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Entropy and Probability

The entropy of a system is a measure of the disorder prevailing 
in it.

The thermodynamic probability of a system is defined as
the total number of different ways in which the given
system in the specified thermodynamic state may be
realized. It is denoted by W.

Entropy

Probability



• If a second molecule is introduced, the probability of finding both 
molecules in the same globe is ½ × ½ = (½)2.

• Similarly, the probability of finding all the N molecules in the same globe 
is (½)N.

• As N is very large, this probability is very low.

• On the other hand, the probability of uniform distribution is very high.

• Let us consider a single molecule in
the system. This molecule may be
either in globe 1 or in globe 2. The
probability of finding this molecule
in one of this globe is ½ or 50%.

Probability and spontaneity

All spontaneous process represent changes from a less probable to a more 
probable state.

Globe 1 Globe 2



Boltzmann-Plank Equation

A functional relationship exists between the entropy S and 
the thermodynamic probability W of a system.

It is possible to write, 
𝑆 = 𝑓(𝑊)

Let us consider two systems 1 and 2. If the systems are 
combined.

For the combined system 
Entropy      = S1 + S2

Probability = W1× W2

[ Because entropy is additive but the probability is 
multiplicative.]



Thus, 𝑆12 = 𝑆1 + 𝑆2 = 𝑓(𝑊1 ×𝑊2)

Also, 𝑆1+ 𝑆2 = 𝑓 𝑊1 + 𝑓(𝑊2)

Therefore,  𝑓(𝑊1) + 𝑓(𝑊2) = 𝑓(𝑊1 ×𝑊2)

Such a function relationship is obeyed only if

𝑆 = 𝑘 𝑙𝑛𝑊 + 𝐶

where k and C are constants. This relation was first put 
forward by L. Boltzmann who left k and C undetermined. 

M. Plank proposed that C is zero and hence

𝑆 = 𝑘 𝑙𝑛𝑊 Boltzmann-Plank Equation

where, k = Boltzmann constant = 1.38065 × 10-23 J K-1



Configuration and weight of configuration

▪ The weight of a configuration, W is the number of ways 
that molecules can be distributed over the available 
states.

▪ We consider a closed system composed of N molecules. At 
any instant, there will be N0 molecules in the state with 
energy 0, N1 with 1, and so on. The instantaneous 
configuration of the system is {N0,N1, . . .}. The instantaneous 
configuration fluctuates with time because the populations 
change.

▪ The weight of the configuration {N0,N1, . . .} is given by the 
expression



A brief illustration of W

To calculate the number of ways of distributing 20 identical 
objects with the arrangement 1, 0, 3, 5, 10, 1, we note that 
the configuration is {1,0,3,5,10,1} with N = 20; therefore
the weight is

Self-test

Calculate the weight of the configuration in which 20 
objects are distributed in the arrangement 0, 1, 5, 0, 8, 0, 
3, 2, 0, 1.               [4.19 × 1010]
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The Nernst Heat Theorem

The entropy change accompanying any physical or 
chemical transformation approaches zero as the 
temperature approaches zero: ΔS→0 as T→0 provided 
all the substances involved are perfectly ordered.

Conclusion of Nernst Heat Theorem

If we arbitrarily ascribe the value zero to the entropies of 
elements in their perfect crystalline form at T = 0, then all 
perfect crystalline compounds also have zero entropy at T = 0 
(because the change in entropy that accompanies the 
formation of the compounds, like the entropy of all 
transformations at that temperature, is zero).



Third Law of Thermodynamics

The entropy of all perfect crystalline substances is zero at 
T = 0.

Justification of the third law of thermodynamics

Entropy, S = k ln W

where, W is the number of microstates. In most cases, W=
1 at T = 0 because there is only one way of achieving the
lowest total energy: put all the molecules into the same,
lowest state.

Therefore, S = 0 at T = 0, in accord with the Third Law of
thermodynamics



Residual Entropy

In certain cases, W may differ from 1 at T = 0. This is the case if 
there is no energy advantage in adopting a particular 
orientation even at absolute zero. 

For instance, for a diatomic molecule AB there may be almost 
no energy difference between the arrangements . . . AB AB AB . . 
. and . . . BA AB BA . . . , so W > 1 even at T = 0.

If S > 0 at T = 0 we say that the substance has a residual entropy. 

Ice has a residual entropy of 3.4 J K−1 mol−1. 

The entropy possessed by a substance even at absolute
zero is known as residual entropy.



Calculation of Residual Entropy

The entropy arising from residual disorder can be calculated 
readily by using the Boltzmann formula,                                                              

S = k ln W. 

To do so, suppose that two orientations are equally probable, 
and that the sample consists of N molecules. 

Because the same energy can be achieved in 2N different ways 
(because each molecule can take either of two orientations), 
the total number of ways of achieving the same energy is         
W = 2N. 

It follows that, 𝑆 = 𝑘 ln 2𝑁 = 𝑁𝑘 ln 2 = 𝑛𝑅 ln 2

A residual molar entropy of R ln 2 = 5.8 J K−1 mol−1 is expected 
for solids composed of molecules that can adopt either of two 
orientations at T = 0.



If s orientations are possible, the residual molar entropy is
𝑆𝑚 0 = 𝑅 𝑙𝑛 𝑠

For CO, the measured residual entropy is 5 J K−1 mol−1, which is
close to 𝑅 ln 2 (5.8 J K−1 mol−1), the value expected for a
random structure of the form …CO CO OC CO OC OC… .

For H2O molecules, the average number of permitted

orientations is
3

2
. Calculate (i) the residual molar entropy for

H2O and (ii) the residual entropy for 100 H2O molecules.

Exercise


