A Simple Transistor Model

The variables that describe a transistor’s behavior are:
- V_{gs}—the gate-to-source voltage;
- V_{ds}—the drain-to-source voltage (remember that $V_{ds} = -V_{sd}$);
- I_d—the current flowing between the drain and source.

The constants that determine the magnitude of source-to-drain current in the transistor are:
- V_t—the transistor threshold voltage, which is positive for an n-type transistor and negative for a p-type transistor;
- k'—the transistor transconductance, which is positive for both types of transistors;
- W/L—the width-to-length ratio of the transistor.

Drain current characteristics

- **Linear region** ($V_{ds} < V_{gs} - V_t$):
 - $I_d = k' \frac{W}{L}(V_{gs} - V_t)V_{ds} - 0.5V_{ds}^2$

- **Saturation region** ($V_{ds} \geq V_{gs} - V_t$):
 - $I_d = 0.5k' \frac{W}{L}(V_{gs} - V_t)^2$

- **Table**

<table>
<thead>
<tr>
<th>Type</th>
<th>k'</th>
<th>V_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-type</td>
<td>$k'_n = 170 \mu A/V^2$</td>
<td>0.5V</td>
</tr>
<tr>
<td>p-type</td>
<td>$k'_p = -30 \mu A/V^2$</td>
<td>-0.5V</td>
</tr>
</tbody>
</table>
A minimum-size transistor in the SCMOS rules is of size \(L = 2\lambda \) and \(W = 3\lambda \). Given this size of transistor and the 180 nm transistor characteristics, calculate the current through a minimum-sized n-type transistor at the boundary between the linear and saturation regions at \(V_{gs} = 0.7\ V \).

\[
I_d = \frac{1}{2} \left(\frac{170\lambda}{V} \right) \left(\frac{3\lambda}{2\lambda} \right) (0.7V - 0.5V)^2 = 5.1\ \mu A
\]

Basic transistor parasitics

1. Gate to substrate, also gate to source/drain.
2. Source/drain capacitance, resistance.

Basic transistor parasitics, cont’d

3. Gate capacitance \(C_g \). Determined by active area.
4. Source/drain overlap capacitances \(C_{gs}, C_{gd} \). Determined by source/gate and drain/gate overlaps. Independent of transistor L.
 - \(C_{gs} = C_{gd} = W \)
5. Gate/bulk overlap capacitance.

Latch-up

- CMOS ICs have parasitic silicon-controlled rectifiers (SCRs).
- When powered up, SCRs can turn on, creating low-resistance path from power to ground. Current can destroy chip.
- Early CMOS problem. Can be solved with proper circuit/layout structures.
6. Parasitic SCR

- I-V behavior

Solution to latch-up

- Use tub ties to connect tub to power rail. Use enough to create low-voltage connection.

Tub tie layout

- p-tub
- p+ metal (V_{DD})
- oxide
- n-tub
- substrate