
2 Stress and infinitesimal strain

2.1 Problem definition

The engineering mechanics problem posed by underground mining is the prediction
of the displacement field generated in the orebody and surrounding rock by any
excavation and ore extraction processes. The rock in which excavation occurs is
stressed by gravitational, tectonic and other forces, and methods exist for determining
the ambient stresses at a mine site. Since the areal extent of any underground mine
opening is always small relative to the Earth’s surface area, it is possible to disregard
the sphericity of the Earth. Mining can then be considered to take place in an infinite
or semi-infinite space, which is subject to a definable initial state of stress.

An understanding of the notions of force, stress and strain is fundamental to a proper
and coherent appreciation of the response of a rock mass to mining activity. It was
demonstrated in Chapter 1 that excavating (or enlarging) any underground opening is
mechanically equivalent to the application, or induction, of a set of forces distributed
over the surfaces generated by excavation. Formation of the opening also induces a set
of displacements at the excavation surface. From a knowledge of the induced surface
forces and displacements, it is possible to determine the stresses and displacements
generated at any interior point in the rock medium by the mining operation.

Illustration of the process of underground excavation in terms of a set of applied
surface forces is not intended to suggest that body forces are not significant in the
performance of rock in a mine structure. No body forces are induced in a rock mass
by excavation activity, but the behaviour of an element of rock in the periphery of
a mine excavation is determined by its ability to withstand the combined effect of
body forces and internal, post-excavation surface forces. However, in many mining
problems, body force components are relatively small compared with the internal
surface forces, i.e. the stress components.

Some mine excavation design problems, such as those involving a jointed rock
mass and low-stress environments, can be analysed in terms of block models and
simple statics. In most deep mining environments, however, the rock mass behaves
as a continuum, at least initially. Prediction of rock mass response to mining there-
fore requires a working understanding of the concepts of force, traction and stress,
and displacement and strain. The following discussion of these issues follows the
treatments by Love (1944) and Jaeger (1969).

In the discussion, the usual engineering mechanics convention is adopted, with
tensile normal stresses considered positive, and the sense of positive shear stress on
any surface determined by the sense of positive normal stress. The geomechanics
convention for the sense of positive stresses will be introduced subsequently.

2.2 Force and stress

The concept of stress is used to describe the intensity of internal forces set up in a
body under the influence of a set of applied surface forces. The idea is quantified by
defining the state of stress at a point in a body in terms of the area intensity of forces
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STRESS AND INFINITESIMAL STRAIN

Figure 2.1 (a) A finite body subject
to surface loading; (b) determination
of the forces, and related quantities,
operating on an internal surface; (c)
specification of the state of stress at a
point in terms of the traction compo-
nents on the face of a cubic free body.

acting on the orthogonally oriented surfaces of an elementary free body centred on the
point. If a Cartesian set of reference axes is used, the elementary free body is a cube
whose surfaces are oriented with their outward normals parallel with the co-ordinate
axes.

Figure 2.1a illustrates a finite body in equilibrium under a set of applied surface
forces, Pj . To assess the state of loading over any interior surface, Si, one could
proceed by determining the load distribution over Si required to maintain equilibrium
of part of the body. Suppose, over an element of surface �A surrounding a point
O, the required resultant force to maintain equilibrium is �R, as shown in Figure
2.1b. The magnitude of the resultant stress �r at O, or the stress vector, is then
defined by

�r = lim
�A→0

�R
�A

If the vector components of �R acting normally and tangentially to �A are �N , �S,
the normal stress component, �n, and the resultant shear stress component, � , at O
are defined by

�n = lim
�A→0

�N

�A
, � = lim

�A→0

�S

�A

The stress vector, �r, may be resolved into components tx , ty, tz directed parallel
to a set of reference axes x, y, z. The quantities tx , ty , tz , shown in Figure 2.1b are
called traction components acting on the surface at the point O. As with the stress
vector, the normal stress, �n, and the resultant shear stress, � , the traction components
are expressed in units of force per unit area. A case of particular interest occurs when
the outward normal to the elementary surface �A is oriented parallel to a co-ordinate
axis, e.g. the x axis. The traction components acting on the surface whose normal is
the x axis are then used to define three components of the state of stress at the point
of interest,

�xx = tx , �xy = ty, �xz = tz (2.1)
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STRESS TRANSFORMATION

In the doubly-subscripted notation for stress components, the first subscript indicates
the direction of the outward normal to the surface, the second the sense of action of
the stress component. Thus �xz denotes a stress component acting on a surface whose
outward normal is the x axis, and which is directed parallel to the z axis. Similarly,
for the other cases where the normals to elements of surfaces are oriented parallel
to the y and z axes respectively, stress components on these surfaces are defined in
terms of the respective traction components on the surfaces, i.e.

�yx = tx , �yy = ty, �yz = tz (2.2)

�zx = tx , �zy = ty, �zz = tz (2.3)

The senses of action of the stress components defined by these expressions are shown
in Figure 2.1c, acting on the visible faces of the cubic free body.

It is convenient to write the nine stress components, defined by equations 2.1, 2.2,
2.3, in the form of a stress matrix [�], defined by

[�] =
⎡
⎣�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎤
⎦ (2.4)

The form of the stress matrix defined in equation 2.4 suggests that the state of stress
at a point is defined by nine independent stress components. However, by consider-
ation of moment equilibrium of the free body illustrated in Figure 2.1c, it is readily
demonstrated that

�xy = �yx , �yz = �zy, �zx = �xz

Thus only six independent stress components are required to define completely the
state of stress at a point. The stress matrix may then be written

[�] =
⎡
⎣�xx �xy �zx

�xy �yy �yz

�zx �yz �zz

⎤
⎦ (2.5)

2.3 Stress transformation

The choice of orientation of the reference axes in specifying a state of stress is
arbitrary, and situations will arise in which a differently oriented set of reference axes
may prove more convenient for the problem at hand. Figure 2.2 illustrates a set of
old (x, y, z) axes and new (l, m, n) axes. The orientation of a particular axis, e.g. the
l axis, relative to the original x, y, z axes may be defined by a row vector (lx , ly , lz)
of direction cosines. In this vector, lx represents the projection on the x axis of a unit
vector oriented parallel to the l axis, with similar definitions for ly and lz . Similarly,
the orientations of the m and n axes relative to the original axes are defined by row
vectors of direction cosines, (mx , my , mz) and (nx , ny , nz) respectively. Also, the state
of stress at a point may be expressed, relative to the l, m, n axes, by the stress matrix
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STRESS AND INFINITESIMAL STRAIN

Figure 2.2 Free-body diagram for
establishing the stress transformation
equations, principal stresses and their
orientations.

[�∗], defined by

[�∗] =
⎡
⎣�ll �lm �nl

�lm �mm �mn

�nl �mn �nn

⎤
⎦

The analytical requirement is to express the components of [�∗] in terms of the
components of [�] and the direction cosines of the l, m, n axes relative to the x, y, z
axes.

Figure 2.2 shows a tetrahedral free body, Oabc, generated from the elementary
cubic free body used to define the components of the stress matrix. The material
removed by the cut abc has been replaced by the equilibrating force, of magnitude
t per unit area, acting over abc. Suppose the outward normal OP to the surface abc
is defined by a row vector of direction cosines (�x , �y , �z). If the area of abc is A,
the projections of abc on the planes whose normals are the x, y, z axes are given,
respectively, by

Area Oac = Ax = A�x

Area Oab = Ay = A�y

Area Obc = Az = A�z

Suppose the traction vector t has components tx , ty, tz . Application of the
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STRESS TRANSFORMATION

equilibrium requirement for the x direction, for example, yields

tx A − �xx A�x − �xy A�y − �zx A�z = 0 (2.6)

or

tx = �xx �x + �xy�y + �zx �z

Equation 2.6 represents an important relation between the traction component, the
state of stress, and the orientation of a surface through the point. Developing the
equilibrium equations, similar to equation 2.6, for the y and z directions, pro-
duces analogous expressions for ty and tz . The three equilibrium equations may
then be written ⎡

⎣ tx

ty

tz

⎤
⎦ =

⎡
⎣�xx �xy �zx

�xy �yy �yz

�zx �yz �zz

⎤
⎦
⎡
⎣�x

�y

�z

⎤
⎦ (2.7)

or

[t] = [�][�] (2.8)

Proceeding in the same way for another set of co-ordinate axes l, m, n maintaining
the same global orientation of the cutting surface to generate the tetrahedral free body,
but expressing all traction and stress components relative to the l, m, n axes, yields
the relations ⎡

⎣ tl
tm
tn

⎤
⎦ =

⎡
⎣�ll �lm �nl

�lm �mm �mn

�nl �mn �nn

⎤
⎦
⎡
⎣�l

�m

�n

⎤
⎦ (2.9)

or

[t∗] = [�∗][�∗] (2.10)

In equations 2.8 and 2.10, [t], [t∗], [�], [�∗] are vectors, expressed relative to the
x, y, z and l, m, n co-ordinate systems. They represent traction components acting on,
and direction cosines of the outward normal to, a surface with fixed spatial orienta-
tion. From elementary vector analysis, a vector [v] is transformed from one set of
orthogonal reference axes x, y, z to another set, l, m, n, by the transformation equation⎡

⎣ vl

vm

vn

⎤
⎦ =

⎡
⎣ lx ly lz

mx my mz

nx ny nz

⎤
⎦
⎡
⎣ vx

vy

vz

⎤
⎦

or

[v∗] = [R][v] (2.11)

In this expression, [R] is the rotation matrix, whose rows are seen to be formed
from the row vectors of direction cosines of the new axes relative to the old axes.
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As discussed by Jennings (1977), a unique property of the rotation matrix is that its
inverse is equal to its transpose, i.e.

[R]−1 = [R]T (2.12)

Returning now to the relations between [t] and [t∗], and [�] and [�∗], the results
expressed in equations 2.11 and 2.12 indicate that

[t∗] = [R][t]

or

[t] = [R]T[t∗]

and

[�∗] = [R][�]

or

[�] = [R]T[�∗]

Then

[t∗] = [R][t]

= [R][�][�]

= [R][�][R]T[�∗]

but since

[t∗] = [�∗][�∗]

then

[�∗] = [R][�][R]T (2.13)

Equation 2.13 is the required stress transformation equation. It indicates that the
state of stress at a point is transformed, under a rotation of axes, as a second-order
tensor.

Equation 2.13 when written in expanded notation becomes⎡
⎣�ll �lm �nl

�lm �mm �mn

�nl �mn �nn

⎤
⎦ =

⎡
⎣ lx ly lz

mx my mz

nx ny nz

⎤
⎦

⎡
⎣�xx �xy �zx

�xy �yy �yz

�zx �yz �zz

⎤
⎦

⎡
⎣ lx mx nx

ly my ny

lz mz nz

⎤
⎦

Proceeding with the matrix multiplication on the right-hand side of this expression,
in the usual way, produces explicit formulae for determining the stress components
under a rotation of axes, given by

�ll = l2
x �xx + l2

y�yy + l2
z �zz + 2(lx ly�xy + lylz�yz + lzlx �zx ) (2.14)

�lm = lx mx �xx + lymy�yy + lzmz�zz + (lx my + lymx )�xy

+ (lymz + lzmy)�yz + (lzmx + lx mz)�zx (2.15)
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PRINCIPAL STRESSES AND STRESS INVARIANTS

Expressions for the other four components of the stress matrix are readily obtained
from these equations by cyclic permutation of the subscripts.

2.4 Principal stresses and stress invariants

The discussion above has shown that the state of stress at a point in a medium may
be specified in terms of six components, whose magnitudes are related to arbitrarily
selected orientations of the reference axes. In some rock masses, the existence of a
particular fabric element, such as a foliation or a schistosity, might define a suitable
direction for a reference axis. Such a feature might also determine a mode of defor-
mation of the rock mass under load. However, in an isotropic rock mass, any choice of
a set of reference axes is obviously arbitrary, and a non-arbitrary way is required for
defining the state of stress at any point in the medium. This is achieved by determining
principal stresses and related quantities which are invariant under any rotations of
reference axes.

In section 2.2 it was shown that the resultant stress on any plane in a body could
be expressed in terms of a normal component of stress, and two mutually orthogonal
shear stress components. A principal plane is defined as one on which the shear stress
components vanish, i.e. it is possible to select a particular orientation for a plane such
that it is subject only to normal stress. The magnitude of the principal stress is that
of the normal stress, while the normal to the principal plane defines the direction of
the principal stress axis. Since there are, in any specification of a state of stress, three
reference directions to be considered, there are three principal stress axes. There are
thus three principal stresses and their orientations to be determined to define the state
of stress at a point.

Suppose that in Figure 2.2, the cutting plane abc is oriented such that the resultant
stress on the plane acts normal to it, and has a magnitude �p. If the vector (�x , �y, �z)
defines the outward normal to the plane, the traction components on abc are defined
by ⎡

⎣ tx

ty

tz

⎤
⎦ = �p

⎡
⎣�x

�y

�z

⎤
⎦ (2.16)

The traction components on the plane abc are also related, through equation 2.7, to
the state of stress and the orientation of the plane. Subtracting equation 2.16 from
equation 2.7 yields the equation⎡

⎣�xx − �p �xy �zx

�xy �yy − �p �yz

�zx �yz �zz − �p

⎤
⎦
⎡
⎣�x

�y

�z

⎤
⎦ = [0] (2.17)

The matrix equation 2.17 represents a set of three simultaneous, homogeneous,
linear equations in �x , �y, �z . The requirement for a non-trivial solution is that the
determinant of the coefficient matrix in equation 2.17 must vanish. Expansion of the
determinant yields a cubic equation in �p, given by

�3
p − I1�2

p + I2�p − I3 = 0 (2.18)
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STRESS AND INFINITESIMAL STRAIN

In this equation, the quantities I1, I2 and I3, are called the first, second and third
stress invariants. They are defined by the expressions

I1 = �xx + �yy + �zz

I2 = �xx �yy + �yy�zz + �zz�xx − (
�2

xy + �2
yz + �2

zx

)
I3 = �xx �yy�zz + 2�xy�yz�zx − (

�xx �2
yx + �yy�2

zx + �zz�
2
xy

)
It is to be noted that since the quantities I1, I2, I3 are invariant under a change of axes,
any quantities derived from them are also invariants.

Solution of the characteristic equation 2.18 by some general method, such as a
complex variable method, produces three real solutions for the principal stresses.
These are denoted �1, �2, �3, in order of decreasing magnitude, and are identified
respectively as the major, intermediate and minor principal stresses.

Each principal stress value is related to a principal stress axis, whose direction
cosines can be obtained directly from equation 2.17 and a basic property of direction
cosines. The dot product theorem of vector analysis yields, for any unit vector of
direction cosines (�x , �y, �z), the relation

�2
x + �2

y + �2
z = 1 (2.19)

Introduction of a particular principal stress value, e.g. �1, into equation 2.17, yields a
set of simultaneous, homogeneous equations in �x1, �y1, �x1. These are the required
direction cosines for the major principal stress axis. Solution of the set of equations
for these quantities is possible only in terms of some arbitrary constant K , defined by

�x1

A
= �y1

B
= �z1

C
= K

where

A =
∣∣∣∣�yy − �1 �yz

�yz �zz − �1

∣∣∣∣
B = −

∣∣∣∣�xy �yz

�zx �zz − �1

∣∣∣∣ (2.20)

C =
∣∣∣∣�xy �yy − �1

�zx �yz

∣∣∣∣
Substituting for �x1, �y1, �z1 in equation 2.19, gives

�x1 = A/(A2 + B2 + C2)1/2

�y1 = B/(A2 + B2 + C2)1/2

�z1 = C/(A2 + B2 + C2)1/2

Proceeding in a similar way, the vectors of direction cosines for the intermediate
and minor principal stress axes, i.e. (�x2, �y2, �z2) and (�x3, �y3, �z3), are obtained
from equations 2.20 by introducing the respective values of �2 and �3.

The procedure for calculating the principal stresses and the orientations of the
principal stress axes is simply the determination of the eigenvalues of the stress matrix,
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DIFFERENTIAL EQUATIONS OF STATIC EQUILIBRIUM

and the eigenvector for each eigenvalue. Some simple checks can be performed to
assess the correctness of solutions for principal stresses and their respective vectors of
direction cosines. The condition of orthogonality of the principal stress axes requires
that each of the three dot products of the vectors of direction cosines must vanish, i.e.

�x1�x2 + �y1�y2 + �z1�z2 = 0

with a similar result for the (2,3) and (3,1) dot products. Invariance of the sum of the
normal stresses requires that

�1 + �2 + �3 = �xx + �yy + �zz

In the analysis of some types of behaviour in rock, it is usual to split the stress
matrix into two components – a spherical or hydrostatic component [�m], and a
deviatoric component [�d]. The spherical stress matrix is defined by

[�m] = �m[I] =
⎡
⎣�m 0 0

0 �m 0
0 0 �m

⎤
⎦

where

�m = I1/3.

The deviator stress matrix is obtained from the stress matrix [�] and the spherical
stress matrix, and is given by

[�d] =
⎡
⎣�xx − �m �xy �zx

�xy �yy − �m �yz

�zx �yz �zz − �m

⎤
⎦

Principal deviator stresses S1, S2, S3 can be established either from the deviator
stress matrix, in the way described previously, or from the principal stresses and the
hydrostatic stress, i.e.

S1 = �1 − �m, etc.

where S1 is the major principal deviator stress.
The principal directions of the deviator stress matrix [�d] are the same as those of

the stress matrix [�].

2.5 Differential equations of static equilibrium

Problems in solid mechanics frequently involve description of the stress distribution
in a body in static equilibrium under the combined action of surface and body forces.
Determination of the stress distribution must take account of the requirement that the
stress field maintains static equilibrium throughout the body. This condition requires
satisfaction of the equations of static equilibrium for all differential elements of the
body.
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STRESS AND INFINITESIMAL STRAIN

Figure 2.3 Free-body diagram for
development of the differential equa-
tions of equilibrium.

Figure 2.3 shows a small element of a body, in which operate body force components
with magnitudes X, Y, Z per unit volume, directed in the positive x, y, z co-ordinate
directions. The stress distribution in the body is described in terms of a set of stress
gradients, defined by ∂�xx/∂x, ∂�xy/∂y, etc. Considering the condition for force
equilibrium of the element in the x direction yields the equation

∂�xx

∂x
· dx · dy dz + ∂�xy

∂y
· dy · dx dz + ∂�zx

∂z
· dz · dx dy + X dx dy dz = 0

Applying the same static equilibrium requirement to the y and z directions, and
eliminating the term dx dy dz, yields the differential equations of equilibrium:

∂�xx

∂x
+ ∂�xy

∂y
+ ∂�zx

∂z
+ X = 0

∂�xy

∂x
+ ∂�yy

∂y
+ ∂�yz

∂z
+ Y = 0 (2.21)

∂�zx

∂x
+ ∂�yz

∂y
+ ∂�zz

∂z
+ Z = 0

These expressions indicate that the variations of stress components in a body under
load are not mutually independent. They are always involved, in one form or another,
in determining the state of stress in a body. A purely practical application of these
equations is in checking the admissibility of any closed-form solution for the stress
distribution in a body subject to particular applied loads. It is a straightforward matter
to determine if the derivatives of expressions describing a particular stress distribution
satisfy the equalities of equation 2.21.

2.6 Plane problems and biaxial stress

Many underground excavation design analyses involving openings where the length
to cross section dimension ratio is high, are facilitated considerably by the relative
simplicity of the excavation geometry. For example, an excavation such as a tunnel of
uniform cross section along its length might be analysed by assuming that the stress
distribution is identical in all planes perpendicular to the long axis of the excavation.
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PLANE PROBLEMS AND BIAXIAL STRESS

Figure 2.4 A long excavation, of
uniform cross section, for which a
contracted form of the stress transfor-
mation equations is appropriate.

Suppose a set of reference axes, x, y, z, is established for such a problem, with the long
axis of the excavation parallel to the z axis, as shown in Figure 2.4. As shown above,
the state of stress at any point in the medium is described by six stress components.
For plane problems in the x, y plane, the six stress components are functions of (x, y)
only. In some cases, it may be more convenient to express the state of stress relative
to a different set of reference axes, such as the l, m, z axes shown in Figure 2.4. If the
angle lOx is �, the direction cosines of the new reference axes relative to the old set
are given by

lx = cos �, ly = sin �, lz = 0

mx = − sin �, my = cos �, mz = 0

Introducing these values into the general transformation equations, i.e. equations
2.14 and 2.15, yields

�ll = �xx cos2 � + �yy sin2 � + 2�xy sin � cos �

�mm = �xx sin2 � + �yy cos2 � − 2�xy sin � cos �

�lm = �xy(cos2 � − sin2 �) − (�xx − �yy) sin � cos � (2.22)

�mz = �yz cos � − �zx sin �

�zl = �yz sin � + �zx cos �

and the �zz component is clearly invariant under the transformation of axes. The
set of equations 2.22 is observed to contain two distinct types of transformation:
those defining �ll , �mm, �lm , which conform to second-order tensor transformation
behaviour, and �mz and �zl , which are obtained by an apparent vector transformation.
The latter behaviour in the transformation is due to the constancy of the orientation
of the element of surface whose normal is the z axis. The rotation of the axes merely
involves a transformation of the traction components on this surface.

For problems which can be analysed in terms of plane geometry, equations 2.22
indicate that the state of stress at any point can be defined in terms of the plane
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Figure 2.5 Problem geometry for
determination of plane principal
stresses and their orientations.

components of stress (�xx , �yy, �xy) and the antiplane components (�zz, �yz, �zx ). In
the particular case where the z direction is a principal axis, the antiplane shear stress
components vanish. The plane geometric problem can then be analysed in terms of
the plane components of stress, since the �zz , component is frequently neglected. A
state of biaxial (or two-dimensional) stress at any point in the medium is defined by
three components, in this case �xx , �yy, �xy .

The stress transformation equations related to �ll , �mm, �lm in equation 2.22, for
the biaxial state of stress, may be recast in the form

�ll = 1
2 (�xx + �yy) + 1

2 (�xx − �yy) cos 2� + �xy sin 2�

�mm = 1
2 (�xx + �yy) − 1

2 (�xx − �yy) cos 2� − �xy sin 2� (2.23)

�lm = �xy cos 2� − 1
2 (�xx − �yy) sin 2�

In establishing these equations, the x, y and l, m axes are taken to have the same
sense of ‘handedness’, and the angle � is measured from the x to the l axis, in a sense
that corresponds to the ‘handedness’ of the transformation. There is no inference
of clockwise or anticlockwise rotation of axes in establishing these transformation
equations. However, the way in which the order of the terms is specified in the
equations, and related to the sense of measurement of the rotation angle �, should be
examined closely.

Consider now the determination of the magnitudes and orientations of the plane
principal stresses for a plane problem in the x, y plane. In this case, the �zz, �yz, �zx

stress components vanish, the third stress invariant vanishes, and the characteristic
equation, 2.18, becomes

�2
p − (�xx + �yy)�p + �xx �yy − �2

xy = 0

Solution of this quadratic equation yields the magnitudes of the plane principal
stresses as

�1,2 = 1
2 (�xx + �yy) ± [

1
4 (�xx − �yy)2 + �2

xy

]1/2
(2.24a)

The orientations of the respective principal stress axes are obtained by establishing
the direction of the outward normal to a plane which is free of shear stress. Suppose
ab, shown in Figure 2.5, represents such a plane. The outward normal to ab is Ol, and
therefore defines the direction of a principal stress, �p. Considering static equilibrium
of the element aOb under forces operating in the x direction:

�p ab cos � − �xx ab cos � − �xy ab sin � = 0

or

tan � = �p − �xx

�xy

i.e.

� = tan−1 �p − �xx

�xy
(2.24b)
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Substitution of the magnitudes �1, �2, determined from equation 2.24a, in equation
2.24b yields the orientations �1, �2 of the principal stress axes relative to the positive
direction of the x axis. Calculation of the orientations of the major and minor plane
principal stresses in this way associates a principal stress axis unambiguously with
a principal stress magnitude. This is not the case with other methods, which employ
the last of equations 2.23 to determine the orientation of a principal stress axis.

It is to be noted that in specifying the state of stress in a body, there has been no
reference to any mechanical properties of the body which is subject to applied load.
The only concept invoked has been that of static equilibrium of all elements of the
body.

2.7 Displacement and strain

Application of a set of forces to a body, or change in its temperature, changes the
relative positions of points within it. The change in loading conditions from the initial
state to the final state causes a displacement of each point relative to all other points.
If the applied loads constitute a self-equilibrating set, the problem is to determine
the equilibrium displacement field induced in the body by the loading. A particu-
lar difficulty is presented in the analysis of displacements for a loaded body where
boundary conditions are specified completely in terms of surface tractions. In this
case, unique determination of the absolute displacement field is impossible, since any
set of rigid-body displacements can be superimposed on a particular solution, and
still satisfy the equilibrium condition. Difficulties of this type are avoided in analysis
by employing displacement gradients as the field variables. The related concept of
strain is therefore introduced to make basically indeterminate problems tractable.

Figure 2.6 shows the original positions of two adjacent particles P(x, y, z) and
Q(x + dx, y + dy, z + dz) in a body. Under the action of a set of applied loads, P
moves to the point P∗(x + ux , y + uy, z + uz), and Q moves to the point Q∗(x + dx +
u∗

x , y + dy + u∗
y, z + dz + u∗

z ). If ux = u∗
x , etc., the relative displacement between P

Figure 2.6 Initial and final positions
of points P, Q, in a body subjected to
strain.
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and Q under the applied load is zero, i.e. the body has been subject to a rigid-body
displacement. The problem of interest involves the case where ux �= u∗

x , etc. The line
element joining P and Q then changes length in the process of load application, and
the body is said to be in a state of strain.

In specifying the state of strain in a body, the objective is to describe the changes in
the sizes and shapes of infinitesimal elements in the loaded medium. This is done by
considering the displacement components (ux , uy, uz) of a particle P, and (u∗

x , u∗
y, u∗

z )
of the adjacent particle Q. Since

u∗
x = ux + dux , where dux = ∂ux

∂x
dx + ∂ux

∂y
dy + ∂ux

∂z
dz

and

u∗
y = uy + duy, where duy = ∂uy

∂x
dx + ∂uy

∂y
dy + ∂uy

∂z
dz

u∗
z = uz + duz, where duz = ∂uz

∂x
dx + ∂uz

∂y
dy + ∂uz

∂z
dz

the incremental displacements may be expressed by⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dux

duy

duz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x

∂ux

∂y

∂ux

∂z
∂uy

∂x

∂uy

∂y

∂uy

∂z
∂uz

∂x

∂uz

∂y

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dx

dy

dz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.25a)

or

[d�] = [D][dr] (2.25b)

In this expression, [dr] represents the original length of the line element PQ, while
[d�] represents the relative displacement of the ends of the line element in deforming
from the unstrained to the strained state.

The infinitesimal relative displacement defined by equation 2.25 can arise from both
deformation of the element of which PQ is the diagonal, and a rigid-body rotation

Figure 2.7 Rigid-body rotation of
an element producing component dis-
placements of adjacent points.

of the element. The need is to define explicitly the quantities related to deformation
of the body. Figure 2.7 shows the projection of the element, with diagonal PQ, on to
the yz plane, and subject to a rigid body rotation �x about the x axis. Since the side
dimensions of the element are dy and dz, the relative displacement components of Q
relative to P are

duy = −�x dz

duz = �x dy
(2.26)

Considering rigid-body rotations �y and �z about the y and z axes, the respective
displacements are

duz = −�y dx

dux = �y dz
(2.27)
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Figure 2.8 Displacement compo-
nents produced by pure longitudinal
strain.

Figure 2.9 Displacement produced
by pure shear strain.

and

dux = −�z dy
duy = �z dx

(2.28)

The total displacement due to the various rigid-body rotations is obtained by addi-
tion of equations 2.26, 2.27 and 2.28, i.e.

dux = −�z dy + �y dz

duy = �z dx − �x dz

duz = −�y dx + �x dy

These equations may be written in the form⎡
⎣ dux

duy

duz

⎤
⎦ =

⎡
⎣ 0 −�z �y

�z 0 −�x

−�z �x 0

⎤
⎦
⎡
⎣dx

dy
dz

⎤
⎦ (2.29a)

or

[d�′] = [Ω][dr] (2.29b)

The contribution of deformation to the relative displacement [d�] is determined
by considering elongation and distortion of the element. Figure 2.8 represents the
elongation of the block in the x direction. The element of length dx is assumed to be
homogeneously strained, in extension, and the normal strain component is therefore
defined by

εxx = dux

dx

Considering the y and z components of elongation of the element in a similar way,
gives the components of relative displacement due to normal strain as

dux = εxx dx

duy = εyy dy

duz = εzz dz

(2.30)

The components of relative displacement arising from distortion of the element
are derived by considering an element subject to various modes of pure shear strain.
Figure 2.9 shows such an element strained in the x, y plane. Since the angle � is
small, pure shear of the element results in the displacement components

dux = � dy

duy = � dx

Since shear strain magnitude is defined by

�xy = �

2
− � = 2�

31



STRESS AND INFINITESIMAL STRAIN

then

dux = 1
2 �xy dy

duy = 1
2 �xy dx

(2.31)

Similarly, displacements due to pure shear of the element in the y, z and z, x planes
are given by

duy = 1
2 �yz dz

duz = 1
2 �yz dy

(2.32)

and

duz = 1
2 �zx dx

dux = 1
2 �zx dz

(2.33)

The total displacement components due to all modes of infinitesimal strain are
obtained by addition of equations 2.30, 2.31, 2.32 and 2.33, i.e.

dux = εxx dx + 1
2 �xy dy + 1

2 �zx dz

duy = 1
2 �xy dx + εyy dy + 1

2 �yz dz

duz = 1
2 �zx dx + 1

2 �yz dy + εzz dz

These equations may be written in the form⎡
⎢⎣

dux

duy

duz

⎤
⎥⎦ =

⎡
⎢⎣

εxx
1
2 �xy

1
2 �zx

1
2 �xy εyy

1
2 �yz

1
2 �zx

1
2 �yz εzz

⎤
⎥⎦
⎡
⎢⎣

dx

dy

dz

⎤
⎥⎦ (2.34a)

or

[d�′′] = [�][dr] (2.34b)

where [�] is the strain matrix.
Since

[d�] = [d�′] + [d�′′]

equations 2.25a, 2.29a and 2.34a yield⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x

∂ux

∂y

∂ux

∂z
∂uy

∂x

∂uy

∂y

∂uy

∂z
∂uz

∂x

∂uz

∂y

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εxx
1
2 �xy

1
2 �zx

1
2 �xy εyy

1
2 �yz

1
2 �zx

1
2 �yz εzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Equating corresponding terms on the left-hand and right-hand sides of this equation,

32



PRINCIPAL STRAINS

gives for the normal strain components

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z
(2.35)

and

∂ux

∂y
= 1

2
�xy − �z

∂uy

∂x
= 1

2
�xy + �z

Thus expressions for shear strain and rotation are given by

�xy = ∂ux

∂y
+ ∂uy

∂x
, �z = 1

2

(
∂uy

∂x
− ∂ux

∂y

)

and, similarly,

�yz = ∂uy

∂z
+ ∂uz

∂y
, �x = 1

2

(
∂uz

∂y
− ∂uy

∂z

)
(2.36)

�zx = ∂uz

∂x
+ ∂ux

∂z
, �y = 1

2

(
∂ux

∂z
− ∂uz

∂x

)

Equations 2.35 and 2.36 indicate that the state of strain at a point in a body is
completely defined by six independent components, and that these are related simply
to the displacement gradients at the point. The form of equation 2.34a indicates that
a state of strain is specified by a second-order tensor.

2.8 Principal strains, strain transformation, volumetric strain
and deviator strain

Since a state of strain is defined by a strain matrix or second-order tensor, determina-
tion of principal strains, and other manipulations of strain quantities, are completely
analogous to the processes employed in relation to stress. Thus principal strains and
principal strain directions are determined as the eigenvalues and associated eigen-
vectors of the strain matrix. Strain transformation under a rotation of axes is defined,
analogously to equation 2.13, by

[�∗] = [R][�][R]T

where [�] and [�∗] are the strain matrices expressed relative to the old and new sets
of co-ordinate axes.

The volumetric strain, �, is defined by

� = εxx + εyy + εzz

The deviator strain matrix is defined in terms of the strain matrix and the volumetric
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strain by

[�] =
⎡
⎣εxx − �/3 �xy �zx

�xy εyy − �/3 �yz

�zx �yz εzz − �/3

⎤
⎦

Plane geometric problems, subject to biaxial strain in the xy plane, for example,
are described in terms of three strain components, εxx , εyy, �xy .

2.9 Strain compatibility equations

Equations 2.35 and 2.36, which define the components of strain at a point, suggest
that the strains are mutually independent. The requirement of physical continuity of
the displacement field throughout a continuous body leads automatically to analytical
relations between the displacement gradients, restricting the degree of independence
of strains. A set of six identities can be established readily from equations 2.35 and
2.36. Three of these identities are of the form

∂2εxx

∂y2
+ ∂2εyy

∂x2
= ∂2�xy

∂x∂y

and three are of the form

2
∂2εxx

∂y∂z
= ∂

∂x

(
−∂�yz

∂x
+ ∂�zx

∂y
+ ∂�xy

∂z

)

These expressions play a basic role in the development of analytical solutions to
problems in deformable body mechanics.

2.10 Stress-strain relations

It was noted previously that an admissible solution to any problem in solid mechanics
must satisfy both the differential equations of static equilibrium and the equations of
strain compatibility. It will be recalled that in the development of analytical descrip-
tions for the states of stress and strain at a point in a body, there was no reference
to, nor exploitation of, any mechanical property of the solid. The way in which
stress and strain are related in a material under load is described qualitatively by its
constitutive behaviour. A variety of idealised constitutive models has been formu-
lated for various engineering materials, which describe both the time-independent and
time-dependent responses of the material to applied load. These models describe re-
sponses in terms of elasticity, plasticity, viscosity and creep, and combinations of these
modes. For any constitutive model, stress and strain, or some derived quantities, such
as stress and strain rates, are related through a set of constitutive equations. Elasticity
represents the most common constitutive behaviour of engineering materials, includ-
ing many rocks, and it forms a useful basis for the description of more complex
behaviour.

In formulating constitutive equations, it is useful to construct column vectors
from the elements of the stress and strain matrices, i.e. stress and strain vectors
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are defined by

[�] =

⎡
⎢⎢⎢⎢⎢⎢⎣

�xx

�yy

�zz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

and [�] =

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

The most general statement of linear elastic constitutive behaviour is a generalised
form of Hooke’s Law, in which any strain component is a linear function of all the
stress components, i.e.⎡

⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�xx

�yy

�zz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.37a)

or

[�] = [S][�] (2.37b)

Each of the elements Si j of the matrix [S] is called a compliance or an elastic
modulus. Although equation 2.37a suggests that there are 36 independent compli-
ances, a reciprocal theorem, such as that due to Maxwell (1864), may be used to
demonstrate that the compliance matrix is symmetric. The matrix therefore contains
only 21 independent constants.

In some cases it is more convenient to apply equation 2.37 in inverse form, i.e.

[�] = [D][�] (2.38)

The matrix [D] is called the elasticity matrix or the matrix of elastic stiffnesses. For
general anisotropic elasticity there are 21 independent stiffnesses.

Equation 2.37a indicates complete coupling between all stress and strain compo-
nents. The existence of axes of elastic symmetry in a body de-couples some of the
stress–strain relations, and reduces the number of independent constants required to
define the material elasticity. In the case of isotropic elasticity, any arbitrarily ori-
ented axis in the medium is an axis of elastic symmetry. Equation 2.37a, for isotropic
elastic materials, reduces to⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −	 −	 0 0 0
−	 1 −	 0 0 0
−	 −	 1 0 0 0

0 0 0 2(1 + 	) 0 0
0 0 0 0 2(1 + 	) 0
0 0 0 0 0 2(1 + 	)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�xx

�yy

�zz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.39)
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The more common statements of Hooke’s Law for isotropic elasticity are readily
recovered from equation 2.39, i.e.

εxx = 1

E
[�xx − 	(�yy + �zz)], etc.

�xy = 1

G
�xy, etc. (2.40)

where

G = E

2(1 + 	)

The quantities E, G, and 	 are Young’s modulus, the modulus of rigidity (or shear
modulus) and Poisson’s ratio. Isotropic elasticity is a two-constant theory, so that de-
termination of any two of the elastic constants characterises completely the elasticity
of an isotropic medium.

The inverse form of the stress–strain equation 2.39, for isotropic elasticity, is given
by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xx

�yy

�zz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E(1 − 	)

(1 + 	)(1 − 2	)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 	/(1 − 	) 	/(1 − 	) 0 0 0

	/(1 − 	) 1 	/(1 − 	) 0 0 0

	/(1 − 	) 	/(1 − 	) 1 0 0 0

0 0 0
(1 − 2	)

2(1 − 	)
0 0

0 0 0 0
(1 − 2	)

2(1 − 	)
0

0 0 0 0 0
(1 − 2	)

2(1 − 	)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.41)

The inverse forms of equations 2.40, usually called Lamé’s equations, are obtained
from equation 2.41, i.e.

Figure 2.10 A transversely isotro-
pic body for which the x, y plane is
the plane of isotropy.

�xx = �� + 2Gεxx , etc.

�xy = G�xy, etc.

where � is Lamé’s constant, defined by

� = 2	G

(1 − 2	)
= 	E

(1 + 	)(1 − 2	)

and � is the volumetric strain.
Transverse isotropic elasticity ranks second to isotropic elasticity in the degree of

expression of elastic symmetry in the material behaviour. Media exhibiting transverse
isotropy include artificially laminated materials and stratified rocks, such as shales.
In the latter case, all lines lying in the plane of bedding are axes of elastic symmetry.
The only other axis of elastic symmetry is the normal to the plane of isotropy. In
Figure 2.10, illustrating a stratified rock mass, the plane of isotropy of the material
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coincides with the x, y plane. The elastic constitutive equations for this material are
given by

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

E1

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −	1 −	2 0 0 0
−	1 1 −	2 0 0 0
−	2 −	2 E1/E2 0 0 0

0 0 0 2(1 + 	1) 0 0
0 0 0 0 E1/G2 0
0 0 0 0 0 E1/G2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�xx

�yy

�zz

�xy

�yz

�zx

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.42)

It appears from equation 2.42 that five independent elastic constants are required
to characterise the elasticity of a transversely isotropic medium: E1 and 	1 define
properties in the plane of isotropy, and E2, 	2, G2 properties in a plane containing the
normal to, and any line in, the plane of isotropy. Inversion of the compliance matrix
in equation 2.42, and putting E1/E2 = n, G2/E2 = m, produces the elasticity matrix
given by

[D] = E2

(1 + 	1)
(
1 − 	1 − 2n 	2

2

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
(
1 − n 	2

2

)
n
(
	1 + n 	2

2

)
n2	2(1 + 	1) 0 0 0

n
(
1 − n 	2

2

)
n2	2(1 + 	1) 0 0 0(

1 − 	2
1

)
0 0 0

0.5 ∗ n∗
symmetric ∗ (1 − 	1 − 2n 	2

2

)
0 0

m(1 + 	1)∗ 0

∗ (1 − 	1 − 2n	2
2

)
m(1 + 	1)∗

∗ (1 − 	1 − 2n	2
2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Although it might be expected that the modulus ratios, n and m, and Poisson’s ratios, 	1

and 	2, may be virtually independent, such is not the case. The requirement for positive
definiteness of the elasticity matrix, needed to assure a stable continuum, restricts
the range of possible elastic ratios. Gerrard (1977) has summarised the published
experimental data on elastic constants for transversely isotropic rock materials and
rock materials displaying other forms of elastic anisotropy, including orthotropy for
which nine independent constants are required.

2.11 Cylindrical polar co-ordinates

A Cartesian co-ordinate system does not always constitute the most convenient sys-
tem for specifying the state of stress and strain in a body, and problem geometry may
suggest a more appropriate system. A cylindrical polar co-ordinate system is used
frequently in the analysis of axisymmetric problems. Cartesian (x, y, z) and cylindrical
polar (r, 
, z) co-ordinate systems are shown in Figure 2.11, together with an ele-
mentary free body in the polar system. To operate in the polar system, it is necessary
to establish equations defining the co-ordinate transformation between Cartesian and
polar co-ordinates, and a complete set of differential equations of equilibrium, strain
displacement relations and strain compatibility equations.
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Figure 2.11 Cylindrical polar coor-
dinate axes, and associated free-body
diagram.

The co-ordinate transformation is defined by the equations.

r = (x2 + y2)1/2


 = arctan
( y

x

)

and

x = r cos 


y = r sin 


If R, 
, Z are the polar components of body force, the differential equations of equi-
librium, obtained by considering the condition for static equilibrium of the element
shown in Figure 2.11, are

∂�rr

∂r
+ 1

r

∂�r


∂

+ ∂�r z

∂z
+ �rr − �



r
+ R = 0

∂�r


∂r
+ 1

r

∂�



∂

+ ∂�
z

∂z
+ 2�r


r
+ 
 = 0

∂�r z

∂r
+ 1

r

∂�
z

∂

+ ∂�zz

∂z
+ �zz

r
+ Z = 0

For axisymmetric problems, the tangential shear stress components, �r
 and �
z ,
and the tangential component of body force, 
, vanish. The equilibrium equations
reduce to

∂�rr

∂r
+ ∂�r z

∂z
+ �rr − �



r
+ R = 0

∂�r z

∂r
+ ∂�zz

∂z
+ �r z

r
+ Z = 0

For the particular case where r, 
, z are principal stress directions, i.e. the shear stress
component �r z vanishes, the equations become

∂�rr

∂r
+ �rr − �



r
+ R = 0

∂�zz

∂z
+ Z = 0

Displacement components in the polar system are described by ur , u
, uz . The
elements of the strain matrix are defined by

εrr = ∂ur

∂r

ε

 = 1

r

∂u


∂

+ ur

r

εzz = ∂uz

∂z
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�
z = 1

r

∂uz

∂

+ ∂u


∂z

�r z = ∂ur

∂z
+ ∂uz

∂r

�r
 = 1

r

(
−u
 + r∂u


∂r
+ ∂ur

∂


)

The volumetric strain is the sum of the normal strain components, i.e.

� = εrr + ε

 + εzz

When the principal axes of strain coincide with the directions of the co-ordinate
axes, i.e. the shear strain components vanish, the normal strains are defined by

εrr = dur

dr

ε

 = ur

r

εzz = duz

dz

The compatibility equations for strains are

∂2(r�r
)

∂r ∂

= r

∂2(rε

)

∂r2
− r

∂εrr

∂r
+ ∂2εrr

∂
2

∂2�r z

∂r ∂z
= ∂2εrr

∂z2
+ ∂2εzz

∂r2

∂2�
z

∂
 ∂z
= ∂2(rε

)

∂z2
+ 1

r

∂2εzz

∂
2
+ ∂εzz

∂z
− ∂�zr

∂z

The case where �r
 = �
z = �r z = 0 yields only one compatibility equation, i.e.

d

dr
(rε

) = εrr

Stress components expressed relative to the Cartesian axes are transformed to the
polar system using equations 2.22, with r and 
 replacing l and m and 
 replacing
�. An analogous set of equations can be established for transformation of Cartesian
strain components to the polar system.

2.12 Geomechanics convention for displacement, strain and stress

The convention used until now in the discussion of displacement, strain and stress
has been the usual engineering mechanics one. Under this convention, force and dis-
placement components are considered positive if directed in the positive directions of
the co-ordinate axes. Extensile normal strains and tensile normal stresses are treated
as positive. Finally, the sense of positive shear stress on a surface of the elementary
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free body is outward, if the outward normal to the surface is directed outward relative
to the co-ordinate origin, and conversely. The sense of positive stress components,
defined in this way, is illustrated in Figures 2.1c and 2.11, for Cartesian and polar
co-ordinate systems. This convention has been followed in this introductory mate-
rial since important notions such as traction retain their conceptual basis, and since
practically significant numerical methods of stress analysis are usually developed
employing it.

States of stress occurring naturally, and generated and sustained in a rock mass by
excavation activity, are pervasively compressive. If the usual engineering mechanics
convention for stresses were followed, all numerical manipulations related to stress
and strain in rock would involve negative quantities. Although this presents no con-
ceptual difficulties, convenience and accuracy in calculations are served by adopting
the following convention for stress and strain analysis in rock mechanics:

(a) positive force and displacement components act in the positive directions of the
co-ordinate axes;

(b) contractile normal strains are taken as positive;
(c) compressive normal stresses are taken as positive;
(d) the sense of positive shear stress on a surface is inward relative to the co-ordinate

origin, if the inward normal to the surface acts inwards relative to the co-ordinate
origin, and conversely.

The senses of positive stress components defined by this convention, for Cartesian
and polar co-ordinate systems, and biaxial and triaxial states of stress, are shown in
Figure 2.12. Some minor changes are required in some of the other general relations
developed earlier, and these are now defined.

2.12.1 Stress-traction relations
If the outward normal to a surface has direction cosines (�x , �y, �z), traction compo-
nents are determined by

tx = −(�xx �x + �xy�y + �zx �z), etc.

2.12.2 Strain-displacement relations
Strain components are determined from displacement components using the expres-
sions

εxx = −∂ux

∂x

�xy = −
(

∂uy

∂x
+ ∂ux

∂y

)
, etc.

2.12.3 Differential equations of equilibrium
The change in the sense of positive stress components yields equations of the form

∂�xx

∂x
+ ∂�xy

∂y
+ ∂�zx

∂z
− X = 0, etc.

All other relations, such as strain compatibility equations, transformation equations
and stress invariants, are unaffected by the change in convention.
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GRAPHICAL REPRESENTATION OF BIAXIAL STRESS

Figure 2.12 Two- and three-
dimensional free bodies, for speci-
fication of the state of stress relative to
Cartesian and polar co-ordinate axes,
using the geomechanics convention
for the sense of positive stresses.

2.13 Graphical representation of biaxial stress

Analytical procedures for plane problems subject to biaxial stress have been discussed
above. Where equations or relations appropriate to the two-dimensional case have not
been proposed explicitly, they can be established from the three-dimensional equa-
tions by deleting any terms or expressions related to the third co-ordinate direction.
For example, for biaxial stress in the x, y plane, the differential equations of static
equilibrium, in the geomechanics convention, reduce to

∂�xx

∂x
+ ∂�xy

∂y
− X = 0

∂�xy

∂x
+ ∂�yy

∂y
− Y = 0

One aspect of biaxial stress that requires careful treatment is graphical representa-
tion of the state of stress at a point, using the Mohr circle diagram. In particular, the
geomechanics convention for the sense of positive stresses introduces some subtle
difficulties which must be overcome if the diagram is to provide correct determination
of the sense of shear stress acting on a surface.

Correct construction of the Mohr circle diagram is illustrated in Figure 2.13. The
state of stress in a small element abcd is specified, relative to the x, y co-ordinate
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Figure 2.13 Construction of a Mohr
circle diagram, appropriate to the
geomechanics convention of stresses.

axes, by known values of �xx , �yy, �xy . A set of reference axes for the circle diagram
construction is defined by directions �n and � , with the sense of the positive � axis
directed downwards. If O is the origin of the �n − � co-ordinate system, a set of
quantities related to the stress components is calculated from

OC = 1
2 (�xx + �yy)

CD = 1
2 (�xx − �yy)

DF = −�xy

Points corresponding to C, D, F are plotted in the �, � plane as shown in Figure 2.13,
using some convenient scale. In the circle diagram construction, if �xy is positive,
the point F plots above the �n axis. Construction of the line FDF′ returns values
of � = �xy and �n = �xx which are the shear and normal stress components acting
on the surface cb of the element. Suppose the surface ed in Figure 2.13 is inclined
at an angle 
 to the negative direction of the y axis, or, alternatively, its outward
normal is inclined at an angle 
 to the x axis. In the circle diagram, the ray FG
is constructed at an angle 
 to FDF′, and the normal GH constructed. The scaled
distances OH and HG then represent the normal and shear stress components on the
plane ed.

A number of useful results can be obtained or verified using the circle dia-
gram. For example, OS1 and OS2 represent the magnitudes of the major and minor
principal stresses �1, �2. From the geometry of the circle diagram, they are given
by

�1,2 = OC ± CF

= 1
2 (�xx + �yy) ± [

�2
xy + 1

4 (�xx − �yy)2
]1/2

confirming the solution given in equation 2.24a. The ray FS1 defines the orientation
of the major principal plane, so FS2, normal to FS1, represents the orientation of the
major principal axis. If this axis is inclined at an angle �1, to the x axis, the geometry
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of the circle diagram yields

tan �1 = (OS1 − OD)

DF

= (�1 − �xx )

�xy

This expression is completely consistent with that for orientations of principal axes
established analytically (equation 2.24b).

Problems

(The geomechanics convention for stress and strain is to be assumed in the following
exercises.)

1 The rectangular plate shown in the figure below has the given loads uniformly
distributed over the edges. The plate is 50 mm thick, AB is 500 mm and BC is
400 mm.

(a) Determine the shear forces which must operate on the edges BC, DA, to maintain
the equilibrium of the plate.

(b) Relative to the x, y reference axes, determine the state of stress at any point P
in the interior of the plate.

(c) For the l, m axes oriented as shown, determine the stress components
�ll , �mm, �lm .

(d) Determine the magnitudes of the principal stresses, and the orientation of the
major principal stress axis to the x axis.

(e) For the surface GH, whose outward normal is inclined at 
◦ to the x axis,
determine expressions for the component tractions, tx , ty, operating on it as a
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function of �xx , �yy, �xy and 
. Determine values of tx , ty for 
 = 0◦, 60◦, 90◦,
respectively. Determine the resultant stress on the plane for which 
 = 60◦.

2 The unit free body shown in the figure (left) is subject to the stress components
shown acting parallel to the given reference axes, on the visible faces of the cube.

(a) Complete the free-body diagram by inserting the required stress components,
and specify the six stress components relative to the x, y, z axes.

(b) The l, m, n reference axes have direction cosines relative to the x, y, z axes defined
by

(lx , ly, lz) = (0.281, 0.597, 0.751)

(mx , my, mz) = (0.844, 0.219, −0.490)

(nx , ny, nz) = (−0.457, 0.771, −0.442)

Write down the expressions relating �mm, �nl to the x, y, z components of stress
and the direction cosines, and calculate their respective values.

(c) From the stress components established in (a) above, calculate the stress invari-
ants, I1, I2, I3, write down the characteristic equation for the stress matrix, and
determine the principal stresses and their respective direction angles relative to
the x, y, z axes.

Demonstrate that the principal stress directions define a mutually orthogonal
set of axes.

3 A medium is subject to biaxial loading in plane strain. Relative to a set of x, y,

co-ordinate axes, a load imposed at the co-ordinate origin induces stress components
defined by

�xx = 1

r2
− 8y2

r4
+ 8y4

r6

�yy = 1

r2
+ 4y2

r4
− 8y4

r6

�xy = 2xy

r4
− 8xy3

r6

where r2 = x2 + y2

Verify that the stress distribution described by these expressions satisfies the dif-
ferential equations of equilibrium. Note that

∂

∂x

(
1

r

)
= − x

r3
etc.

4 A medium is subject to plane strain loading by a perturbation at the origin of the
x, y co-ordinate axes. The displacements induced by the loading are given by

ux = 1

2G

[ xy

r2
+ C1

]

uy = 1

2G

[
y2

r2
− (3 − 4v)�nr + C2

]
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where C1, C2 are indefinite constants.

(a) Establish expressions for the normal and shear strain components, εxx , εyy, �xy .
(b) Verify that the expressions for the strains satisfy the strain compatibility equa-

tions.
(c) Using the stress–strain relations for isotropic elasticity, establish expressions for

the stress components induced by the loading system.

5 The body shown in the figure below is subject to biaxial loading, with stress com-
ponents given by �xx = 12, �yy = 20, �xy = 8.

(a) Construct the circle diagram representing this state of stress. Determine, from
the diagram, the magnitudes of the principal stresses, and the inclination of the
major principal stress axis relative to the x reference direction. Determine, from
the diagram, the normal and shear stress components �n and � on the plane EF
oriented as shown.

(b) Noting that the outward normal, OL, to the surface EF is inclined at an angle of
30◦ to the x axis, use the stress transformation equations to determine the stress
components �ll and �lm . Compare them with �n and � determined in (a) above.

(c) Determine analytically the magnitudes and orientations of the plane principal
stresses, and compare them with the values determined graphically in (a) above.
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