Low-pass filter section; (b) reactance curves 

demonstrating that (a) is a low-pass section or has a pass band 

between 𝑍1 = 0 and 𝑍1 = −4𝑍2. 
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For low high pass filter, 𝑍1arm is capacitive and 𝑍2 arm is inductive. Then it is seen that  

1

𝜔𝑐𝐶
= 4𝜔𝑐𝐿 

8𝜋𝑓𝑐𝐿 =
1

2𝜋𝑓𝑐𝐶
 

16𝜋2𝑓𝑐
2𝐿𝐶 = 1 

Where 𝑓𝑐  is the cutoff frequency. We know for constant k filters, 𝑅𝑘
2 =

𝐿

𝐶
, which gives for the value of the arms. 

Inserting the value of C in equation 1 we get  

16𝜋2𝑓𝑐
2𝐿

𝐿

𝑅𝑘
2 = 1 

𝐿 =
𝑅𝑘
4𝜋𝑓𝑐

 

By similar methods, the capacitance is obtained as 

16𝜋2𝑓𝑐
2𝐶𝐶𝑅𝑘

2 = 1 

𝐶 =
1

4𝜋𝑓𝑐𝑅𝑘
 

 

Problem 1: Design a low pass filter having a cut off frequency 𝑓𝑐 = 1000 𝐻𝑧 and a design impedance of 500 Ω. 

Ans: Here  

𝑅𝑘 = √
𝐿

𝐶
= 500 Ω , 𝑓𝑐 = 1000 𝐻𝑧 

∴  𝐿 =
𝑅𝑘
𝜋𝑓𝑐

=
500 

3.1416 × 1000
 𝐻 

=
7

44
𝐻 = 1.59 𝐻 

𝐴𝑛𝑑     𝐶 =
1

𝜋𝑓𝑐𝑅𝑘
=

1

3.1416 × 500 × 1000
=
7

11
𝜇𝐹 

The 𝑇 and 𝜋 sections of this filter are shown in fig below: 

 

 

(1) 

(2) 

(3) 
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Problem 2: Design a high pass filter to have a design impedance of 500 Ω and a cut off frequency 𝑓𝑐 = 1000 𝐻𝑧. 

Ans: Here  

𝑅𝑘 = √
𝐿

𝐶
= 500 Ω , 𝑓𝑐 = 1000 𝐻𝑧 

∴  𝐿 =
𝑅𝑘
4𝜋𝑓𝑐

=
500 

4 × 3.1416 × 1000
 𝐻 

=
7

176
𝐻 = 1.59 𝐻 

𝐴𝑛𝑑     𝐶 =
1

4𝜋𝑓𝑐𝑅𝑘
=

1

4 × 3.1416 × 500 × 1000
=
7

44
𝜇𝐹 

The 𝑇 and 𝜋 sections of this filter are shown in fig below: 

 

 

Disadvantages of Simple Types of Filter 

Filters considered earlier belong to the class of ‘K derived’ or ‘constant K’ filters since their impedances obey the 

relation  

𝑍1𝑍2 = 𝐾
2 

Where K is a constant, independent of frequency. This constant K type filter suffers from two principal 

disadvantages:  

(1) Its characteristic impedance is not sufficiently constant over the pass band but varies with frequency. The 

filter, therefore, can not be terminated correctly throughout the pass band.  

(2) The attenuation does not rise very abruptly at the boundary to the transmission band. In order to overcome 

the inherent limitations of constant K-type, Otto Zobel devised a filter section which he called the ‘m-

derived’ type filter. Such types of filters give practically uniform characteristic impedance over a large part 

of the pass band and at the same time increase the abruptness with which cut-off occurs.  

A high degree of attenuation beyond the cut-off or a constant impedance in the pass band demands a more 

complicated structure. If the constant K section is regarded as the prototype, it is possible to design a section to have 

the same impedance and hence the same pass and attenuation hands but with a different degree of attenuation outside 

the pass band.  
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Introduction to m-Derived Filters (T—SECTION) 

Suppose that T-section, as shown in figure 1, has the series arm modified by some 

constant m. Then if this new section is to have the same impedance 𝑍𝑇 as the 

prototype. the shunt impedance must be modified in the same way. For the 

prototype section,  

𝑍𝑇 = √𝑍1𝑍2 (1 +
𝑍1
4𝑍2

) 

If for this new section 𝑍1
′ = 𝑚𝑍1 and impedance 𝑍𝑇′ = 𝑍𝑇, then  

𝑍𝑇′ = √𝑚𝑍1𝑍2
′ (1 +

𝑚𝑍1
4𝑍2

′ ) 

where 𝑍2
′  is the modified shunt impedance in the new section. If 𝑍𝑇′ = 𝑍𝑇 then 𝑍2

′  

must have the value determined by  

𝑍1𝑍2 (1 +
𝑍1
4𝑍2

) = 𝑚𝑍1𝑍2
′ (1 +

𝑚𝑍1
4𝑍2

′ ) 

𝑍1𝑍2 +
𝑍1

2

4
= 𝑚𝑍1𝑍2

′ +
𝑚2𝑍1

2

4
 

𝑚𝑍1𝑍2
′ = 𝑍1𝑍2 +

𝑍1
2

4
(1 −𝑚2) 

𝑍2
′ =

𝑍2
𝑚
+
(1 −𝑚2)

4𝑚
𝑍1 

and so the derived T section, as shown in fig. 2, has the same impedance as the prototype T section. m must always 

be chosen much that 0 <  𝑚 <  1. Now we shall discuss the pass band limit in this type of filter.  

Pass band limit: For pass band in prototype T section, we know that 
𝑍1

4𝑍2
= 0 𝑜𝑟 − 1. Considering m derived T 

section, we write  

𝑍1
′

4𝑍2
′ =

𝑚𝑍1

4 {
𝑍2
𝑚 +

(1 −𝑚2)
4𝑚 𝑍1}

=
𝑚
𝑍1
𝑍2

4 {
1
𝑚 +

1 −𝑚2

4𝑚 .
𝑍1
𝑍2
}
 

If 
𝑍1

4𝑍2
= 0, then 

𝑍1
′

4𝑍2
′ = 0 

Also if 
𝑍1

4𝑍2
= −1 or 

𝑍1

𝑍2
= −4 then  

𝑍1
′

4𝑍2
′ =

−4𝑚

4 {
1
𝑚 −

1 −𝑚2

𝑚 }
= −1 

(1) 

Fig. 1: Modified prototype T-section 

Fig. 2: m-derived T-section 

(1*) 
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Thus pass hand in m derived T section will be determined by  

𝑍1
′

4𝑍2
′ = 0     𝑎𝑛𝑑    

𝑍1
′

4𝑍2
′ = −1 

Since the pass band limit in the case of 7n-derived T-section is the same as in the case of constant K type, the critical 

frequency of prototype and m-derived filter is the same. The shunt arm is to be chosen in such a way that if it is 

resonant at some frequency of infinite or high attenuation called 𝑓∞ above 𝑓𝑐, This means that at the resonant 

frequency  

|
𝑍2
𝑚
| = |

(1 − 𝑚2)

4𝑚
𝑍1| 

and for low pass filter  

1

2𝜋𝑓∞𝐶𝑚
=
(1 −𝑚2)

4𝑚
2𝜋𝑓∞𝐿 

𝑓∞ =
1

𝜋√(1 −𝑚2)𝐿𝐶
 

We know that the cut-off frequency for the low-pass filter is 

𝑓𝑐 =
1

𝜋√𝐿𝐶
 

so that the Frequency of infinite attenuation will be  

𝑓∞ =
𝑓𝑐

√(1 −𝑚2)
 

from which  

𝑚 = √1 − (
𝑓𝑐
𝑓∞
)
2

 

This equation determines the value of m to be used for a particular 𝑓∞. Similar relations for the high pass filter can 

be derived; they are  

𝑓∞ = 𝑓𝑐√(1 −𝑚
2) 

𝑚 = √1 − (
𝑓∞
𝑓𝑐
)
2

 

The m derived section is designed by following the design of the prototype T section. The variation of attenuation 

over the attenuation band for the low pass m derived section in the stop band is dependent on the sign of reactances  

𝛼 = 2 𝑐𝑜𝑠ℎ−1√
𝑍1
4𝑍2

               𝑜𝑟             𝛼 = 2 𝑠𝑖𝑛ℎ−1√
𝑍1
4𝑍2

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

𝑓𝑐 < 𝑓 < 𝑓∞                                             𝑓∞ < 𝑓 
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For 𝑍1 = 𝑗𝜔𝐿  and 𝑍2 = −
𝑗

𝜔𝐶
 for the prototype, then from Eqn. 1* 

|
𝑍1
′

4𝑍2
′ | = |

𝑚𝑍1

4 {
𝑍2
𝑚
+
(1 −𝑚2)
4𝑚

𝑍1}
| = |

𝑚𝜔𝐿

4 {
1

𝑚𝜔𝐶
−
(1 −𝑚2)
4𝑚

𝜔𝐿}
| 

=
𝑚𝜔𝐿

4 {
1

𝑚𝜔𝐶
−
(1 −𝑚2)
4𝑚

𝜔𝐿}
 

=
𝑚𝜔𝐿

4

{
 
 

 
 

1
𝑚𝜔𝐶

−

𝑓𝑐
2

𝑓∞
2

4𝑚
𝜔𝐿

}
 
 

 
 

 

=
𝑚𝜔𝐿

4

{
 
 

 
 4 − (

𝑓𝑐
2

𝑓∞
2)𝜔

2𝐿𝐶

4𝑚𝜔𝐶

}
 
 

 
 

 

=
𝑚2𝜔2𝐿𝐶

4 − (
𝑓𝑐
2

𝑓∞
2)𝜔

2𝐿𝐶

 

=
𝑚2𝜋2𝑓2𝐿𝐶

4 − (
𝑓𝑐
2

𝑓∞
2)𝜋

2𝑓2𝐿𝐶

 

=

𝑚2 𝑓
2

𝑓𝑐
2

1 − (
𝑓𝑐
2

𝑓∞
2)
𝑓2

𝑓𝑐
2

 

=

𝑚2 𝑓
2

𝑓𝑐
2

1 − (
𝑓2

𝑓∞
2)

 

 

 

 

 

 

∵   𝑓∞ =
𝑓𝑐

√(1 −𝑚2)
 

(1 − 𝑚2) =
𝑓𝑐
2

𝑓∞
2 

∵ 𝑓𝑐 =
1

𝜋√𝐿𝐶
 

𝜋2𝐿𝐶 =
1

𝑓𝑐
2 
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so that for 𝑓𝑐 < 𝑓 < 𝑓∞ 

𝛼 = 2 𝑐𝑜𝑠ℎ−1
𝑚
𝑓
𝑓𝑐

√1 − (
𝑓2

𝑓∞
2)

 

and for 𝑓∞ < 𝑓 

𝛼 = 2 𝑠𝑖𝑛ℎ−1
𝑚
𝑓
𝑓𝑐

√(
𝑓2

𝑓∞
2)− 1

 

From the above expression 𝛼 may be determined. Figure (3) shows a plot of a against 
𝑓

𝑓𝑐
 for 𝑚 =  0.6. It is observed 

that 𝑓∞ = 1.25 times the cut off frequency 𝑓𝑐. The large increase in sharpness of cut off for the m derived section 

over the prototype is apparent. The constant 𝛽 may be determined in the pass band from  

𝛽 = 2 𝑠𝑖𝑛−1
𝑚
𝑓
𝑓𝑐

√1 − (
𝑓2

𝑓∞
2)

 

In the attenuation band, upto 𝑓∞, 𝛽 has 

the value 𝜋. Above 𝑓∞ the value of 𝛽 

drops to zero, because the shunt arm 

becomes inductive above resonance. The 

phase shift of the m derived section is 

plotted as a function of  
𝑓

𝑓𝑐
 in the figure 

(4).  

The sharpness of cutoff increases for 

small values of m, the attenuation 

beyond the point of peak attenuation 

becomes smaller for small m. This 

emphasizes the necessity of 

supplementing the m derived section 

with a prototype section in series to raise 

attenuation for frequencies well remote 

from cut-off.  

 

 

 

Fig. 3: Variation of attenuation for the 

prototype and m-derived section, and the 

composite result of the two in series 

Fig. 4 
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