A Simple Transistor Model

The variables that describe a transistor’s behavior are:
- V_{gs}—the gate-to-source voltage;
- V_{ds}—the drain-to-source voltage (remember that $V_{ds} = -V_{sd}$);
- I_d—the current flowing between the drain and source.

The constants that determine the magnitude of source-to-drain current in the transistor are:
- V_t—the transistor threshold voltage, which is positive for an n-type transistor and negative for a p-type transistor;
- k'—the transistor transconductance, which is positive for both types of transistors;
- W/L—the width-to-length ratio of the transistor.

Drain current characteristics

- Linear region ($V_{ds} < V_{gs} - V_t$):
 - $I_d = k' (W/L)[(V_{gs} - V_t) V_{ds} - 0.5 V_{ds}^2]$]
- Saturation region ($V_{ds} \geq V_{gs} - V_t$):
 - $I_d = 0.5k' (W/L)(V_{gs} - V_t)^2$

Drain current

<table>
<thead>
<tr>
<th>Type</th>
<th>k'</th>
<th>V_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-type</td>
<td>$170 \mu A/\text{V}^2$</td>
<td>0.5 V</td>
</tr>
<tr>
<td>p-type</td>
<td>$-30 \mu A/\text{V}^2$</td>
<td>-0.5 V</td>
</tr>
</tbody>
</table>
A minimum-size transistor in the SCMOS rules is of size $L = 2\lambda$ and $W = 3\lambda$. Given this size of transistor and the 180 nm transistor characteristics, calculate the current through a minimum-sized n-type transistor at the boundary between the linear and saturation regions at $V_{gs} = 0.7V$

$$I_d = \frac{1}{2}\left(\frac{170\lambda I}{V^2}\right)\left(\frac{3\lambda}{2\lambda}\right)(0.7V - 0.5V)^2 = 5.1\mu A$$

Basic transistor parasitics

1. Gate to substrate, also gate to source/drain.
2. Source/drain capacitance, resistance.
3. Gate capacitance C_g. Determined by active area.
4. Source/drain overlap capacitances C_{gs}, C_{gd}. Determined by source/gate and drain/gate overlaps. Independent of transistor L. $C_{gs} = C_{gd} W$
5. Gate/bulk overlap capacitance.

Transistor parasitics cntd..

CMOS ICs have parasitic silicon-controlled rectifiers (SCRs).
- When powered up, SCRs can turn on, creating low-resistance path from power to ground. Current can destroy chip.
- Early CMOS problem. Can be solved with proper circuit/layout structures.

Latch-up (parasitics in IC)
Parasitic SCR

Diffusion wire capacitance

- Capacitances formed by p-n junctions:

Quiz

Calculate the current through a minimum-sized p-type transistor at saturation.