INTRODUCAO A PROGRAMACAO
EM FORTRAN 90

Resumo do livro

FORTRAN 90 PROGRAMMING
T. M. R. Ellis, Ivor R. Philips, Thomas M. Lahey

Addison-Wesley: 1994

F. J. Romeiras / 3.NOV.2003

CONTENTS

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter 10.

Chapter 13.

9.

Introduction

First steps in Fortran 90 programming
Essential data handling

Basic building blocks

Controlling the flow of your program
Repeating parts of your program

An introduction to arrays

More control over input and output
Using files to preserve data

An introduction to numerical methods
in Fortran 90 programs

19

31

39

47

55

63

70

Array processing and matrix manipulation 77

CHAPTER 1. INTRODUCTION

OVERVIEW

Computers are today used to solve an almost unimaginable range of problems, and yet
their basic structure has hardly changed in 40 years. They have become faster and more
powerful, as well as smaller and cheaper, but the key to this change in the role that
they play is due almost entirely to the developments in the programming languages which
control their every action.

Fortran 90 is the latest version of the world’s oldest high-level programming lan-
guage, and is designed to provide better facilities for the solution of scientific and techno-
logical problems and to provide a firm base for further developments to meet the needs
of the last years of the 20th century and of the early 21st.

This chapter explains the background to both Fortran 90 and its predecessor, FOR-
TRAN 77, and emphasizes the importance of the new language for the future develop-
ment of scientific, technological and numerical computation. It also establishes certain
fundamental concepts, common to all computers, which will provide the basis for further
discussion in later chapters.

SUMMARY

e Programming languages are used to define a problem and to specify the method
of its solution in terms that can be understood by a computer system.

e A high-level language enables a programmer to write a program without needing
to know much about the details of the computer itself.

e Hundreds of programming languages have been developed over the last fifty years.
Many of these are little used, but there are a small number which are very widely
used throughout the world and have been standardized (either through formal in-
ternational processes or as a result of de facto widespread acceptance) to encourage
their continuing use. Most of these major languages are particulary suited to a
particular class of problems, although this class is often very wide.

e Two languages stand head and shoulders above the others in terms of their to-
tal usage. These languages are COBOL (first released in 1960) and Fortran (first
released in 1957). COBOL is used for business data processing and it has been
estimated that over 70% of all programming carried out in 1990 used COBOL! For-
tran programs probably constitute around 60% of the remainder, with all the other
languages trailing far behind.

e Fortran was originally designed with scientific and engineering users in mind, and
during its first 30 years it has completely dominated this area of programming.

e Fortran has also been the dominant computer language for engineering and scientific
applications in academic circles and has been widely used in other, less obvious
areas, such as musicology, for example. One of the most widely used programs in
both British and American Universities is SPSS (Statistical Package for the Social
Sciences) which enables social scientists to analyse survey or other research data.
Indeed, because of the extremely widespread use of Fortran in higher education and
industry, many standard libraries have been written in Fortran in order to enable

programmers to utilize the experience and expertise of others when writing their
own Fortran programs. Two notable examples are the IMSL and NAG libraries,
both of which are large and extremely comprehensive collections of subprograms
for numerical analysis applications. Thus, because of the widespread use of Fortran
over a period of more than 30 years, a vast body of experience is available in the
form of existing Fortran programs.

e Fortran 90 is the latest version® of the Fortran language and provides a great many
more features than its predecessors to assist the programmer in writing programs to
solve problems of a scientific, technological or computational nature. Some of these
new features were based on the experience gained with similar concepts in other,
newer, languages; others were Fortran’s own contribution to the development of
new programming concepts. Fortran 90 contains all the modern features necessary
to enable programs to be properly designed and written — which its predecessor,
FORTRAN 77, did not.

e Fortran 90 retains all of FORTRAN 77, that is, any standard FORTRAN 77 program
or procedure is a valid Fortran 90 program or procedure, and should behave in an
identical manner. Thus all the wealth of existing Fortran code, written in accord
with the FORTRAN 77 standard, can continue to be utilized for as long as necessary
without the need for modification. Indeed, it is precisely this care for the protection
of existing investment that explains why Fortran, which is the oldest of all current
programming languages, is still by far the most widely used language for scientific
programming.

e Fortran 90 has, therefore, given a new lease of life to the oldest of all programming
languages, and is already being used as the base from which still more versions of
the language are being developed. The ability to write programs in Fortran 90 will
undoubtedly, therefore, be a major requirement for a high proportion of scientific
and technological computing in the future, just as the ability to use FORTRAN 77,
and before that FORTRAN IV, was in the past.

e Definitive stages in the development of Fortran:

FORTRAN, 1957 | IBM Mathematical FORmula TRANslation System,
was developed at IBM to provide a more efficient and
economical method of programming its 704 computer

than the machine code used at that time
FORTRAN II, 1958 | An improved version of the language, with a consider-

ably enhanced diagnostic capability and a number of

significant extensions.
FORTRAN IV, 1962 | A further improved version almost totally independent

of the computer on which the programs were to be run.
FORTRAN 66, 1966 | American Fortran standard (American National Stan-

dards Institute, ANSI, 1966)

FORTRAN 77,1978 | American Fortran standard (ANSI, 1978)

Fortran 90, 1991 The emergence of Fortran as a modern computer lan-
guage (ISO/TEC, 1991)

IFortran 95, adopted in 1997 (ISO/IEC, 1997), is a minor revision of Fortran 90 and backward
compatible with it, apart from a change in the definition of an intrinsic function and the deletion of some
Fortran 77 features declared obsolete in Fortran 90.

CHAPTER 2. FIRST STEPS IN FORTRAN 90
PROGRAMMING

OVERVIEW

The most important aspect of programming is undoubtedly its design, while the next
most important is the thorough testing of the program. The actual coding of the program,
important though it is, is relatively straightforward by comparison.

This chapter discusses some of the most important principles of program design and
introduces a technique, known as a structure plan, for helping to create well-designed
programs. This technique is illustrated by reference to a simple problem, a Fortran 90
solution for which is used to introduce some of the fundamental concepts of Fortran 90
programs.

Some of the key aspects of program testing are also briefly discussed, although space
does not permit a full coverage of this important aspect of programming. We will return
to this topic in the intermission between Parts I and II of this book.

Finally, the difference between the old fixed form way of writing Fortran programs,
which owed its origin to punched cards, and the alternative free form approach introduced
in Fortran 90 is presented. Only the new form will be used in this book, but the older
form is also perfectly acceptable, although not very desirable in new programs.

SUMMARY

e Programming is nowadays recognized to be an engineering discipline. As with
any other branch of engineering it involves both the learning of the theory and
the incorporation of that theory into practical work. In particular, it is impossible
to learn to write programs without plenty of practical experience, and it is also
impossible to learn to write good programs without the opportunity to see and
examine other people’s programs.

e The reason for writing a program, any program, is to cause a computer to solve a
specified problem. The nature of that problem may vary immensely. It should never
be forgotten that programming is not an end in itself.

e The task of writing a program to solve a particular problem can be broken down
into four basic steps:

(1) Specification: Specify the problem clearly.

(2) Anaysis and design: Analyse the problem and break it down into its funda-
mental elements.

(3) Coding: Code the program according to the plan developed at step 2.

(4) Testing: Test the program exhaustively, and repeat steps 2 and 3 as necessary
until the program works correctly in all situations that you can envisage.

e A well-designed program is easier to test, to maintain and to port to other computer
systems.

e A structure plan is a method for assisting in the design of a program. It involves
creating a structure plan of successive levels of refinement until a point is reached

where the programmer can readily code the individual steps without the need for
further analysis. This top-down approach is universally recognized as being the ideal
model for developing programs although there are situations when it is necessary to
also look at the problem from the other direction (bottom-up). The programming
of sub-problems identified during top-down design can be deferred by specifying a
subprogram for the purpose.

The program written is Example 2.1 is a very simple one, but it does contain many
of the basic building blocks and concepts which apply to all Fortran 90 programs.
We shall therefore examine it carefully to establish these concepts before we move
on to look at the language itself in any detail.

A program is composed of the main program unit and program units of other
types, in particular subroutines.
The structure of a main program unit is:

PROGRAM name
Specification statements

Executable statements

END PROGRAM name

Every main program unit must start with a PROGRAM statement, and end with an
END PROGRAM statement.

Specification statements provide information about the program to the compiler.

An IMPLICIT NONE statement is a special specification statement which should al-
ways immediately follow a PROGRAM statement. It is used to inhibit a particularly
undesirable feature of Fortran which is carried over from earlier versions of Fortran.

A variable declaration is a particular specification statement which specifies the
data type and name of the variables which will be used to hold (numeric or other)
information.

Executable statements are obeyed by the computer during the execution of the
program.

A list-directed input statement is a particular executable statement which is
used to obtain information from the user of a program during execution through
the default input device (often the keyboard).

A list-directed output statement is a particular executable statement which is
used to give information to the user of a program during execution through the
default output device (often the screen).

A CALL statement is used to transfer processing to a subroutine, using information
passed to the subroutine by means of arguments, enclosed in parentheses.

A Fortran 90 name must obey the following rules:

o it must consist of a maximum of 31 characters;

o it may only contain the 26 upper case letters A—Z, the 26 lower case letters
a—z, the ten digits 0-9, and the underscore character _; upper and lower case
letters are considered to be identical in this context;

o it must begin with a letter.

Keywords are Fortran names which have a special meaning in the Fortran language;
other names are called identifiers. To assist readibility of the example programs
we shall use upper case letters for keywords and lower case letters for identifiers.

Blank characters are significant and must be used to separate names, constants or
statement labels from other names, constants or statement labels, and from Fortran
keywords. The number of blanks used in this context is irrelevant for the compiler.

A comment line is a line whose first non-blank character is an exclamation mark,
I. A trailing comment is a comment whose initial ! follows the last statement on
a line. Comments are ignored by the compiler. Comments should be used liberally
to explain anything which is not obvious from the code itself.

A line may contain a maximum of 132 characters.

A line may contain more than one statement, in which case a semicolon, ;, separates
each pair of successive statements.

The presence of an ampersand, &, as the last non-blank character of a line is an
indication of a continuation line, that is, that the statement is continued on the
next line. If it occurs in a character context, then the first non-blank character of
the next line must also be an ampersand, and the character string continues from
immediately after that ampersand.

A statement may have a maximum of 39 continuation lines.

Errors in programs are of different types. A syntactic error is an error in the
syntax, or grammar, of the statement. A semantic error is an error in the logic
of the program; that is, it does not do what it was intended to do. Compilation
errors are errors detected during the compilation process. Execution errors are
errors that occur during the execution of the compiled program. Compilation errors
are usually the result of syntactic errors, although some semantic errors may also be
detected. Execution errors are always the result of semantic errors in the program.

Testing programs is a vitally important part of the programming process. Even
with apparently simple programs one should always thoroughly test them to ensure
that they produce the correct answers from valid data, and react in a predictable
and useful manner when presented with invalid data.

One shoud never forget that computers have no intelligence; they will only do what
you tell them to do — no matter how silly that may be — rather than what you
intended them to do.

The action required to run a Fortran program on a particular computer and to iden-
tify any specific requirements will be specific to the particular system and compiler
being used.

Fortran 90 syntax introduced in Chapter 2

Initial statement PROGRAM name

End statement END PROGRAM name
END PROGRAM
END

Implicit type IMPLICIT NONE

specification statement

Variable declaration REAL :: list of names
statement

List-directed input and READ *, list of names
output statements PRINT *, list of names and/or values

Subroutine call CALL subroutine_name (argument_1, argument_2, ...)

Example 2.1

Problem (2.1)

Write a program which will ask the user for the z and y coordinates of three points and
which will calculate the equation of the circle passing through those three points, namely

(v — a2+ (y —) = 1
and then display the coordinates (a,b) of the centre of the circle and its radius, 7.
Analysis (2.1)

Structure plan:

1 Read three sets of coordinates (x1,y1), (22, y2) and (x3,y3)
2 Calculate the equation of the circle using the procedure calculate_circle
3 Display the values a,b and r

Solution (2.1)

PROGRAM circle
IMPLICIT NONE

This program calculates the equation of a circle passing
through three points

Variable declarations

REAL :: x1, y1, x2, y2, %3, y3, a, b, r

PRINT *, "Please type the coordinates of three points"

PRINT *, "in the order x1, yi1, x2, y2, x3, y3"

READ *, x1, y1, x2, y2, %3, y3 ! Read the three points

!

! Step 2

!

CALL calculate_circle(xl, y1, x2, y2, x3, y3, a, b, r)

!

! Step 3

!

PRINT *, "The centre of the circle through these points is &
&(n, a, u’n, b, u)n

PRINT *, "Its radius is ", r

!

END PROGRAM circle

Result of running the Solution (2.1)

Please type the coordinates of three points

in the order x1, yi1, x2, y2, x3, y3

4.71 4.71

6.39 0.63

0.63 0.63

The centre of the circle through these points is (3.510, 1.830)
Its radius is 3.120

CHAPTER 3. ESSENTIAL DATA HANDLING

OVERVIEW

There are two fundamental types of numbers in both mathematics and programming —
namely those which are whole numbers, and those which are not. In Fortran these are
known as integers and real numbers, respectively, and the difference between them is of
vital importance in all programming languages. A third fundamental data type allows
character information to be stored and manipulated.

This chapter discusses these three basic data types, the ways in which they may
be used in calculations or other types of expressions, and the facilities contained within
Fortran for the input and output of numeric and textual information.

Finally, an important feature of Fortran 90 is its ability to allow programmers to
create their own data types, so that they may more readily express problems in their
own terms, rather than in an arbitrary set of more basic functions. This is an important
new development in Fortran 90, and one which will be developed further in subsequent
chapters.

SUMMARY

e An integer is always held ezactly in the computer’s memory, and has a (relatively)
limited reange (between about —2 x 10° and +2 x 10 on a typical 32-bit computer)

e A real number is stored as a floating-point number, is held as an approzimation to a
fixed number of significant digits and has a very large range (typically between about
—103® and +10% to seven or eight significant digits on the same 32-bit computer).

e Variables are locations in the computer’s memory in which variable information
may be stored.

e All variables should be declared in a type declaration statement before their
first use. At its simplest this statement takes the form

TYPE :: name
or
TYPE :: name_1, name_2, ...

where TYPFE specifies the data type for which memory space is to be reserved, and
name, name_1, name_2, ... are the names chosen by the programmer with which
to refer to the variables that have been declared.

e Example:

REAL :: real_1, real_2, real_3
INTEGER :: integer_1, integer_2

e An IMPLICIT NONE statement should always be placed immediately after the initial
statement of the main program unit to force the compiler to require that all variables
appear in a type declaration statement.

e There are only two ways in which a variable can be given a value during the execution
of a program — by assignement or by a READ statement.

10

An assignement statement takes the form
name = expression

where name is the name of the variable, and expression is an arithmetic expression
which will be evaluated by the computer to calculate the value to be assigned to
the variable name.

If an integer value is assigned to a real variable it is converted to its real equivalent
before assignment; if a real value is assigned to an integer variable it is truncated
before conversion to integer, and any fractional part is lost.

Example:

a
a

b + cxd/e - f**g/h + l*J + k
b + (cxd)/e - (f*x*g)/h + (i*j) + k

Arithmetic operators in Fortran:

Operator — Meaning Priority

+ Addition Low

- Subtraction Low
Multiplication Medium
Division Medium

%3k

Exponentiation High

The priority of arithmetic operators in an arithmetic expression is the same as in
mathematics, namely exponentiation is carried out first, followed by multiplication
and division, followed by addition and subtraction. Within the same level of priority
evaluation of the expression will proceed from left to right, except in the case of
exponentiation where evaluation proceeds from right to left. The priority may be
altered by the use of parentheses.

If one of the operands of an arithmetic operator is real, then the evaluation of
that operation is carried out using real arithmetic, with any integer operand being
converted to real.

The evaluation of a mixed-mode expression, where not all the operands are of
the same type, proceeds as already defined until a sub-expression is to be evaluated
which has two operands of different types. At this point, and not before, the integer
value is converted to real.

The result of the division of two integers (integer division) is the integer which is
the truncated value of the mathematical value of the division.

Example:

REAL :: temp_C, temp_F, temp_F_1, temp_F_2, temp_F_3, temp_F_4

temp_F = 9.0 * temp_C/5.0 + 32.0

temp_F_1 = 9.0/5.0 * temp_C + 32.0 ! temp_F_1 = temp_F

temp_F_2 = 1.8 * temp_C + 32.0 I temp_F_2 = temp_F

temp_F_3 = 9 * temp_C/5 + 32 ! temp_F_3 = temp_F
!

temp_F_4 = 9/5 * temp_C + 32 'l temp_F_4 /= temp_F

11

All five arithmetic operators are binary operators, that is, they have two operands.
Addition and subtraction can also be used as unary operators, having only one
operand.

Example:
P =9 'p=0.0-gq
X=+y ' x=0.0+y

Constants are locations in which information is stored which cannot be altered
during the execution of the program.

Constants may have names like variables or they may simply appear in a Fortran
statement by writing their value. In this latter case they are called literal con-
stants because every digit of the numbers is specified literally.

Numerical literal constants are written in the normal way, and the presence or
absence of a decimal point defines the type of constant.

There is one exception to the rule that real constants must have a decimal point,
namely the exponential form. This takes the form

mEe

where m is called the mantissa and e is the exponent. The mantissa may be
written either with or without a decimal point, whereas the exponent must take the
form of an integer.

Example: 0.000001 can be written
0.1E-5 or 1.0E-6 or 1E-6 or 100E-8, etc.
List-directed input/output statements have an almost identical syntax:

READ *, var_1, var_2, ...
PRINT *, item_1, item_2, ...

The main difference between them is that the list of items in a READ statement may
only contain variable names, whereas the list in a PRINT statement may also contain
constants or expressions. These lists of names and/or other items are referred to as
an input list and an output list, respectively. The asterisk following the READ
or PRINT indicates that list-directed formatting is to take place. We shall see
in Chapter 8 how other forms of input and output formatting may be defined.

The list-directed READ statement will take its input from a processor-defined input
unit known as the default input unit, while the list-directed PRINT statement will
send its output to a processor-defined unit known as the default output unit. In
most systems, such as workstations or personal computers, these default units will
be the keyboard and display, respectively; we shall see in Chapter 8 how to specify
other input or output units where necessary.

The term ’list-directed’ is thus used because the interpretation of the data input,
or the representation of the data output, is determined by the list of items in the
input or output statement.

A value that is input to a real variable may contain a decimal point, or the decimal
point may be omitted, in which case it is treated as though the integer value read
were followed by a decimal point. A value that is to be input to an integer variable
must not contain a decimal point, and the occurrence of one will cause an error.

12

One important point that must be considered with list-directed input concerns the
termination of each data value being input. The rule is that each number, or other
item, must be followed by a value separator consisting of

a comma, a space, a slash (/) or the end of the line;

any of these value separators may be preceded or followed by any number of con-
secutive blanks (or spaces).

If there are two consecutive commas, then the effect is to read a null value, which
results in the value of the corresponding variable in the input list being left un-
changed. Note that a common cause of error is to believe that the value will be set
to zero.

If the terminating character is a slash then no more data items are read, and pro-
cessing of the input statement is ended. If there are any remaining items in the
input list then the result is as though null values have been input to them; in other
words, their values remain unchanged.

On output, list-directed formatting causes the processor to use an appropriate
format for the values being printed. Exactly what form this takes is processor-
dependent, but it is usually perfectly adequate for simple programs and for initial
testing.

Character literal constants can be used in output statements to provide textual
information. They consist of a string of characters chosen from those available to
the user on the computer system being used, enclosed between quotation marks
or apostrophes. As long as the same character is used at the beginning and the
end it does not matter which is used.

A single real or integer number is stored in a numeric storage unit, which consists
of a contiguous area of memory capable of storing 12, 32, 48 or 64 bits, or binary

digits. Each character is stored in a character storage unit, typically occupying
8 or 16 bits.

A character variable consists of a sequence of one or more consecutive character
storage units.

Programs in the Fortran language are written using characters from the Fortran
Character Set, constituted by the following 58 characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
(abcdefghijklmnopgrstuvwxyz)
0123456789

=+ K (), TR &L <> 78

(where # represents the space, or blank, character)

Most processors also support a number of other characters as part of their default
character set.

A character variable is declared in a very similar manner to that used for integer
and real numbers, with the important difference that it is necessary to specify how
many characters the variable is to be capable of storing:

CHARACTER(LEN =length) :: name-1, name-2, ...

13

This declares one or more CHARACTER variables, each of which has a length of
length.

The length specification may be either a positive integer constant or an integer
constant expression.

If no length specification is provided, then the length is taken to be one.

There are two additional, shorter, ways of writing this statement (but the full form
is recommended for greater clarity):

CHARACTER(length) :: name_1, name-2, . ..
CHARACTER*length :: name_1, name_2, ...

When assigning a character string to a character variable whose length is not the
same as that of the string, the string stored in the variable is extended to the right
with blanks, or truncated from the right, so as to exactly fill the character variable
to which it is being assigned.

The form of any character data to be read by a list-directed READ statement is
normally the same as that of a character constant. In other words it must be
delimited by either quotation marks or by apostrophes. These delimiting characters
are not required if all of the following conditions are met:

o the character data is all contained within a single record or line;
o the character data does not contain any blanks, any commas or any slashes;
o the first non-blank character is not a quotation mark or an apostrophe;

o the leading characters are not numeric followed by an asterisk.

In this case the character constant is terminated by any of the value separators
which will terminate a numeric data item (blank, comma, slash or end of record).

If the character data which is read by a list-directed READ statement is too long or
too short for the variable concerned then it is truncated or extended on the right in
exactly the same way as for assignement.

The output situation is rather simpler, and a list-directed PRINT statement will
output exactly what is stored in a character variable or constant, including any
trailing blanks, without any delimiting apostrophes or quotation marks.

Two character strings can be combined to form a third, composite string. This
process is called concatenation and is carried out by means of the concatenation
operator, consisting of two consecutive slashes.

Character substrings can be identified by following the character variable name
or character constant by two integer expressions separated by a colon and enclosed
in parentheses. The two integer values represent the positions in the character
variable or constant of the first and last characters of the substring. Either may be
omitted, but not both, in which case the first or last character position is assumed,
as appropriate.

substring = string(first_position : last_position)
substring = string(first_position :)
substring = string(: last_position)

14

Character substrings may be used wherever the character variables or character
constants of which they are substrings may be used.

A variable declaration may include the specification of an initial value.
type :: name = initial_value
Any initial value specified must either be a literal constant or a constant expression,
that is an expression whose components are all constants.
Example:

REAL :: a = 0.0, b, ¢ = 1.0E-6
INTEGER :: max = 100
CHARACTER(LEN=10) :: name="Undefined"

A named constant declaration takes the same form as a variable declaration spec-
ifying an initial value, except that the name has the PARAMETER attribute.

type, PARAMETER :: name = initial_value
Example:

REAL, PARAMETER :: pi = 3.1415926; pi_by_2 = pi/2.0
INTEGER, PARAMETER :: max_iter = 100

There are six intrinsic data types that can be processed by Fortran programs, of
which we have met the three major ones: REAL, INTEGER and CHARACTER.

A derived type is a user-defined data type, each of whose components is either an
intrinsic type or a previously defined derived type. A derived type is defined by a
special sequence of statements, which in their simplest form are as follows:

TYPE new_type
component_definition

END TYPE new_type

There may be as many component definitions as required, and each takes the same
form as a variable declaration.

Example:

TYPE person
CHARACTER :: first_name*12, middle_initial*1l, last_namex*x12
INTEGER :: age
CHARACTER :: sex ! Mor F
CHARACTER(LEN=11) :: social_security
END TYPE person

Variables of a derived type are declared in a similar way to that used for intrinsic
types, except that the type name is enclosed in parentheses and preceded by the

keyword TYPE:
Example:

TYPE(person) :: jack, jill

15

e Derived type literal constants are specified by means of structure constructors: a
sequence of constants corresponding to the components of the derived type, enclosed
in parentheses and preceded by the type name.

e Example:

jack = person("Jack", "R", "Hagenbach", 47, "M", "123-45-6789")
jill person("Jill", "M", "Smith", 39, "F", "987-65-4321")

e We may refer directly to a component of a derived type variable by following the
variable by a percentage sign, %, and the name of the component.

e Example:

jill%last_name = jackllast_name

Fortran syntax introduced in Chapter 3

Derived type definition TYPE type_name
1st_component_declaration
2nd_component_declaration

END TYPE type_name

Variable declaration REAL :: list of variable names
INTEGER :: list of variable names
CHARACTER (LEN=length) :: list of variable names

TYPE(derived type_name) :: list of variable names

Initial value specification type :: name = initial_value, . ..

Named constant type, PARAMETER :: name = initial_value, . ..
declaration

Assignment statement variable_name = expression

Character substring name(first_position : last_position)
specification name(first_position :)

name(: last_position)
Arithmetic operators wEOE)+, -

Character operator //

16

Example 3.2

Problem (3.2)

Write a program which asks the user for his(her) title, first name and last name, and
prints a welcome message using both the full name and first name.

Analysis (3.2)

Structure plan:

1 Read title, first name and last name

2 Concatenate the resulting strings together, using the intrinsic function TRIM
to remove trailing blanks from the title and first name

3 Print a welcome message using the formal address,
and another using just the first name

Solution (3.2)

PROGRAM welcome
IMPLICIT NONE

!
! This program manipulates character strings to produce a
! properly formatted welcome message
!
!

Variable declarations
CHARACTER(LEN=10) :: title
CHARACTER(LEN=20) :: first_name, last_name
CHARACTER(LEN=50) :: full_name
1
I Ask for name, etc
PRINT *, "Please give your full name in the form requested"
PRINT *, "Title (Mr./Mrs./Ms./etc.): "
READ #*, title
PRINT *, "First name: "
READ *, first_name
PRINT *, "Last name: "
READ *, last_name
1
! Create full name
full_name=TRIM(title)//" "//TRIM(first_name)//" "//last_name
1
! Print messages
PRINT *, "Welcome ", full_name
PRINT *, "May I call you ",TRIM(first_name),"?"
1

END PROGRAM welcome

17

Example 3.4

Problem (3.4)

Define a data type which can be used to represent complex numbers, and then use it in a
program which reads two complex numbers and calculates and prints their sum and their
product.

Analysis (3.4)
Given two complex numbers
z) = X1 + 1y, Zg = To + Y2,
the rules for addition and multiplication are the following:
21tz = 1+ T2+ (Y1 +Y2)

21 X zg = Xy XTy—yp Xy +i(21 X ys+ 22 X Y1)

Structure plan:

Define a data type for complex numbers
Read two complex numbers

Calculate their sum and their product
Print results

[N JUR U

18

Solution (3.4)

PROGRAM complex_arithmetic
IMPLICIT NONE

!

! A program to illustrate the use of a derived type to perform
! complex arithmetic
!
!

Type definition
TYPE complex_number
REAL :: real_part, imag_part
END TYPE complex_number
!
! Variable definitions
TYPE(complex_number) :: zl, z2, sum, prod
!
! Read data
PRINT *, "Please supply two complex numbers"
PRINT *, "Each complex number should be typed as two numbers,"
PRINT *, "representing the real and imaginary parts of the number"
READ *, zl1, z2
!
! Calculate sum and product
sumj,;real_part = zljreal_part + z2Jreal_part
sum),imag_part = zlY%imag_part + z2)imag_part
!

z2%real_part - &
z2},imag_part
z2,imag_part + &
z2%real_part

zllreal_part
z1%imag_part
zlYreal_part
z1%imag_part

prodjreal_part

prodjimag_part

* X X X

!
! Print results
PRINT *, "The sum of the two numbers is (", &

sumjreal_part, ", ", sumj)imag_part, ")"
PRINT *, "The product of the two numbers is (", &
prodjreal_part, ", ", prod%imag_part, ")"

!
END PROGRAM complex_arithmetic

19

CHAPTER 4. BASIC BUILDING BLOCKS

In all walks of life, the easiest way to solve most problems is to break them down into
smaller sub-problems and deal with each of these in turn, further subdividing these sub-
problems as necessary.

This chapter introduces the concept of a procedure to assist in the solution of such
sub-problems, and shows how Fortran’s two types of procedures, functions and subrou-
tines, are used as the primary building blocks in well-designed programs.

A further encapsulation facility, known as a module, is also introduced in this chap-
ter as a means of providing controlled access to global data, and is also shown to be an
essential tool in the use of derived (or user-defined) datatypes. Modules are also recom-
mended as a means of packaging groups of related procedures, for ease of manipulation,
as a means if providing additional security and to simplify the use of some of the powerful
features of Fortran 90 that will be met in subsequent chapters.

SUMMARY

e A procedure is a special section of a program which is, in some way, referred to
whenever required.

e Procedures fall into two broad categories: intrinsic procedures, which are part of
the Fortran language; external procedures, which are written by the programmer
(or by some other person who then allows the programmer to use them).

e Procedures are further categorized according to their mode of use into subroutines
and functions.

e There are 108 intrinsic functions and 5 intrinsic subroutines available in Fortran 90.

e The purpose of a function is to take one or more values (or arguments) and create
a single result (the function value).

e A function reference takes the general form:

name (argument)
name (arg-1, arg-2, ...)

e Examples:

SQRT(x), intrinsic function which calculates the square root
of a positive number x

cube_root(x), external function which calculates the cubic root
of a real number x

e A function is used simply by referring to it in an expression in place of a variable
or constant.

e Example:
- b + SQRT(b*b - 4.0*ax*xc)

e Many intrinsic functions exist in several versions, cach of which operates on argu-
ments of different types; such functions are called generic functions.

20

e A Fortran 90 program consists of one main program unit, and any number of
four other types of program units:
— external function subprogram units,
— external subroutine subprogram units,
— module program units,
— block data program units.

e All the program units have the same broad structure, consisting of an initial state-
ment, any specification statements, any executable statements, and an END
statement.

e One of the most important concepts of Fortran is that one program unit need never
be aware of the internal details of any other program unit. The only link between
one program unit and a subsidiary program unit is through the interface of the
subsidiary program unit, which consists of the name of the program unit and cer-
tain other public entities of the program unit. This very important principle means
that it is possible to write subprograms totally independently of the main program,
and of each other. This feature opens up the way for libraries of subprograms:
collections of subprograms that can be used by more than one program. It also
permits large projects to use more than one programmer; all the programmers need
to communicate to each other is the information about the interfaces of their pro-
cedures.

e The structure of an external function subprogram is:

type FUNCTION name(dum_1, dum_2, ...)
IMPLICIT NONE

Specification statements, cte.
Executable statements

END FUNCTION name
or

FUNCTION name(dum-1, dum_2, ...)
IMPLICIT NONE
type :: name

Specification statements, etc.

Executable statements

END FUNCTION name

where dum_1, dum_2, ... are dummy arguments which represent the actual
arguments which will be used when the function is used (or referenced) and type
is the type of the result of the function.

e The result variable is the means by which a function returns its value. Every
function must contain a variable having the same name as the function, and this
variable must be assigned, or otherwise given, a value to return as the value of the

21

function before an exit is made from the function. The type of this result variable
may be specified either in the initial FUNCTION statement or in a conventional
declaration statement.

The function name must be declared in the calling program unit in a conventional
declaration statement in order that the Fortran processor is aware of its type.

Although it is not necessary, it is possible to add an EXTERNAL attribute specifica-
tion to such a declaration; this addition informs the compiler that the name is that
of a function and not of a variable.

REAL, EXTERNAL :: function_name

The difference between a function and a subroutine lies in how they are referenced
and how the results, if any, are returned.

A subroutine’s arguments are used both to receive information to operate on and
to return results.

A subroutine is accessed by means of a CALL statement, which gives the name of
the subroutine and a list of arguments which will be used to transmit information
between the calling program unit and the subroutine:

CALL name (arg-1, arg_2, ...)

A subroutine may have no arguments, in which case the CALL statement takes the
form:

CALL name
or
CALL name()
A subroutine need not return anything.

The structure of an external subroutine subprogram is:

SUBROUTINE name(dum_1, dum_2, ...)
IMPLICIT NONE
Specification statements, etc.

Executable statements

END SUBROUTINE name
Execution of a program will start at the beginning of the main program unit.

A function reference and the CALL of a subroutine causes a transfer of control so
that instead of continuing to process the current statement, the computer executes
the statements contained within the function or the subroutine. When the function
or the subroutine has completed its task it returns to the calling program unit and
execution continues with the next statement.

Only the arguments of a procedure are accessible outside the procedure.

A local variable or internal variable of a procedure in which it is declared has
no existence outside the procedure, that is, it is not accessible from outside the
procedure.

22

e Procedures may be referenced in the main program or in another procedure. How-
ever a procedure may not refer to itself, either directly or indirectly (for example,
through referencing another procedure which, in turn, references the original proce-
dure). This is known as recursion and is not allowed unless we take special action
to permit it.

e When a function or subroutine is referenced, information is passed to it through
its arguments; in the case of a subroutine, information may also be returned to the
calling program unit through its arguments. The relationship between the actual
arguments in the calling program unit and the dummy arguments in the subroutine
or function is of vital importance in this process. It is important to realize that the
dummy arguments do not exist as independent entities — they are simply a means
by which the procedure can identify the actual arguments in the calling program
unit. One very important point to stress is that the order and types of the actual
arguments must correspond exactly with the order and types of the corresponding
dummy arguments.

e The INTENT attribute is one of a number of attributes that may follow the type
in a declaration statement. It may only be used in the declaration of a dummy
argument. It is used to control the direction in which the arguments are used to
pass information. It can take one of the following three forms:

INTENT(IN) which informs the processor that this dummy argument is used only
to provide information to the procedure, and the procedure will not be allowed
to alter its value in any way.

INTENT(OUT) which informs the processor that this dummy argument will only
be used to return information from the procedure to the calling program. Its
value will be undefined on entry to the procedure and it must be given a value
by some means before being used in an expression, or being otherwise referred
to in a context which will require its value to be evaluated.

INTENT(INOUT) which informs the processor that this dummy argument may be
used for transmission of information in both directions.

e A subroutine’s arguments may have all three forms of INTENT attribute. The
arguments of a function should always be declared with INTENT(IN).

e Arguments of procedures may also be of character data type. In this case it is con-
venient to use an assumed-length character declaration in the procedure, that
is, the character string assumes its length from the corresponding actual argument
when the procedure is executed.

CHARACTER(LEN = *) :: character_dummy_argument

e One of the great advantages of subprograms is that they enable us to break the
design of a program into several smaller, more manageable sections, and then to
write and test each of these sections independently of the rest of the program. This
paves the way for an approach known as modular program development, which
is a key concept of software engineering. This approach breaks the problem down
into its major sub-problems, or components, each of which can then be dealt with
independently of the others.

23

e As a rule of thumb, we would suggest that no procedure should be longer than
about 50 lines, excluding any comments, so that it can be printed on a single sheet
of paper or viewed easily on a screen.

e A MODULE is another form of program unit which is used for rather different
purposes than a procedure. One very important use of modules relates to global
accessibility of variables, constants and derived type definitions: by using a module
one can make some or all the entities declared within it accessible to more than one
program unit. Access is by means of an appropriate USE statement:

USE name

where name is the name of the module in which the variables, constants, and/or
derived data type definitions are declared. Entities which are made available in this
way are said to be made available by USE association.

The USE statement comes after the initial statement (PROGRAM, SUBROUTINE or
FUNCTION) but before any other statements.

e The broad structure of a module is:
MODULE name
IMPLICIT NONE
SAVE

Other specification statements, etc.

Executable statements

END MODULE name

e The statement consisting of the single word SAVE should always be included in any
module which declares any variables.

e One module can USE another module in order to gain access to items declared
within it, and those items then also become available along with the modules own
entities.

e A module may not USE itself, either directly or indirectly (via a recursive chain of
other modules).

e Objects of derived types can only be used as arguments to procedures if their type
is defined in a MODULE which is used by the relevant program units.

e [t is desirable for some security aspects, and essential for some of the language
features that will be met in future chapters, that procedures have an explicit in-
terface. One way that we can always make the interface of a procedure explicit is
by placing the procedure in a module. The rules relating to modules specify that

o the interfaces of all the procedures defined within a single module are explicit
to each other;

o the interfaces of any procedures made available by USE association are explicit
in the program unit that is using the module.

24

e The statement consisting of the single word
CONTAINS
should be placed before the first procedure in a module that contains procedures.

e Modules are of great assistance in the design and control of data as they enable a
programmer to group the data in such a way that all those procedures that require
access to a particular group can do so by simply using the appropriate module.

Fortran 90 syntax introduced in Chapter 4

Initial statements

Function reference

Subroutine call

Module use

Assumed length
character declaration

Argument intent
attribute

External procedure
attribute

SAVE statement

CONTAINS statement

SUBROUTINE name(dummy argument list)
SUBROUTINE name

type FUNCTION name(dummy argument list)
type FUNCTION name()

FUNCTION name(dummy arqgument list)
FUNCTION name()

MODULE name

function_name(actual argument list)
function_name()

CALL subroutine_name(actual argument list)
CALL subroutine_name()

USE module_name

character_dummy_arg
character_dummy_arg

CHARACTER(LEN = *) ::
CHARACTER * (¥) ::

INTENT((intent)
where intent is IN, OUT or INOUT

EXTERNAL

SAVE

CONTAINS

25

Example 4.1x

Problem (4.1x)

Write a program which will demonstrate the use of the function cube_root to calculate the
cube root of a positive real number.

Analysis (4.1x)

Structure plan:

1 Read positive real number pos_num.
2 Obtain root_3 by reference to the function cube_root.
3 Print pos_num and root_3.

Example 4.2x

Problem (4.2x)

Write a program which will demonstrate the use of the subroutine roots to calculate the
square root, the cube root and the fourth root of a positive real number.

Analysis (4.2x)

Structure plan:

1 Read positive real number pos_num.
2 Obtain root_2, root_3 and root_4 by calling the subroutine roots.
3 Print pos_num, root_2, root_3 and root_4.

Example 4.1x

PROGRAM function_demo
IMPLICIT NONE
!
! A program to demonstrate the use of the function cube_root
!
! Variable declarations
REAL, EXTERNAL :: cube_root
REAL :: pos_num, root_3
!
! Get positive number from user
PRINT *, "Please type a positive real number: "
READ *, pos_num
!
! Obtain root
root_3=cube_root (pos_num)
!
! Display number and its root
PRINT *, "The cube root of ", pos_num, " is ", root_3
!
END PROGRAM function_demo

REAL FUNCTION cube_root(x) 11! FUNCTION cube_root(x)
IMPLICIT NONE

!
! Function to calculate the cube root of a positive real number
!
! 1 REAL :: cube_root

!

! Dummy argument declaration

REAL, INTENT(IN) :: x

!

! Local variable declaration

REAL :: log_x

!

! Calculate cube root by using logs

log_x = LOG(x)

cube_root = EXP(log_x/3.0)

!
END FUNCTION cube_root

26

Example 4.2x

PROGRAM subroutine_demo
IMPLICIT NONE
!
! A program to demonstrate the use of the subroutine roots
!
! Variable declarations
REAL :: pos_num, root_2, root_3, root_4
!
! Get positive number from user
PRINT *, "Please type a positive real number:

READ *, pos_num
!

]

! Obtain roots

CALL roots(pos_num, root_2, root_3, root_4)

1

! Display number and its roots

PRINT *, "The square root of ", pos_num, " is ", root_2
PRINT *, "The cube root of ", pos_num, " is ", root_3
PRINT *, "The fourth root of ", pos_num, " is ", root_4
1

END PROGRAM subroutine_demo

SUBROUTINE roots(x, square_root, cube_root, fourth_root)
IMPLICIT NONE

!
! Subroutine to calculate various roots of a positive real number,
! supplied as the first argument, and return them in the

! second to fourth arguments

!

!

! Dummy argument declarations
REAL, INTENT(IN) :: x
REAL, INTENT(OUT) :: square_root, cube_root, fourth_root
!
! Local variable declarations
REAL :: log_x
!
! Calculate square root using intrinsic SQRT
square_root = SQRT(x)
!
I Calculate other roots by using logs
log_x = LOG(x)
cube_root = EXP(log_x/3.0)
fourth_root = EXP(log_x/4.0)
!

END SUBROUTINE roots

27

Example 4.4

Problem (4.4)

Write two functions for use in a complex arithmetic package using the complex_number
derived type which was created in Example 3.4. The functions should each take two
complex arguments and return as their result the result of adding and multiplying the

two numbers.

Analysis (4.4)

This was already done in Example 3.4.

Structure plan:

1

CUk W N

Place the derived type complex_-number in a MODULE complex_data
for USE association by the program and the functions

Read two complex numbers

Calculate their sum using FUNCTION c_add

Calculate their product using FUNCTION c_mult

Print the results

Solution (4.4)

MODULE complex_data
IMPLICIT NONE
SAVE
!
TYPE complex_number
REAL :: real_part, imag_part
END TYPE complex_number
!
END MODULE complex_data

PROGRAM complex_example
USE complex_data
IMPLICIT NONE
!
TYPE (complex_number), EXTERNAL :: c_add, c_mult
TYPE(complex_number) :: zl, z2
!
PRINT *, "Please supply two complex numbers as two pairs &
&4of real numbers"
PRINT *, "Each pair represents the real and imaginary parts &
&of a complex number"
READ *, zl1, z2
!
! Calculate and print sum and product
PRINT *, "The sum of the two numbers is ", c_add(zl, z2)
PRINT *, "The product of the two numbers is ", c_mult(zl, z2)
!
END PROGRAM complex_example

29

FUNCTION c_add(zl, z2)
USE complex_data
IMPLICIT NONE
!
TYPE (complex_number) :: c_add

TYPE (complex_number), INTENT(IN)
!

c_addlreal_part

1ozl, z2

zlYreal_part + z2)real_part

c_add%imag_part = zljimag_part + z2)imag_part

I
END FUNCTION c_add

FUNCTION c_mult(zl, z2)
USE complex_data
IMPLICIT NONE
!
TYPE (complex_number) :: c_mult

TYPE(complex_number), INTENT(IN)
|

c_multyreal_part = zllreal_part
z1%imag_part
zlYreal_part

z1%imag_part

c_multiimag_part

!
END FUNCTION c_mult

EE R R

1ozl, z2

z2)real_part - &
z2J,imag_part
z2%,imag_part + &
z2)real_part

30

