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Chemistry/Physical Chemistry

Chemistry is the science of composition and
structure of materials and of the changes that
materials undergo.

Physical Chemistry is the branch of chemistry that
establishes and develops the principles of the
subject in terms of the underlying concept of
physics and the language of mathematics.
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Physical chemistry is the study of the underlying
physical principles that govern the properties and
behavior of chemical systems.

-P. W. Atkins

-Levine



Areas of Physical Chemistry

▪ Thermodynamics

▪ Quantum chemistry

▪ Statistical mechanics 

▪ Kinetics
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Thermodynamics is the study of the relationship between
heat and other form of energy involved in a chemical or
physical process.

Molecules and the electrons and nuclei that compose them do 
not obey classical mechanics. Instead, their motions are 
governed by the laws of quantum mechanics. 

Quantum chemistry is a branch of chemistry focused on the 
application of quantum mechanics to chemical systems. 
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The molecular and macroscopic levels are related to each 
other by the branch of science called statistical mechanics. 
Statistical mechanics gives insight into why the laws of 
thermodynamics hold and allows calculation of macroscopic 
thermodynamic properties from molecular properties.

Kinetics is the study of rate processes such as chemical 
reactions, diffusion, and the flow of charge in an 
electrochemical cell. Kinetics uses relevant portions of 
thermodynamics, quantum chemistry, and statistical 
mechanics.
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Roles of Physical chemistry

✓It provides the basis for developing new spectroscopic
techniques and their interpretation, for understanding the
structures of molecules and the details of their electron
distributions for relating the bulk properties of matter to their
constituent atoms.

✓Physical chemistry also provides a window on to the world of
chemical reactions and allows us to understand in detail how they
take place.

✓In fact, the subject strengthens the whole of chemistry,
providing the principles to understand structure and change and
providing the basis of all techniques of investigation.
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Applications of Physical chemistry

The principles of physical chemistry provide a framework 
for all branches of chemistry.

Organic chemists use

▪ kinetics studies to figure out the mechanisms of
reactions,

▪ quantum-chemistry calculations to study the
structures and stabilities of reaction intermediates,

▪ symmetry rules deduced from quantum chemistry to
predict the course of many reactions,

▪ nuclear-magnetic-resonance (NMR) and infrared
spectroscopy to help determine the structure of
compounds.
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▪ Inorganic chemists use quantum chemistry and
spectroscopy to study bonding.

▪ Analytical chemists use spectroscopy to analyze
samples.
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Biochemists use

▪ kinetics to study rates of enzyme catalyzed reactions;

▪ thermodynamics to study biological energy
transformations, osmosis, and membrane equilibrium,
and to determine molecular weights of biological
molecules;

▪ spectroscopy to study processes at the molecular level
(for example, intramolecular motions in proteins are
studied using NMR); and

▪ x-ray diffraction to determine the structures of
proteins and nucleic acids.
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Environmental chemists use

▪ thermodynamics to find the equilibrium composition of
lakes and streams,

▪ chemical kinetics to study the reactions of pollutants in
the atmosphere, and

▪ physical kinetics to study the rate of dispersion of
pollutants in the environment.
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Chemical engineers use

▪ thermodynamics to predict the equilibrium composition of
reaction mixtures, use kinetics to calculate how fast
products will be formed, and

▪ principles of thermodynamic phase equilibria to design
separation procedures such as fractional distillation.

13



Geochemists use thermodynamic phase diagrams to
understand processes in the earth.

Polymer chemists use thermodynamics, kinetics, and
statistical mechanics to investigate the kinetics of
polymerization, the molecular weights of polymers, the flow
of polymer solutions, and the distribution of conformations of
a polymer molecule.
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Thermodynamics is the study of the relationship between
heat and other form of energy involved in a chemical or
physical process.

Thermodynamics

In a broader sense, thermodynamics studies the
relationships between the macroscopic properties of a
system.

The science which deals with the macroscopic properties of
matter is known as classical thermodynamics. Here, the entire
formulation can be developed without the knowledge that
matter consists of atoms and molecules.
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Statistical thermodynamics is another branch of science
which is based on statistical mechanics and which deals with
the calculation of thermodynamic properties of matter from
the classical or quantum mechanical behavior of a large
congregation of atoms or molecules.
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Equilibrium thermodynamics deals with systems in
equilibrium. Irreversible thermodynamics deals with
nonequilibrium systems and rate processes.

The term “thermodynamics” always mean equilibrium
thermodynamics.



Scope of thermodynamics

1. Most of the important laws of Physical Chemistry, including
the van’t Hoff law of lowering of vapour pressure, Phase
Rule and the Distribution Law, can be derived from the laws
of thermodynamics.

2. It tells whether a particular physical or chemical change can
occur under a given set of conditions of temperature,
pressure and concentration.

3. It also helps in predicting how far a physical or chemical
change can proceed, until the equilibrium conditions are
established.
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Limitations of thermodynamics

1. Classical thermodynamics is applicable to macroscopic
systems consisting of matter in bulk and not to microscopic
systems of individual atoms or molecules. It ignores the
internal structure of atoms and molecules.

2. Thermodynamics does not bother about the time factor.
That is, it does not tell anything regarding the rate of a
physical change or a chemical reaction. It is concerned only
with the initial and the final states of the system.

19



Basic Definitions

System: The system is the part of the world in which we have 
a special interest. It may be a reaction vessel, an engine, an 
electrochemical cell, a biological cell, and so on.

Surroundings: The surroundings comprise the region outside 
the system and where we make our measurements.

Boundary: The real or imaginary
surface separating the system
from the surroundings is called
the boundary.
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Open System: If both matter and
energy can be transferred through the
boundary between the system and its
surroundings the system is classified
as open.

Closed System: If only energy pass
through the boundary the system is
classified as closed.

Isolated System: An isolated system is a
thermodynamic system that cannot
exchange either energy or matter
outside the boundaries of the system.

Types of System: The type of system depends on the characteristics of 
the boundary that divides it from the surroundings.

Basic Definitions
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STATE OF A SYSTEM

A thermodynamic system is said to be in a certain state
when all its properties are fixed.

The fundamental properties which determine the state of a
system are pressure (P), temperature (T), volume (V), mass
and composition.
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State variables

The state of a system is defined by ascribing values to a

sufficient number of state variables. Such variables are

macroscopic properties such as pressure, volume,

temperature, mass, composition, surface area etc.

In order to define a system completely, we need to state

the values of only three variables, namely, P, V and T.

The value of other variables will be definite and need not

be stated.
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If of the four state variables (n, P, V, T), n, P and T are
specified, the value of fourth (V) is fixed automatically and can
be calculated from the equation of state.

It is not necessary to state all the properties (state variables) 
to define a system completely.

PV = nRT Equation of state

The variables (P and T) which must be necessarily specified
to define the state of a system, are designated as
Independent state variables. The remaining state variable is
called Dependent state variable.

Dependent and Independent Variables

STATE VARIABLES

25



State Functions

In the thermodynamics of equilibrium, a state

function for a thermodynamic system is a

mathematical function relating several state variables

that depend only on the current equilibrium

thermodynamic state of the system not the path which

the system has taken to reach its present state.
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Path Functions

Physical quantities that depend on the path between 
two states are called path functions. 

The two most common path functions are heat and work.
The energy transferred as work or heat relates to the 
path being taken between states, not the current state 
itself.
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Path Functions

Suppose, a person may decide to hike up a 500 ft
mountain. Regardless of what path the person takes, the
starting place and the final place on top of the mountain
will remain constant. The person may decide to go
straight up to the mountain or decide to spiral around to
the top of the mountain. There are many different ways
to get to the final state, but the final state will remain
the same.

Illustration
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▪ State variable is something that we take as 
independent variable.

▪ State function is something that depends on 
previously selected state variables.

State Variables Versus State Function

PV = nRT
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Intensive and Extensive Properties

• An extensive property is one whose value is equal to the sum
of its values for the parts of the system. Thus, if we divide a
system into parts, the mass of the system is the sum of the
masses of the parts; mass is an extensive property. So is
volume. Example of extensive properties: Volume, energy,
heat capacity, enthalpy, entropy, free energy, length and
mass.

• Properties that do not depend on the amount of matter in
the system are called intensive. Examples of intensive
properties/variables - temperature, pressure, concentration,
density, dipole moment, refractive index, viscosity, surface
tension, gas constant, sp. heat capacity, dielectric constant
etc.
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Intensive and Extensive Properties
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A process is the path along which a change of state takes place. A
process is named according to the variety of conditions under which it
occurs.

Thermodynamic Process

Isothermal process: This occurs under constant temperature
condition. For an isothermal process dT = 0

Isobaric process: This occurs under constant pressure condition. For
an isobaric process dp = 0

Isochoric process: This occurs under constant volume condition. For
isochoric processes dV = 0.

Adiabatic process: This occurs under the condition that heat can
neither be added to not removed from the system. For an adiabatic
process dq = 0

Cyclic Process: Cyclic process: It is a process in which a system
undergoes a series of changes and ultimately comes back to the
initial state. For a cyclic process dE = 0, dH = 0.
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Reversible Process: A thermodynamic reversible process is one that takes
place infinitesimally slowly and its direction at any point can be reversed by
an infinitesimal change in the state of the system.

Irreversible Process: When a process goes from the initial to the final state in
a single step and cannot be carried in the reverse order, it is said to be an
irreversible process.

Reversible Irreversible

Thermodynamic Process
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Differences Between Reversible and Irreversible Processes

Reversible Irreversible

1. It takes place in infinite number of
infinitesimally small steps and it would
take infinite time to occur.

1. It takes place in finite time.

2. It is imaginary as it assumes the
presence of frictionless and weightless
piston.

2. It is real and can be performed actually.

3. It is in equilibrium state at all stages
of the operation.

3. It is in equilibrium state only at the initial
and final stages of the operation.

4. All changes are reversed when the
process is carried out in reversible
direction.

4. After this type of process has occurred all
changes do not return to the initial state by
themselves.

5. It is extremely slow. 5. It proceeds at measureable speed.

6. Work done by a reversible process is
greater than the corresponding
irreversible process.

6. Work done by a irreversible process is
smaller than the corresponding reversible
process.
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Sample Questions

1. Define the term Thermodynamics . Point out the scopes and 

limitations of thermodynamics.

2. What do you understand by thermodynamic system and 

surroundings? Explain open, closed and isolated systems.

3. Describe different types of thermodynamic processes.

4. Distinguish between isothermal and adiabatic processes.

5. Distinguish between reversible and irreversible processes.

6. Define and explain intensive and extensive thermodynamic 

properties?

7. What are state functions? How do they differ from path functions?
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Work, Heat and Energy

❑ Work is done to achieve motion against an opposing force.

❑ Energy is the capacity to do work.

❑ Heating is the transfer of energy that makes use of 

disorderly molecular motion.

❑ Work is the transfer of energy that makes use of organized 

motion.
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Work, Heat and Energy
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▪ Heat and work are defined only in terms of processes. 

▪ Before and after the process of energy transfer between 

system and surroundings, heat and work do not exist. 

▪ Heat is an energy transfer between system and surroundings 

due to a temperature difference. 

▪ Work is an energy transfer between system and surroundings 

due to a macroscopic force acting through a distance.



Sign Convention of Heat and Work

Heat flows into the system, q is 
positive (+)

Heat flows out of the system, q is 
negative (-)

Work is done on the system, w is 
positive (+)

Work is done by the system, w is 
negative (-)
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The molecular interpretation of heat and work

When energy is transferred to the
surroundings as heat, the transfer
stimulates random motion of the atoms
in the surroundings.

When a system does work, it stimulates
orderly motion in the surroundings.

Ref: Atkins 9th edn, page 46
41



In elementary thermodynamics the only type of work generally

considered is the work done in expansion (or compression) of a

gas. This is known as pressure-volume work or PV work or

expansion work.

Consider a gas contained in a cylinder fitted with a frictionless

piston. The pressure (force per unit area) of the gas, P, exerts a

force on the piston. This can be balanced by applying an equal

but opposite pressure from outside on the piston.

Let it be designated as Pext
. It is important to remember that it is

the external pressure, Pext and not the internal pressure of the

gas itself which is used in evaluating work. This is true

whether it be expansion or contraction.

Pressure-Volume Work
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Pressure-Volume Work

If the gas expands at constant pressure, the piston would

move, say through a distance l.

Work = force × distance (by definition)

Since pressure is force per unit area,

f = Pext × A                                                    ...(2)

where A is the cross-section area of the piston.
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w = f × l                                                       ...(1)

Or,



From (1) and (2), we have

w = Pext × A × l

= Pext × ΔV

where ΔV is the increase in volume of the gas.
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w = Pext × ΔV



Pressure-Volume Work

Since the system (gas) is doing

work on the surroundings

(piston), it bears negative sign.

Thus,

w = –Pext × ΔV

The work done in compression

of a gas can also be calculated.

In that case the piston will move

down and sign of the work will

be positive.

w = Pext × ΔV

45
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Reversible Pressure-Volume Work

▪ A reversible process is one where the system is always 
infinitesimally close to equilibrium.

▪ An infinitesimal change in conditions can reverse the 
process to restore both system and surroundings to their 
initial states.

Work done in a reversible process

The total work w done:

where 1 and 2 are the initial and final states of the 
system, respectively.
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Reversible Pressure-Volume Work

The pressure was 

reduced from P1 to P2

at constant volume V1

by cooling the gas. 

Then the gas was 

expanded from V1 to 

V2 at constant pressure 

constant P2 by heating.

The gas was expanded 

from V1 to V2 at 

constant pressure 

constant P2 by heating.

Then the pressure was 

reduced from P1 to P2

at constant volume V1

by cooling the gas. 

The independent 

variables V and T vary 

in an irregular way, as 

does the dependent 

variable P.
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Reversible Pressure-Volume Work

Find the work wrev for processes (a) and (b) of if P1 = 3.00 

atm, V1 = 500 cm3, P2 = 1.00 atm, and V2 = 2000 cm3. Also, 

find wrev for the reverse of process (a). [Gas constant R = 

8.314 J/(mol K) and R = 82.06 cm3 atm/(mol K)]

Exercise
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For process (a)

For reverse process (a)

wrev = +152 J

For process (b)

Hints: Use P1 instead of P2  

wrev = -456 J



Expansion work

The work done when the system expands by dV against a

pressure pex is

When a piston of area A moves out

through a distance dz, it sweeps

out a volume dV = Adz. The

external pressure pex is equivalent

to a weight pressing on the piston,

and the force opposing expansion

is F = pexA.
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Expansion work

To obtain the total work done when the volume changes from an

initial value Vi to a final value Vf we integrate this expression

between the initial and final volumes:

Free expansion

Free expansion is expansion against zero opposing force. It

occurs when pex = 0.

Accordingly, dw = 0 for each stage of the expansion.

Hence, overall:

w = 0

No work is done when a system expands freely. Expansion of

this kind occurs when a gas expands into a vacuum.
51



Expansion work

Isothermal reversible expansion

Consider the isothermal, reversible expansion of a perfect gas. 

The equation of state is pV = nRT.

At each stage p = nRT/V. 

where, V = volume at that stage of the expansion. 

The work of reversible isothermal expansion of a perfect gas 

from V1 to V2 at a temperature T is

which integrates to give
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Isothermal compression work of an ideal gas may be

derived similarly and it has exactly the same value with

the sign changed. Here the pressure on the piston, Pext, is

increased by dP which reduces the volume of the gas.

Since



Expansion work

(b)

(a) the volume cannot change, so no expansion work is done and     

w = 0

Problem
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Irreversible P-V Work

▪ Suppose we have an ideal gas contained in a cylinder with a 

piston. This time the process of expansion of the gas is 

performed irreversibly i.e., by instantaneously dropping the 

external pressure, Pex, to the final pressure P2. 

▪ The work done by the system is now against the pressure P2

throughout the whole expansion and is given by the 

following expression :

𝑤𝑖𝑟𝑟 = −𝑃𝑒𝑥 න

𝑣
1

𝑣
2

𝑑𝑉

= −𝑃2 𝑉2− 𝑉1

= −𝑃2𝑉
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Work done in reversible expansion,

𝑤𝑟𝑒𝑣 = − න

𝑉
1

𝑉
2

𝑃𝑑𝑉

Work done in irreversible expansion,

which is represented by the shaded 

area in figure (a).

𝑤𝑖𝑟𝑟𝑒𝑣 = −𝑃2(𝑉2 − 𝑉1)

which is shown by the shaded area 

in figure (b).

-

(a)

(b)

Comparison of work done in 
reversible and irreversible processes
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In both the processes, the state of the system has

changed from A to B but the work done is less in

the irreversible expansion than in the reversible

expansion. Thus mechanical work is not a state

function as it depends on the path by which the

process is performed rather than on the initial

and final states. It is a path function.

Mechanical work is not a state function
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The work always depends on the external pressure, Pext. 

The larger the Pext the more work is done by the gas. But 

the Pext on the gas cannot be more than the pressure of the 

gas, Pgas or a compression will take place. Thus the largest 

value Pext can have without a compression taking place is 

equal to Pgas. But an expansion that occurs under these 

conditions is the reversible expansion.

Thus, maximum work is done in the reversible expansion 

of a gas.

Maximum work is done in the reversible 

expansion of a gas
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The Total Energy

60

Therefore, The total energy E of a body is

E = K + V + U

In addition to macroscopic kinetic energy K and 

potential energy V, a body possess its internal energy U.

K = 1
2
mV2 V = mghwhere, and 



The internal energy
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Internal energy, U consists of: molecular translational,

rotational, vibrational, and electronic energies; the relativistic

rest-mass energy mrestc
2 of the electrons and the nuclei; and

potential energy of interaction between the molecules.

Change in internal Energy, ΔU = Uf − Ui

when a system changes from an initial state i with

internal energy Ui to a final state f of internal energy Uf
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▪ Internal energy is a state function. 

▪ Its value depends only on the current state of the 

system.

▪ The internal energy is an extensive property of a 

system and is measured in joules (1 J = 1 kg m2 s-2)

▪ The molar internal energy, Um= U/n is an intensive 

property and commonly reported kJ mol-1.

The internal energy



Zeroth Law of Thermodynamics
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If A is in thermal equilibrium with B, and B is in thermal 

equilibrium with C, then C is also in thermal equilibrium 

with A.



Zeroth Law of Thermodynamics

64

The Zeroth Law justifies the concept
of temperature and the use of a
thermometer.

Suppose that B is a glass capillary
containing liquid mercury. Then,
when A is in contact with B, the
mercury column has a certain length.

According to the Zeroth Law, if the
mercury column in B has the same
length when it is placed in thermal
contact with another object C, then
we can predict that no change of
state of A and C will occur when they
are in thermal contact.



The first law may be stated in different forms:

(1) Energy can neither be created nor destroyed; it can

only be converted from one form to another.

(2) The total energy of an isolated system is constant.

(3) It is impossible to construct a perpetual motion

machine which will create energy out of nothing.

(4) If work is produced during a cyclic process, an

equivalent amount of heat must also be consumed.

First Law of Thermodynamics
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When heat is applied to a system, the internal

energy of the system will increase if no work is

done (U = q).

Mathematical Formulation of the First Law

66

Similarly, if work is done on the

system in absence of heat the internal

energy will be increased (U = w).



If heat and work processes occur simultaneously, the net

change in internal energy of a system is equal to sum of

the heat applied (q) and work done (w). Mathematically,

we can represent this as

U = q + w …………..(1)

67

For infinitesimal change eqn. (1) may be

written as

dU = dq + dw
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A brief illustration

If an electric motor produced 15 kJ of energy each second as

mechanical work and lost 2 kJ as heat to the surroundings, then

the change in the internal energy of the motor each second is

ΔU = −2 kJ − 15 kJ = −17 kJ

Suppose that, when a spring was wound, 100 J of work was

done on it but 15 J escaped to the surroundings as heat. The

change in internal energy of the spring is

ΔU = 100 J − 15 J = +85 J

A note on good practice 

Always include the sign of ΔU (and of ΔX in general), even if 

it is positive.



Enthalpy

In this case the energy supplied as heat at constant pressure is 
equal to the change in another thermodynamic property of the 
system, the enthalpy, H.

dU ≠ dq

The change in internal energy is not equal to the energy
transferred as heat when the system is free to change its volume.

Under these circumstances some of the energy supplied as heat 
to the system is returned to the surroundings as expansion work.

dU < dq

At constant p

In case of expansion

dH = dq At constant p

69
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The enthalpy H of a thermodynamic system whose internal 

energy, pressure, and volume are U, P, and V is defined as

Since U, P, and V are state functions, H is a state function.

The motivation for giving a special name to the state function 

U + PV is that this combination of U, P, and V occurs often in 

thermodynamics.

Enthalpy
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Let qP be the heat absorbed in a constant-pressure process in a 

closed system. The first law U = q + w gives

H  = qP
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For any change of state, the enthalpy change is

For a constant-pressure process,

Therefore

H = U + PV
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Since U and V are extensive, H is extensive. The molar enthalpy 

of a pure substance is

Consider now a constant-volume process. If the closed system 

can do only P-V work, then w must be zero, since no P-V work 

is done in a constant-volume process.

The first law U  = q  + w then becomes for a constant-volume 

process

U  = qV

Hm =  H/n = (U + PV)/n = Um + PVm.

closed syst., P-V work only, V const.

H  = qP closed syst., P-V work only, P constant

In a constant-pressure process H plays a role analogous to that 

played by U in a constant-volume process. 

Now, 

U  = qV
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Now we have H  = U + (PV). 

Because solids and liquids have comparatively small 

volumes and undergo only small changes in volume, in nearly 

all processes that involve only solids or liquids (condensed

phases) at low or moderate pressures, the (PV) term is 

negligible compared with the U term. 

For condensed phases not at high pressures, the enthalpy 

change in a process is essentially the same as the internal-

energy change: H  U.

H depends only on T for a perfect gas, for isothermal 

expansion, H = 0.

For Condensed phases
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1. A chemical reaction takes place in a container of cross-sectional area 100 
cm2. As a result of the reaction, a piston is pushed out through 10 cm 
against an external pressure of 1.0 atm. Calculate the work done by the 
system.

2. A chemical reaction takes place in a container of cross-sectional area 50.0 
cm2. As a result of the reaction, a piston is pushed out through 15 cm 
against an external pressure of 121 kPa. Calculate the work done by the 
system.

3. A sample consisting of 1.00 mol Ar is expanded isothermally at 0°C from 
22.4 dm3 to 44.8 dm3 (a) reversibly, (b) against a constant external 
pressure equal to the final pressure of the gas, and (c) freely (against zero 
external pressure). For the three processes calculate q, w, U, and H.

4. A sample consisting of 2.00 mol He is expanded isothermally at 22°C from 
22.8 dm3 to 31.7 dm3 (a) reversibly, (b) against a constant external 
pressure equal to the final pressure of the gas, and (c) freely (against zero 
external pressure). For the three processes calculate q, w, U, and H.

Exercises Assume all gases are perfect unless stated otherwise. Unless 
otherwise stated, thermodynamic data are for 298.15 K.
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Important relations

R = 8.314 J K-1 mol-1 = 82.06 cm3 atm mol-1 K-1

▪ Pressure
1 atm = 101.325  kPa
1 Pa = 1 kg m-1 s-2  = 1 N m-2   

1 bar = 105 Pa

▪ Force
1 N = 1 kg m s-2 

▪ Energy
Joule, J = 1 kg m2 s-2 = 1 N m = 1 Pa m3



77

Hints for solving the problems

1. w = -Pext × V

2. w = -Pext × V

3. (a) For isothermal expansion, U = H = 0

Work done in an isothermal reversible expansion,         

𝑤 = −𝑛𝑅𝑇 ln 𝑉
2

𝑉
1

q = -w

(b) For isothermal expansion, U = H = 0

Expansion work against constant pressure, 

𝑤 = −Pext × V

q = -w

(c) For isothermal expansion, U = H = 0

Expansion work against zero pressure, 

𝑤 = −Pext × V = 0

q = -w = 0



Contents

▪ Relation between H and U

▪ Heat Capacities

▪ Heat capacity at constant volume, Cv

▪ Heat capacity at constant pressure, Cp

▪ Relation between Cp and Cv

Lecture-6

78



79

Relation between H and U

𝐻 = 𝑈 + 𝑝𝑉 = 𝑈 + 𝑛𝑅𝑇

For an ideal gas

𝐻 = 𝑈 + 𝑛𝑔𝑅𝑇

Change in enthalpy under isothermal conditions is 

𝐻 = 𝑈 + 𝑝V

Change in enthalpy under constant pressure conditions is 
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Exercise

▪ Calculate the value of  H- U for the following reaction at 298 

K  temperature: 2 H2(g) + O2(g) → 2 H2O(l). [Answer:  -7.4 

kJ]

▪ Calculate the value of H- U for the following reaction at 298 

K  temperature: N2(g) + 3H2(g) → 2 NH3(g). [Answer:  -5.0 kJ]

▪ Calculate the difference between ΔH and ΔU when 1.0 mol 

Sn(s, grey) of density 5.75 g cm-3 changes to Sn(s, white) of 

density 7.31 g cm-3 at 10.0 bar. [Answer: ∆𝐻 − ∆𝑈 = -4.4 J]

Hints: ∆𝐻𝑚 − ∆𝑈𝑚 = 𝑝𝑀
1

(𝑤)
−

1

(𝑔)



▪ For one gram of a substance it is known as specific

heat.

▪ For the one mole it is molar heat capacity (𝐶𝑚 = Τ𝐶 𝑛).
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Heat capacity is defined as the amount of heat required to 

rise the temperature of a substance through 1 degree.

Heat capacity, 𝐶 =
𝑑𝑞

𝑑𝑇

Heat Capacities



Heat capacity at constant volume,

Cv = dqv / dT

𝐶𝑣=
𝜕𝑈

𝜕𝑇 𝑣
[since dU = dqv]

dU = dqv = CvdT

Heat capacity at constant volume, Cv
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▪ For finite change, we have

U = qv = 𝑇1
𝑇2 𝐶𝑣𝑑𝑇

▪ If Cv is considered to be independent of

temperature in the range T1 to T2, then

U = qv = CvT



Heat capacity at constant pressure, Cp
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Heat capacity at constant pressure 

𝐶𝑝 = ൗ𝑑𝑞
𝑝
𝑑𝑇 =

𝜕𝐻

𝜕𝑇 𝑝

▪ For finite change, we have

H = qp = 𝑇1
𝑇2 𝐶𝑝𝑑𝑇

▪ If Cp is considered to be independent of

temperature in the range T1 to T2, then

H = qp = CpT



This can be shown from thermodynamic point of view.

𝐶𝑝 =
𝜕𝐻

𝜕𝑇 𝑝
and H = U + PV

From these two equations we get,

𝐶𝑝 =
𝜕 𝑈+𝑃𝑉

𝜕𝑇 𝑝
=

𝜕𝑈

𝜕𝑇 𝑝
+ 𝑃

𝜕𝑉

𝜕𝑇 𝑝
(1)

Relation between Cp and Cv
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The internal energy U can be written as a function to two

variables T and V,

U = f (T, V)

Hence, 𝑑𝑈 =
𝜕𝑈

𝜕𝑇 𝑣
𝑑𝑇 +

𝜕𝑈

𝜕𝑉 𝑇
𝑑𝑉

Dividing both sides by dT and imposing constant pressure

condition, it follows that

𝜕𝑈

𝜕𝑇
𝑝

=
𝜕𝑈

𝜕𝑇
𝑣

+
𝜕𝑈

𝜕𝑉
𝑇

𝜕𝑉

𝜕𝑇
𝑝

= 𝐶𝑉 +
𝜕𝑈

𝜕𝑉 𝑇

𝜕𝑉

𝜕𝑇 𝑝
(2)
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Substituting equation (2) into equation (1) and

rearranging we get

𝐶𝑝 = 𝐶𝑣 + 𝑃 +
𝜕𝑈

𝜕𝑉
𝑇

𝜕𝑉

𝜕𝑇
𝑝

𝐶𝑝 − 𝐶𝑣 = 𝑃 +
𝜕𝑈

𝜕𝑉 𝑇

𝜕𝑉

𝜕𝑇 𝑝
(3)

Equation (3) is one form of relationship between Cp and

Cv.
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For an ideal gas,
𝜕𝑈

𝜕𝑉 𝑇
= 0

So that 𝐶𝑝 − 𝐶𝑣 = 𝑃
𝜕𝑉

𝜕𝑇 𝑝
(4)
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▪ The state function (U/  V)T has dimensions of 
pressure and is sometimes called the internal 
pressure and denoted as T.



For an ideal gas PV = nRT. Differentiating both sides of

this equation of state with respect to temperature and

imposing the condition of constant pressure one can

obtain,

𝑃
𝜕𝑉

𝜕𝑇 𝑝
=

𝜕(𝑛𝑅𝑇)

𝜕𝑇
= 𝑛𝑅 (5)

Combining equations (4) & (5) we obtain

𝐶𝑝−𝐶𝑣 = 𝑛𝑅 (6)

Therefore, 𝐶𝑝 > 𝐶𝑣, because R is positive.
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For molar heat capacities, n =1

𝐶𝑝,𝑚 − 𝐶𝑣,𝑚 = 𝑅
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Let a and n be constants, and let u and v be functions of x; u  u(x) 

and v = v(x). Then, one finds the following derivatives:

Derivatives
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𝑑𝑎

𝑑𝑥
= 0

𝑑(𝑎𝑢)

𝑑𝑥
= 𝑎

𝑑𝑢

𝑑𝑥

𝑑𝑥𝑛

𝑑𝑥
= 𝑛𝑥𝑛−1

𝑑𝑒𝑎𝑥

𝑑𝑥
= 𝑎𝑒𝑎𝑥

𝑑 ln 𝑎𝑥

𝑑𝑥
=
1

𝑥

𝑑 sin 𝑎𝑥

𝑑𝑥
= 𝑎 cos 𝑎𝑥

𝑑 cos 𝑎𝑥

𝑑𝑥
= −𝑎 sin 𝑎𝑥
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𝑑(𝑢 + 𝑣)

𝑑𝑥
=
𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑥

𝑑(𝑢𝑣)

𝑑𝑥
= 𝑣

𝑑𝑢

𝑑𝑥
+ 𝑢

𝑑𝑣

𝑑𝑥

𝑑(𝑢/𝑣)

𝑑𝑥
=
1

𝑣

𝑑𝑢

𝑑𝑥
−

𝑢

𝑣2
𝑑𝑣

𝑑𝑥
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▪ A partial derivative of a function of more than one 

variable, such as f(x,y), is the slope of the function with 

respect to one of the variables, all the other variables 

being held constant.

▪ It may be used to determine how the function changes 

when more than one variable changes by an infinitesimal 

amount. Thus, if f is a function of x and y, then when x and 

y change by dx and dy, respectively, f changes by

Partial Derivatives

𝑑𝑓 =
𝜕𝑓

𝜕𝑥 𝑦𝑑𝑥 +
𝜕𝑓

𝜕𝑦 𝑥𝑑𝑦



How are partial derivatives found?

To find (z/x)y we take the ordinary derivative of z with 

respect to x while regarding y as a constant. 

For example, if z = x2y3 + eyx, then

(z/ x)y = 2xy3 + yeyx; and

(z/ y)x = 3x2y2 + xeyx
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Exact differentials

Successive partial derivatives may be taken in any order



𝑦

𝑓

𝑥 𝑦 𝑥 =


𝑥

𝑓

𝑦 𝑥 𝑦

This equation is the basis of a test of an exact differential.
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Brief illustration

Suppose that f(x,y) = ax3y + by2   

Hence,  df = 3ax2y dx + (ax3+2by) dy

Thus, df is an exact differential. 



𝑦

𝑓

𝑥 𝑦 𝑥 = 3𝑎𝑥2 and


𝑥

𝑓

𝑦 𝑥 𝑦 = 3𝑎𝑥2

Now, suppose that  df = 3ax2y dx + (ax2+2by) dy



𝑦

𝑓

𝑥 𝑦 𝑥 = 3𝑎𝑥2 and


𝑥

𝑓

𝑦 𝑥 𝑦 = 2𝑎𝑥

Thus, df is not an exact differential. 
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Total Differential

Let z = f(x, y). If now both x and y undergo infinitesimal changes, 

the infinitesimal change in z is the sum of the infinitesimal 

changes due to dx and dy:

In this equation, dz is called the total differential of z(x, y).

The total differential of a function of more than two 

variables. For example, if z = z(r, s, t), then
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Three useful partial-derivative identities can be derived 

from the total differential, 

For an infinitesimal process in which y does not change, 

the infinitesimal change dy is 0, and

where the y subscripts on dz and dx indicate that these 

infinitesimal changes occur at constant y. 

Division by dzy gives

and ------------ (3)

--- (1)

------------ (2)



For an infinitesimal process in which z stays constant

Dividing by dyz and recognizing that dxz /dyz equals (x/  y)z, 

we get

then

98

----- (4)
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▪ Finally, let dy in (1) be zero so that (2) holds. Let u be some 

other variable. Division of (2) by duy gives

𝑑𝑧𝑦
𝑑𝑢𝑦

=
𝜕𝑧

𝜕𝑥 𝑦

𝑑𝑥𝑦
𝑑𝑢𝑦

𝜕𝑧

𝜕𝑢 𝑦 =
𝜕𝑧

𝜕𝑥 𝑦
𝜕𝑥

𝜕𝑢 𝑦 ----- (5)
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Change in internal energy

Because the internal energy is a function of the volume and 

the temperature, when these two quantities change, the 

internal energy changes by

or, 

where, =  internal pressure 

----------(1)
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▪ When there are no interactions
between the molecules, U is
independent of their separation.
Therefore, for a perfect gas we can
write T = 0.

▪ If the attractive forces between the
particles dominate the repulsive
forces, then dU > 0 as dV > 0. In this
case T > 0.

▪ When repulsions dominant, T < 0.

Illustrations of internal pressure,  
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Changes in internal energy at constant pressure

Partial derivatives have many useful properties. Skilful use of 
them can often turn some unfamiliar quantity into a 
quantity that can be recognized, interpreted, or measured.

As an example, to find how the internal energy varies with 
temperature when the pressure rather than the volume of 
the system is kept constant. 

Dividing both sides of eqn (1) by dT and imposing constant 
pressure condition one get

----------(2)

For a perfect gas, T = 0, and hence,  

----------(3)
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Expansion coefficient, 

Eqn (2) can be written as 

----------(4)

where, = expansion coefficient

Note that,  is a recognizable 
quantity. A large value of α
means that the volume of the 
sample responds strongly to 
changes in temperature. 
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Derive an expression for the expansion coefficient of a perfect 
gas and give physical interpretation of the result.

Because pV = nRT, write

The physical interpretation of this result is that the 
higher the temperature, the less responsive is the 
volume of a perfect gas to a change in temperature.

The solution 

𝛼 =
1

𝑉

𝜕𝑉

𝜕𝑇
𝑝

=
1

𝑉

𝜕( Τ𝑛𝑅𝑇 𝑝)

𝜕𝑇
𝑝

=
1

𝑉
×
𝑛𝑅

𝑝
=

𝑛𝑅

𝑛𝑅𝑇
=
1

𝑇
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Isothermal Compressibility, T

▪ The isothermal compressibility is a
measure of the fractional change in
volume when the pressure is
increased;

▪ The negative sign in the definition
ensures that the compressibility is a
positive quantity, because an
increase of pressure, implying a
positive dp, brings about a reduction
of volume, a negative dV.
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Derive an expression for the Isothermal Compressibility, T

of a perfect gas. 

Because pV = nRT, write

The physical interpretation of this result is that the 
higher the pressure, the less responsive is the volume 
of a perfect gas to a change in pressure.

The solution 

T = −
1

𝑉

𝜕𝑉

𝜕𝑝
𝑇

= −
1

𝑉

𝜕( Τ𝑛𝑅𝑇 𝑝)

𝜕𝑝
𝑇

=
1

𝑉
×
𝑛𝑅𝑇

𝑝2
=

𝑛𝑅𝑇

𝑛𝑅𝑇. 𝑝
=
1

𝑝
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Change in enthalpy with temperature and pressure

Deriving an expression for the variation of enthalpy 
with pressure and temperature

Consider a closed system of constant composition. Because 
H is a function of p and T, when these two quantities change 
by an infinitesimal amount, the enthalpy changes by

The second partial derivative is Cp. The task at hand is to 
express (∂H/∂p)T in terms of recognizable quantities. If the 
enthalpy is constant, then dH = 0 and
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Division of both sides by dp then gives

where the Joule–Thomson coefficient, μ (mu), is 
defined as

It follows that
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Evaluation of (U/ V)T for gases: The Joule Experiment

In 1843 Joule tried to determine (U/ V)T for a gas by 
measuring the temperature change after free expansion of the 
gas into a vacuum. This experiment was repeated by Keyes 
and Sears in 1924 with an improved setup.

Initially, chamber A is filled with a 
gas, and chamber B is evacuated. 
The valve between the chambers is 
then opened. After equilibrium is 
reached, the temperature change 
in the system is measured by the 
thermometer.

A B
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From first law of thermodynamics,

U = q + w     for a closed system

Because the system is surrounded by adiabatic walls,    q = 0.
For expansion into a vacuum,                                              w  = 0. 

Hence,     U = 0 + 0 = 0

This is a constant-energy process. 

More precisely, the experiment measures T/ V at constant U.

The experiment measures the temperature change with 
change in volume at constant internal energy, (T/ V)U.
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How is the measured quantity (T/  V)U = J (Joule coefficient ) 
related to ( U/ V)T = T?

The variables in these two partial derivatives are the same 
(namely, T, U, and V).

Hence we can use, (x/y)z(y/z)x(z/x)y =  -1

Joule’s experiment gave zero for J and hence zero for (U/V)T.
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Criticism of Joule’s Experiment

▪ Joule’s experiment gave zero

for J and hence zero for

(U/V)T.

▪ However, his setup was so

poor that his result was

meaningless.

▪ The 1924 Keyes–Sears

experiment showed that

(U/V)T is small but

definitely nonzero for gases.

▪ Because of experimental

difficulties, only a few rough

measurements were made.
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The cooling effect observed when a gas is adiabatically 
expanded from a high pressure region to a low pressure 
region through a throttle valve or porous plug is called 
Joule-Thomson effect. 

The cooling effect in the Joule-Thomson experiment is 
attributed to the intermolecular attractions of the  
molecules. An expanding gas has to do work in order to 
overcome the attractive force among the molecules. 
The work is done at the cost of internal energy as the 
process is adiabatic. As a result the temperature of the 
expanding gas will fall.

The Joule-Thomson Effect
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Joule–Thomson experiment (1853)

The Joule–Thomson experiment involves the slow throttling of a gas

through a rigid, porous plug. The system is enclosed in adiabatic

walls. The left piston is held at a fixed pressure p1. The right piston is

held at a fixed pressure p2 < p1. The partition B is porous but not

greatly so. This allows the gas to be slowly forced from one chamber

to the other. Because the throttling process is slow, pressure

equilibrium is maintained in each chamber. Essentially all the pressure

drop from p1 to p2 occurs in the porous plug.
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The exchange of work between system and surroundings occurs solely 

at the two pistons. 

Since pressure equilibrium is maintained at each piston, we can use 

dwrev = -p dV to calculate the work at each piston. 

The left piston does work wL on the gas. We have dwL= -pLdV = -p1dV, 

where subscripts L and R are used for left and right. 

Let all the gas be throttled through. The initial and final volumes of the 

left chamber are V1 and 0, so

Calculation of w

𝑤𝐿 = −න
𝑉
1

0

𝑝1𝑑𝑉 = −𝑝1න
𝑉
1

0

𝑑𝑉 = −𝑝1( 0 − 𝑉1) = 𝑝1𝑉1
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The right piston does work dwR on the gas. (wR is negative, since 

the gas in the right chamber does positive work on the piston.) We 

have 

The work done on the gas is

The first law for this adiabatic 

process (q  = 0) gives 

U2 - U1 = q + w = w, 

so    U2 - U1 = p1V1 - p2V2

or U2 + p2V2 = U1 + p1V1. 

The initial and final enthalpies are equal in a Joule–Thomson 

expansion.

H2 = H1 or H = 0

Since H = U + pV, we have

isenthalpic process

𝑤𝑅 = −න
0

𝑉
2

𝑝2𝑑𝑉 = − 𝑝2𝑉2

𝑤 = 𝑤𝐿 + 𝑤𝑅 = 𝑝1𝑉1 − 𝑝2𝑉2
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Measurement of the temperature change T = T2 - T1 in the 

Joule–Thomson experiment gives T/p at constant H. This 

may be compared with the Joule experiment,  which measures 

T/V at constant U.

We define the Joule–Thomson coefficient  by

 is the ratio of infinitesimal changes in two intensive properties 

and therefore is an intensive property. Like any intensive property, 

it is a function of T and p (and the nature of the gas).

𝜇 =
𝜕𝑇

𝜕𝑝
𝐻
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A single Joule–Thomson experiment yields only (T/ p)H. 

To find (T/ p)H values start with some initial p1 and T1, pick a value of 
p2 less than p1 and do the throttling experiment, measuring T2. 

Then plot the two points (T1, p1) and (T2, p2) on a T-p diagram; these are 
points 1 and 2. Since H = 0 for a Joule–Thomson expansion, states 1 and 
2 have equal enthalpies. 

A repetition of the experiment with the same initial p1 and T1 but with 
the pressure on the right piston set at a new value p3 gives point 3 on the 
diagram.

Construction of isenthalpic curve

isenthalpic curve 

Several repetitions, each with a 
different final pressure, yield several 
points that correspond to states of 
equal enthalpy. We join these points 
with a smooth curve (called an 
isenthalpic curve). 
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The slope of this curve at any point gives (T/ P)H for the 
temperature and pressure at that point. 

Values of T and P for which  is negative (points to the right 
of point 4) correspond to warming on Joule–Thomson 
expansion.

At point 4,  is zero. 

To the left of point 4,  is positive, and the gas is cooled by 
throttling. 

To generate further isenthalpic curves and get more values 
of  (T, P), we use different initial temperatures T1.

isenthalpic curve 

Analysis of isenthalpic curve

Values of  for gases range 
from +3 to -0.1°C/atm, 
depending on the gas and on 
its temperature and pressure. 
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Joule–Thomson throttling is 
used to liquefy gases. For a gas to 
be cooled by a Joule–Thomson 
expansion (P < 0), its  must be 
positive over the range of T and P
involved. 

In Joule–Thomson liquefaction 
of gases, the porous plug is 
replaced by a narrow opening (a 
needle valve). 

Another method of gas 
liquefaction is an approximately 
reversible adiabatic expansion 
against a piston.

Joule–Thomson throttling  for gas liquefaction 

isenthalpic curve 
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Joule-Thomson coefficient and Inversion Temperature

We define the Joule–Thomson coefficient  by

𝜇 =
𝜕𝑇

𝜕𝑝
𝐻

❑ If  is positive, the gas cools on expansion; if  is negative, the

gas warms on expansion. The temperature at which the sign

changes is called the Inversion temperature.

❑ Most gases have positive Joule-Thomson coefficients and hence

they cool on expansion at room temperature.

❑ The inversion temperature for H2 is –80ºC. Above the inversion

temperature,  is negative. Thus at room temperature hydrogen

warms on expansion. Hydrogen must first be cooled below –80ºC

(with liquid nitrogen) so that it can be liquefied by further Joule-

Thomson expansion. So is the case with helium.

isenthalpic curve 
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The principle of the Linde

refrigerator is shown in

this diagram. The gas is

recirculated, and so long

as it is beneath its

inversion temperature it

cools on expansion

through the throttle. The

cooled gas cools the

high-pressure gas, which

cools still further as it

expands. Eventually

liquefied gas drips from
the throttle.

The application of the Joule–Thomson effect in Refrigerator
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PERFECT GASES AND THE FIRST LAW

A perfect gas is one that obeys both the following 
equations:

For a closed system in equilibrium, the internal 
energy (and any other state function) can be 
expressed as a function of temperature and volume:
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For a perfect gas, U is independent of volume. Therefore 
U of a perfect gas depends only on temperature:

Since U is independent of V for a perfect gas, the 
partial derivative (U/ T)V for CV becomes an ordinary 
derivative: CV = dU/dT and

Therefore, CV of a perfect gas depends only on T:
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For a perfect gas,

H = U + PV = U + nRT

As U = U(T), H depends only on T for a perfect gas.

Since H is independent of P for a perfect gas, the 
partial derivative (H/ T)P for CP becomes an ordinary 
derivative: CP = dH/dT and

Therefore, CP of a perfect gas depends only on T:

dH = CP dT
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,

The first law,

becomes,

(for closed system)

Since, ,
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Reversible adiabatic process

▪ The temperature of a perfect gas falls when it

does work in an adiabatic expansion.

▪ Work is done, but as no heat enters the system,
the internal energy falls, and therefore the
temperature of the working gas also falls.

▪ In molecular terms, the kinetic energy of the
molecules falls as work is done, so their average
speed decreases, and hence the temperature falls
too.
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The change in temperature 

Deriving an expression for the temperature change in a 

reversible adiabatic expansion 

The work done when the gas expands reversibly by dV is 

dw = −pdV. 

For a perfect gas, dU = CVdT

Equating these expressions for dU gives

CVdT = −pdV

Because the gas is perfect, p can be replaced by 

nRT/V to give CVdT = −(nRT/V)dV and therefore
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Integration of the expression gives the overall change

or,

𝐶𝑣𝑙𝑛
𝑇𝑓

𝑇𝑖
= − 𝐶𝑝 − 𝐶𝑣 𝑙𝑛

𝑉𝑓

𝑉𝑖

𝑙𝑛
𝑇𝑓

𝑇𝑖
= −

𝐶𝑝 − 𝐶𝑣

𝐶𝑣
𝑙𝑛
𝑉𝑓

𝑉𝑖

𝑙𝑛
𝑇𝑓

𝑇𝑖
= − 𝛾 − 1 𝑙𝑛

𝑉𝑓

𝑉𝑖

𝑙𝑛
𝑇𝑓

𝑇𝑖
= 𝑙𝑛

𝑉𝑖
𝑉𝑓

𝛾−1

𝑇𝑓

𝑇𝑖
=

𝑉𝑖
𝑉𝑓

𝛾−1

𝑇𝑓𝑉𝑓
𝛾−1 = 𝑇𝑖𝑉𝑖

𝛾−1

𝑇𝑉𝛾−1 = Constant

or,

or,

or,

or,

or,

or,

or,

[As Cp-Cv = nR]

[  = Cp/Cv]

(1)

(2)
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The change in pressure

The initial and final states of a perfect gas satisfy the perfect 

gas law regardless of how the change of state takes place, so 

pV = nRT can be used to write

𝑃𝑖𝑉𝑖
𝑃𝑓𝑉𝑓

=
𝑉𝑓
𝑉𝑖

𝛾−1

𝑃𝑖
𝑃𝑓

=
𝑉𝑓
𝑉𝑖
×

𝑉𝑓
𝑉𝑖

𝛾−1

𝑃𝑖
𝑃𝑓

=
𝑉𝑓
𝑉𝑖

𝛾

𝑝𝑉 = Constant

(3)

From equations (1) and (3) it 
follows that

or,

or,

or,

(4)
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Comparison between Isothermal and Adiabatic Expansions

Pressure-volume relations of an ideal gas under isothermal 

conditions (T, constant) and adiabatic conditions are:

pV = constant (Isothermal)

𝑝𝑉𝛾 = constant (Adiabatic)

V

p
p 1/V

𝑝 ∝ 1/𝑉𝛾

▪ For a monatomic perfect 

gas,  = 
5

3

▪ For a non-linear polyatomic 

molecule,  = 
4

3
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The physical reason for the difference 

In an isothermal expansion, energy flows into the system 
as heat and maintains the temperature. As a result, the 
pressure does not fall as much as in an adiabatic 
expansion.

Comparison between Isothermal and Adiabatic Expansions

Because  > 1, an adiabat 
falls more steeply (p ∝ 1/𝑉𝛾) 
than the corresponding 
isotherm (p ∝ 1/V). 

V

p
p 1/V

𝑝 ∝ 1/𝑉𝛾
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Work done in adiabatic process

▪ From the first law of thermodynamics,

ΔU = q + w

▪ For an adiabatic process, q = 0, it follows that ΔU = wad. 

▪ Again, ΔU = CVΔT

▪ By equating the two expressions for ΔU, 

wad = CVΔT

The work done during an adiabatic expansion of a perfect 

gas is proportional to the temperature difference between the 

initial and final states. 
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Assignment

▪ Compile important equations discussed in this chapter 

(First Law of Thermodynamics) mentioning related 

property. 

▪ Write down the comments (if any).

▪ You may take help from Atkins Physical Chemistry, 11th

edition.

▪ Short out the equations required to calculate q, w, U and 

H. 
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Calculation of q, w, and U

Reversible 
cyclic process

Suppose 0.100 mol of a perfect gas having CV,m = 1.50R
independent of temperature undergoes the reversible cyclic
process 1 → 2 → 3 → 4 → 1 shown in the figure, where
either P or V is held constant in each step. Calculate q, w,
and U for each step and for the complete cycle.



Hints

Since we know how P varies in each step and since the 
steps are reversible, we can readily find w for each step 
by integrating dwrev = -P dV. 

Since either V or P is constant in each step, we can 
integrate dqV = CV dT and dqP = CP dT to find the heat in 
each step. 

The first law U = q + w then allows calculation of U.
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Calculation of T

To evaluate integrals like , we will need to
know the temperatures of states 1, 2, 3, and 4. We
therefore begin by using PV = nRT to find these
temperatures.

For example, T1 = P1V1/nR = 122 K. Similarly, T2 = 366 K,
T3 = 732 K, T4 = 244 K.
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Calculation of w

Step 1 → 2 is at constant volume,
no work is done, and w1→2 = 0.

Step 2→3 is at constant pressure,
and

where two values of R were used to convert to joules.

Similarly, w3→4 = 0 and w4→1 = 101 J.

The work w for the complete cycle is the sum of 
the works for the four steps, so

w = -304 J + 0 + 101 J + 0 = -203 J 147



Calculation of q

Step 1 → 2 is at constant volume, and

The total heat for the cycle is 
q = 304 J + 761 J – 608.5 J – 253.5 J = 203 J 

Step 2 → 3 is at constant pressure, and

We have,

Applying similar operation we find q2→3  = 761 J.

Similarly, q3→4 = -608.5 J and q4→1 = -253.5 J.
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Calculation of U

U1→2 = q1→2 + w1→2 = 304 J + 0 = 304 J

Similarly we find,

U2→3 = 457 J

U3→4 = -608.5 J

U4→1 = -152.5 J

For the complete cycle,
U = 304 J + 457 J  - 608.5 J  - 152.5 J  = 0

For this cyclic process, we found U = 0, q  0, and
w  0. These results are consistent with the fact
that U is a state function but q and w are not.

149
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Suppose 0.100 mol of a perfect gas having CV,m =
1.50R . Use the perfect-gas equation dU = CV dT
to find U for each step and for complete cycle of  
the figure.  

Exercise 1



Similarly we find,

U2→3 = 457 J

U3→4 = -608.5 J

U4→1 = -152.5 J

For the complete cycle,

U = 304 J + 457 J  - 608.5 J  - 152.5 J  = 0

J 304           

K) 122K (366molK J 8.3141.50mol 0.100          

K) 122K (3661.50mol 0.100)(          

)(

1-1-

12,

12

2

1

21

=

−=

−=−=

−== →

RTTnC

TTCdTCU

mV

VV
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Suppose 0.100 mol of a perfect
gas having CV,m = 1.50R.
Calculate w for each step and
for the complete cycle. Verify
that w for this reversible cyclic
process equals minus the area
enclosed by the lines in the
figure.

Exercise 2
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Calculate T for each state

Calculate w for each step

Calculate w for complete cycle

Calculate area enclosed by the lines

Comment

Exercise 2

Answer Hints
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Area enclosed by the lines =  P  V
= 2.00 atm  1000 cm3

= 2.00 atm  1000 cm3 (8.314 J/ 82.06 cm3 atm)
= 203 J
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Reversible Isothermal Process in a Perfect Gas

Consider the special case of a 
reversible isothermal (constant-T) 
process in a perfect gas.

For a fixed amount of a perfect gas, U 
depends only on T . 

Therefore U  = 0 for an isothermal 
change of state in a perfect gas. 

This also follows from dU = CV dT for a 
perfect gas.

The first law U = q  + w becomes 0  =
q + w and q = -w. 
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Integration of dwrev = -P dV and use of PV =  nRT give
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A cylinder fitted with a frictionless piston contains 3.00 

mol of He gas at P =1.00 atm and is in a large constant-

temperature bath at 400 K. The pressure is reversibly 

increased to 5.00 atm. Find w, q, and U for this 

process.
➢ It is an excellent approximation to consider the 

helium as a perfect gas.

➢ Since T is constant, U = 0.

➢ w = nRT ln (P2/P1)

= (3.00 mol)(8.314 J mol-1 K-1)(400K) ln(5.00/1.00)

= (9980 J) ln 5.00 = (9980 J) (1.609)

= 1.61× 104 J

Worked Example
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➢ Also, q = -w = -1.61×104 J. 

➢ Of course, w is positive for the compression. 

➢ The heat q is negative because heat must flow from 

the gas to the surrounding constant-temperature bath 

to maintain the gas at 400 K as it is compressed.
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0.100 mol of a perfect gas with CV,m = 1.50R expands 

reversibly and isothermally at 300 K from 1.00 to 3.00 L. 

Find q, w, and U for this process. (Answer: 274 J, -274 

J, 0.)

Exercise
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The molecular nature of internal energy
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THE MOLECULAR NATURE OF INTERNAL ENERGY

A qualitative understanding of molecular energies

▪ A molecule has a translational kinetic energy 1
2
mv2, where m 

and v are the mass and speed of the molecule.

▪ A translation is a motion in which every point of the body 

moves the same distance in the same direction. 

▪ The total molecular translational kinetic energy Utr,m of one 

mole of a gas is directly proportional to the absolute  

temperature and is given by Utr,m = 3
2
RT, where R is the gas 

constant.

Consider first a gas. The molecules are moving through space.

Translational kinetic energy
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▪ If each gas molecule has more than one atom, then the 

molecules undergo rotational and vibrational motions in 

addition to translation. 

▪ A rotation is a motion in which the spatial orientation of the 

body changes, but the distances between all points in the body 

remain fixed and the center of mass of the body does not 

move (so that there is no translational motion). 

▪ Except at very low temperatures the energy of molecular 

rotation Urot,m in one mole of gas is RT for linear molecules 

and 3
2
RT for nonlinear molecules: Urot,lin,m = RT;        

Urot,nonlin,m = 3
2
RT.

Rotational Energy
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Normal vibrational modes of CO2. The plus and minus 

signs indicate motion out of and into the plane of the paper

The normal modes of H2O. The heavy oxygen atom has a much 

smaller vibrational amplitude than the light hydrogen atoms.

Vibrational Energy
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▪ In a molecular vibration, the atoms oscillate about their 

equilibrium positions in the molecule. A molecule has various 

characteristic ways of vibrating, each way being called a 

vibrational normal mode. 

▪ Quantum mechanics shows that the lowest possible vibrational 

energy is not zero but is equal to a certain quantity called the 

molecular zero-point vibrational energy. The vibrational energy 

contribution Uvib to the internal energy of a gas is a complicated 

function of temperature. 

▪ For most light diatomic (two-atom) molecules at low and 

moderate temperatures (up to several hundred kelvins), the 

average molecular vibrational energy remains nearly fixed at the 

zero-point energy as the temperature increases. For polyatomic 

molecules and for heavy diatomic molecules at room 

temperature, the molecules usually have significant amounts of 

vibrational energy above the zero-point energy.
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Besides translational, rotational, and vibrational energies, a 

molecule possesses electronic energy el = eq - , where

eq is the energy of the molecule with the nuclei at rest (no 

translation, rotation, or vibration) at positions corresponding to 

the equilibrium molecular geometry, and  is the energy when all 

the nuclei and electrons are at rest at positions infinitely far apart 

from one another, so as to make the electrical interactions 

between all the charged particles vanish. 

Electronic energy



166

▪ Besides translational, rotational, vibrational, and 

electronic energies, the gas molecules possess energy due 

to attractions and repulsions between them 

(intermolecular forces); intermolecular attractions 

cause gases to liquefy.

▪ The force between two molecules depends on the 

orientation of one molecule relative to the other. For 

simplicity, one often ignores this orientation effect and 

uses a force averaged over different orientations so that it 

is a function solely of the distance r between the centers 

of the interacting molecules.

Intermolecular forces
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The Lennard-Jones intermolecular potential for Ar.
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Additional Slides
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For a gas or liquid, the molar internal energy is

where Urest,m is the molar rest-mass energy of the 

electrons and nuclei, and is a constant.



Mathematical Background

Physical chemistry uses calculus extensively. Therefore, some 

ideas of differential calculus is reviewed in this lecture.

Functions and Limits

To say that the variable y is a function of the variable x

means that for any given value of x there is specified a value of

y; we write y = f(x).

The variable x is called the independent variable or the

argument of the function f, and y is the dependent variable.

Instead of y=f(x), one often writes y=y(x).
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To say that the limit of the function f(x) as x approaches the

value a is equal to c [which is written as limx→a f(x)=c] means

that for all values of x sufficiently close to a (but not

necessarily equal to a) the difference between f(x) and c can be

made as small as we please.
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Let y = f(x). 

Let the independent variable change its value from x to x + h; 

This will change y from f (x) to f (x + h). 

The average rate of change of y with x is

The instantaneous rate of change of y with x is the limit of this 

average rate of change taken as the change in x goes to zero. 

Derivatives
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The instantaneous rate of change is called the derivative of the 

function f and is symbolized by f ':

The derivative of the function y = f(x)

at a given point is equal to the slope

of the curve of y versus x at that point.

As point 2 approaches point 1, 

the quantity y/x =  tan
approaches the slope of the 

tangent to the curve at point 1.
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As a simple example, let y = x2. Then

The derivative of x2 is 2x.
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An infinitesimally small change in x, is symbolize by dx. 

Denoting the corresponding infinitesimally small change 

in y by dy,  we have,

The quantities dy and dx are called differentials. Above 

equation gives the alternative notation dy/dx for a derivative.
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Let z be a function of x and y; z =f(x, y).We define the 

partial derivative of z with respect to x as

The partial derivative of z with respect to y at constant x is

Partial Derivatives

There may be more than two independent variables. For 

example, let z = g(w, x, y). The partial derivative of z with 

respect to x at constant w and y is
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